LYING WITH STATISTICS AND VISUALIZATIONS

http://www.marktaw.com/blog/TheTriangleProblem.html
The image you've shown is a classic example of a geometrical illusion often called the "missing square puzzle" or "vanishing square illusion." It appears to show a paradox where rearranging the parts of a figure results in a different amount of area, even though the parts themselves are the same.

This illusion is achieved by the subtle reconfiguration of shapes that are not quite as they seem. The four shapes in the first triangle are rearranged to create the second figure. However, the first figure is a little over 32 square units (if we assume each square on the grid is 1 square unit), while the second figure is exactly 32 square units.

Here's the trick: the two large triangles are not similar; they are not exactly the same shape. Although they appear to be right triangles, they're not. If you look closely at the slopes of the hypotenuses, you'll see they're slightly different. The first figure's hypotenuse is a single straight line, while the second figure's hypotenuse is made up of two line segments that do not align perfectly. This creates a slight discrepancy in the slope, which accounts for the "missing" square unit. When the pieces are rearranged, this tiny difference adds up to the area of one square unit, forming the "hole" in the second figure.

It's a neat reminder that our eyes can sometimes deceive us when interpreting shapes and areas!
Below the parts are moved are
SURVEYS
LYING WITH NUMBERS

“The average market salary for MIT graduates with 0-2 years of experience is $151,000 per year”

In how many ways can this be misleading?

https://www.paysa.com/blog/harvard-vs-mit-which-tech-grads-make-the-most/
SAMPLING BIAS

• More successful graduates are more likely to respond to surveys
 o They feel good about their earnings
 o Surveys are only sent to big companies

• How big is their sample size?
 o Not disclosed

• Tendency to exaggerate
 o Brag about your salary
 o School spirit, want your alma mater to rank highly

• Tendency to minimize
 o No one likes tax

• Do they cancel out each other?
 o No one knows!
LYING WITH NUMBERS

“The **average** market salary for MIT graduates with 0-2 years of experience is $151,000 per year”

In how many ways can this be misleading?

https://www.paysa.com/blog/harvard-vs-mit-which-tech-grads-make-the-most/*
THE TERM “AVERAGE”

• Imagine a school with 5 alumni
 o Bill Doors: $1 million/year
 o Mark Bergkerzuck: $120k/year
 o Mary Sheet: $100k/year
 o Sergey Bin: $80k/year
 o Sarah Baller: $80k/year

• Average can be mean, median, or mode; They can be totally different

• Mean: Evenly distributes the total among individuals
 o Can be unrepresentative when measurements are highly skewed
 o In our example: $276k/year

• Median: Value dividing distribution into two equal parts (50th percentile)
 o In our example: $100k/year

• Mode: Most frequently observed outcome (rarely reported with numeric data)
 o In our example: $80k/year

Slide by Larry Winner, “Overview of How to Lie with Statistics”
The average market salary for MIT graduates with 0-2 years of experience is $151,000 per year.

PayScale’s methodology did not include alums with advanced degrees and only used data from graduates with bachelor’s degrees. It also excluded self-employed and contract employees.

Because the salaries of graduates from elite schools vary extensively, the study has a relatively wide margin of error, the report stated.
What conclusions can you make from this data?

Does going to MIT make you rich?
LYING WITH SURVEYS

Three questions you should ask after you read any paper:

1. Is there any bias in the sample set?
 a. Look for unconscious bias
 b. Look for conscious bias

2. What statistics are they actually talking about?

3. Are the conclusions they make supported by their reported findings (and reported statistics)?
LYING WITH VISUALIZATIONS
LYING WITH VISUALIZATION

seeing is believing

"don't believe everything you see."
LYING WITH BAR CHARTS

![Bar Chart: Frog Population](chart.jpg)

- **May**: Population of 10
- **Sept**: Population of 40
LYING WITH BAR CHARTS

VS

Frog Population

May Sept

Frog Population

May Sept
LYING WITH LINE CHARTS

Zero line at the bottom
CHOP OFF THE BOTTOM
CHANGE THE PORTION OF Y-AXIS
LYING WITH DIAGRAMS

• Say that in a pond, there were
 o 13 Adult frogs in May
 o 39 Adult frogs in September
• Represented in a “stacked-frog” plot
LYING WITH DIAGRAMS

or we can represent in this way...

Number of Adult Frogs in South Pond

http://www.physics.csbsju.edu/stats/display.html
ANOTHER EXAMPLE

People at “A” get twice the pay of people at “B”
LYING WITH 3D
APPLE WWDC 2008

U.S. Smartphone Marketshare

- RIM: 39.0%
- Apple: 21.2%
- Palm: 19.5%
- Motorola: 7.4%
- Nokia: 9.8%
- Other: 3.1%

Source: Gartner
APPLE WWDC 2008

U.S. SmartPhone Marketshare

19.5% area bigger than 21.2% area

http://www.theguardian.com/technology/blog/2008/jan/21/liesdamnliesandstevejobs
TODAY’S EXAMPLE (APPLE WWDC 2008)

U.S. SmartPhone Marketshare

- RIM: 39.0%
- Apple: 21.2%
- Palm: 19.5%
- Motorola: 9.8%
- Nokia: 7.4%
- Other: 3.1%
LYING WITH MAPS

Choropleth map

- provides an easy way to visualize measurement varies across geographic area

http://upload.wikimedia.org/wikipedia/commons/1/17/World_population_density_map.png
LYING WITH CHOROPLETH MAP

US poverty map from Guardian data blog
LYING WITH CHOROPLETH MAPS

- Poverty data range from 6.6% to 22.7%
 - Unequally distributed

If we are measuring inequality, perhaps we should at least use equally distributed classes

http://vis4.net/blog/posts/choropleth-maps/
CHOICE OF COLOR

http://vis4.net/blog/posts/choropleth-maps/
LYING WITH CHOROPLETH MAPS

With equally distributed classes and equidistant colors from a HSV gradient

http://vis4.net/blog/posts/choropleth-maps/
LYING WITH CHOROPLETH MAPS

• When look at any choropleth map, be aware of
 o How they categorize the classes
 o How they choose the colors

• Choropleth map classification based on
 o Equal-intervals
 o Quantile classing; each class has equal number of distinct values
 o Iterative algorithm to find “natural breaks”
The above graphic was copied from a book about sleep research. The bars try to summarize the number of traffic accidents in Canada before and after daylight-savings time adjustments for the years 1991 and 1992 (combined). The goal of the graph is to suggest a correlation between lost sleep and traffic accidents.

Find 3 problems with this visualization.
LYING THROUGH AGGREGATIONS

<table>
<thead>
<tr>
<th>Smoker?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead</td>
<td>107</td>
<td>132</td>
</tr>
<tr>
<td>Alive</td>
<td>174</td>
<td>175</td>
</tr>
<tr>
<td>Total</td>
<td>281</td>
<td>307</td>
</tr>
<tr>
<td>% Dying</td>
<td>38.1%</td>
<td>43.0%</td>
</tr>
</tbody>
</table>

(data adapted from Appleton et al. 1996, Am. Stat.)
MOTIVATING EXAMPLE: SMOKING & SURVIVAL

20-year follow-up study, Wickham in UK (Tunbridge et al. 1977)

1972-1974, one-in-six survey of the electoral roll, largely concerned with thyroid disease and heart disease

For simplicity, consider women aged 45 to 75 at the start of the study

- Smoking status: current smoker (Y/N)
- 20-year survival info: determined for all women in the study

<table>
<thead>
<tr>
<th>Smoker?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead</td>
<td>107</td>
<td>132</td>
</tr>
<tr>
<td>Alive</td>
<td>174</td>
<td>175</td>
</tr>
<tr>
<td>Total</td>
<td>281</td>
<td>307</td>
</tr>
</tbody>
</table>

% Dying

38.1% 43.0%

Protective effect of smoking?

(data adapted from Appleton et al. 1996, Am. Stat.)
SMOKING & SURVIVAL (CON’T)

<table>
<thead>
<tr>
<th>Smoker?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead</td>
<td>107</td>
<td>132</td>
</tr>
<tr>
<td>Alive</td>
<td>174</td>
<td>175</td>
</tr>
<tr>
<td>Total</td>
<td>281</td>
<td>307</td>
</tr>
<tr>
<td>% Dying</td>
<td>38.1%</td>
<td>43.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age Group</th>
<th>45-54</th>
<th>55-64</th>
<th>65-74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>27</td>
<td>51</td>
<td>29</td>
</tr>
<tr>
<td>No</td>
<td>12</td>
<td>40</td>
<td>101</td>
</tr>
<tr>
<td>Alive</td>
<td>103</td>
<td>64</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>130</td>
<td>105</td>
<td>36</td>
</tr>
<tr>
<td>% Dying</td>
<td>20.8%</td>
<td>48.6%</td>
<td>80.6%</td>
</tr>
</tbody>
</table>

Consider 10-year ranges: 45-54, 55-64, 65-75

Non-smoking group does better in every case!

Age is correlated with dying, smoking is correlated with dying and being younger.
GENDER BIAS, OR NOT?

1973, UC Berkeley was afraid to be sued for discrimination against women in graduate school admissions.

Percent acceptance: Male vs Female, 44% vs. 35%
GENDER BIAS, OR NOT? (CONT’D)

Departments admit fairly, more women apply to more selective department

Table 2. Admissions data by sex of applicant for two hypothetical departments. For total, \(\chi^2 = 5.71\), d.f. = 1, \(P = 0.19\) (one-tailed).

<table>
<thead>
<tr>
<th>Applicants</th>
<th>Outcome</th>
<th>Observed</th>
<th>Expected</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admit</td>
<td>Deny</td>
<td>Admit</td>
<td>Deny</td>
</tr>
<tr>
<td>Men</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Women</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Department of mathematics</td>
<td>Department of social warfare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Women</td>
<td>150</td>
<td>300</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Totals</td>
<td>250</td>
<td>400</td>
<td>329.8</td>
<td>320.8</td>
</tr>
</tbody>
</table>

Be aware of the dangers of ignoring a covariate that is correlated to an outcome variable and an explanatory one (e.g., gender is correlated with selectivity of department).

IMPRESSION FIGURES
MAKING NUMBERS LOOK BIGGER OR SMALLER

MAKE ANYTHING MAGICALLY SHRINK
BE CAREFUL WHAT YOU STARE AT!
MAKING NUMBERS LOOK BIGGER

“runs up to 10x faster”
(https://www.digitalengineering247.com/article/altair-optistructruns-up-to-10x-faster-on-nvidia-gpus)

“lasts up to 5x longer”

“cleans up to 10x better”
(https://www.youtube.com/watch?v=Yx9iCKKzYR4)

photorealistic fake ad cleans up to 10 times better super bright teeth vs scummy yellow teeth
UP-TOS

“runs up to 10x faster”
(https://www.digitalengineering247.com/article/altair-optistructruns-up-to-10x-faster-on-nvidia-gpus)

“lasts up to 5x longer”

“cleans up to 10x better”
(https://www.youtube.com/watch?v=Yx9iCKKzYR4)

“Schism consistently outperforms simple partitioning schemes, …, reducing the cost of distributed transactions up to 30%”

What is the problem with up-tos?
Example (from Colton)
Sex and race distribution of 158 cases of *abdominal aortic aneurysms* (AAA) at metropolitan hospitals in a Southern city

<table>
<thead>
<tr>
<th>Sex & Race</th>
<th>#AAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Males</td>
<td>93</td>
</tr>
<tr>
<td>AA Males</td>
<td>30</td>
</tr>
<tr>
<td>White Females</td>
<td>22</td>
</tr>
<tr>
<td>AA Females</td>
<td>13</td>
</tr>
</tbody>
</table>

Author’s conclusion: Incidence of AAA is almost 3 times more frequent in Whites than African-Americans.

Do you see a potential problem?
Example (from Colton)

Sex and race distribution of 158 cases of *abdominal aortic aneurysms (AAA)* at metropolitan hospitals in a Southern city

<table>
<thead>
<tr>
<th>Sex & Race</th>
<th>#AAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Males</td>
<td>93</td>
</tr>
<tr>
<td>AA Males</td>
<td>30</td>
</tr>
<tr>
<td>White Females</td>
<td>22</td>
</tr>
<tr>
<td>AA Females</td>
<td>13</td>
</tr>
</tbody>
</table>

Author’s conclusion: Incidence of AAA is almost 3 times more frequent in Whites than African-Americans.

Do you see a potential problem?
This fallacy is known as a lack of denominators
The Most Stolen Cars, Trucks, and SUVs in America

These are the most commonly boosted vehicles in the U.S.—just not in the fun sense of “boost.”

Does this mean if you buy an F-150 it is more likely to be stolen?

More popular than any other vehicle in the U.S., for multiple decades running, popularity alone means the F-150 would likely make the list.
EXCEPTION FALLACY

4 out of 6 members of the math team representing Canada at the 2018 International Math Olympiad were from Ontario.

Does Ontario have the best K-12 math curriculum in Canada?
EXCEPTION FALLACY

4 out of 6 members of the math team representing Canada at the 2018 International Math Olympiad were from Ontario.

Does Ontario have the best K-12 math curriculum in Canada?

Note that Ontario has 40% of the nation’s population.
DO YOU SEE A PROBLEM WITH THIS LIST?

Example: The Top 10 All Time Grossing Films (in Millions – US)

1) Avatar (2009): $760
2) Titanic (1997): $658
3) Marvel’s the Avengers (2012): $588
4) The Dark Knight (2008): $533
6) Star Wars IV: A New Hope (1977): $460
7) The Dark Knight Rises (2012): $449
8) Shrek 2 (2011): $441
Nominal Variables are in terms of a current dollars. For example, you’re starting salary after college might be $50,000 per year.

Real variables are in terms of some fixed commodity. Real variables measure purchasing power. If a gallon of gas costs $2.00, then we can calculate your “real” income.

\[
\text{Real Income} = \frac{\text{Nominal Income}}{\text{Price}} = \frac{\$50,000}{\$2.00} = 25,000
\]
In 2009, a gallon of gas cost $3.50

Real Gross = \(\frac{\text{Nominal Gross}}{\text{Price}} \) = \(\frac{749M}{3.50} \) = 214M (Gallons of Gas)

In 1977, a gallon of gas cost $.62

Real Income = \(\frac{\text{Nominal Gross}}{\text{Price}} \) = \(\frac{460M}{.62} \) = 742M (Gallons of Gas)
The Top 10 All Time Grossing Films—**Inflation Adjusted** (Millions of 2000 Dollars)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Film Title</th>
<th>Year</th>
<th>Adjusted Gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gone With the Wind</td>
<td>1939</td>
<td>$1,689</td>
</tr>
<tr>
<td>2</td>
<td>Star Wars Episode IV</td>
<td>1977</td>
<td>$960</td>
</tr>
<tr>
<td>3</td>
<td>The Sound of Music</td>
<td>1965</td>
<td>$768</td>
</tr>
<tr>
<td>4</td>
<td>ET: The Extraterrestrial</td>
<td>1982</td>
<td>$764</td>
</tr>
<tr>
<td>5</td>
<td>The Ten Commandments</td>
<td>1956</td>
<td>$706</td>
</tr>
<tr>
<td>6</td>
<td>Titanic</td>
<td>1997</td>
<td>$691</td>
</tr>
<tr>
<td>7</td>
<td>Jaws</td>
<td>1975</td>
<td>$690</td>
</tr>
<tr>
<td>8</td>
<td>Dr. Zhivago</td>
<td>1965</td>
<td>$669</td>
</tr>
<tr>
<td>9</td>
<td>The Exorcist</td>
<td>1973</td>
<td>$596</td>
</tr>
<tr>
<td>10</td>
<td>Snow White</td>
<td>1937</td>
<td>$587</td>
</tr>
</tbody>
</table>

Notes: Avatar falls to #14 ($516), a movie ticket in 1939 was $0.23
SELF-DRIVING CARS

[Tesla] said Autopilot-enabled cars had covered 130 million miles without a fatality, compared to a national average of one fatality every 94 million miles. Musk says it would be “morally reprehensible” to delay its rollout.

Tesla’s Cars Have Driven 140M Miles on Autopilot. Here’s How — Wired, 17 Aug 2016

Clicker: what is the problem with this statement?
SELF-DRIVING CARS

[Tesla] said Autopilot-enabled cars had covered 130 million miles without a fatality, compared to a national average of one fatality every 94 million miles. Musk says it would be “morally reprehensible” to delay its rollout.

Tesla’s Cars Have Driven 140M Miles on Autopilot. Here’s How — Wired, 17 Aug 2016

A RAND Corporation report concluded that fatalities and injuries are so rare that it would require an automated car to drive as many as hundreds of billions of miles before its performance could be fairly compared with statistics from the much larger population of human drivers.

SERVICE UP-TIME

A fictitious school bus status update website claims 99.9% uptime.

Is this good?
A fictitious school bus status update website claims 99.9% uptime.

Is this good?

What if in the morning hours (5am - 8am) of a big snowstorm day, the website is down due to too much traffic.

With three such snowstorms a year, the website is down 9 hours out of a total of 365 x 24 hours per year.

9/8760 is roughly 0.1%. But the website is down when you most need it to be up!
P-VALUES
A New Study shows: A Glass Of Red Wine Is The Equivalent To An Hour At The Gym [Fox News 02/15 and others]

http://www.huffingtonpost.co.uk/2016/01/08/a-glass-of-red-wine-is-the-equivalent-to-an-hour-at-the-gym-says-new-study_n_7317240.html
A new study shows: Secret to winning a Nobel prize? Eat More Chocolate [Time 10/12]
Scientists find the secret of longer life for men

[Daily Mail UK, 09/12]

http://www.dailymail.co.uk/sciencetech/article-2207981/Scientists-secret-living-life-men-bad-news-Castration-key.html
Scientists find the secret of longer life for men
(The bad news: castration is the key) [Daily Mail UK, 09/12]
Data Dredging

Today's Random Medical News

Can Cause: Hypothermia, Depression, Glaucoma

According to a report released today...
Beer Consumption Increases Human Attractiveness to Malaria Mosquitoes

Beer (25):
27 20 21 26 27 31 24 21 20 19
23 24 28 19 24 29 18 20 17 31
20 25 28 21 27
Mean: 23.6

Water (18):
21 22 15 12 21 16 19 15 22 24
19 23 13 22 20 24 18 20
Mean: 19.2

Is a difference of 4.4 significant?
PERMUTATION TEST

Beer (25)

Water (18)

Difference: 4.4
PERMUTATION TEST

Beer (25) Water (18)

Difference

-5.0 -2.5 0.0 2.5 5.0
PERMUTATION TEST

Beer (25)

Water (18)

Difference: 3.3
PERMUTATION TEST

Difference: 2.5

Beer (25)

Water (18)
PERMUTATION TEST

Difference

1 out of 100 repetitions
The p value (Type I error) is the probability of obtaining an effect equal to or more extreme than the one observed presuming the null hypothesis of no effect is true.
The Basic and Applied Social Psychology (BASP) 2014 Editorial emphasized that the null hypothesis significance testing procedure (NHSTP) is invalid, and thus authors would be not required to perform it (Trafimow, 2014). However, to allow authors a grace period, the Editorial stopped short of actually banning the NHSTP. The purpose of the present Editorial is to announce that the grace period is over. From now on, BASP is banning the NHSTP.

With the banning of the NHSTP from BASP, what are the implications for authors? The following are anticipated questions and their corresponding answers.

Question 1. Will manuscripts with *p*-values be desk rejected automatically?

Answer to Question 1. No. If manuscripts pass the
FICTIOUS EXAMPLE: BRAIN CANCER

Hypothesis: Brain cancer causes a headache

Data shows p<0.01 (considered very significant)
FICTIOUS EXAMPLE: BRAIN CANCER

Hypothesis: Brain cancer causes a headache

Data shows p<0.01 (considered very significant)

If you have a headache, how likely is it that you have brain cancer?
FICTIOUS EXAMPLE: BRAIN CANCER

Hypothesis: Brain cancer causes a headache

Data shows p<0.01 (considered very significant)

If you have a headache, how likely is it that you have brain cancer?

Cannot infer anything about the inverse!
A) The chances are greater than 1 in 20 that a difference would be found if the study were repeated.

B) The probability is less than 1 in 20 that a difference this large or larger could occur by chance alone.

C) The probability is greater than 1 in 20 that a difference this large or larger could occur by chance alone.

D) The chance is 95% that the study is correct

E) None of the above
In my experience teaching many academic physicians, when physicians are presented with a single-sentence summary of a study that produced a surprising result with $P = 0.05$, the overwhelming majority will confidently state that there is a 95% or greater chance that the null hypothesis is incorrect.

What is wrong with this?

MISCONCEPTION 1

“In my experience teaching many academic physicians, when physicians are presented with a single-sentence summary of a study that produced a surprising result with \(P = 0.05 \), the overwhelming majority will confidently state that there is a 95% or greater chance that the null hypothesis is incorrect.

This is an understandable but categorically wrong interpretation because the \(P \) value is calculated on the assumption that the null hypothesis is true. It cannot, therefore, be a direct measure of the probability that the null hypothesis is false. This logical error reinforces the mistaken notion that the data alone can tell us the probability that a hypothesis is true.”

MISCONCEPTION #1

“If P=.05, the null hypothesis has only a 5% chance of being true”

Let us suppose we flip a penny four times and observe four heads, two-sided P = .125. This does not mean that the probability of the coin being fair is only 12.5%.

Null hypothesis = “coin is fair”

The p-value does not tell us the probability that the coin is fair or unfair. It tells us the probability of observing a particular outcome (four heads in a row, in this case) assuming the coin is fair.

Steven Goodman: “A Dirty Dozen: Twelve P-Value Misconceptions”
MISCONCEPTION #2

A non-significant difference (e.g., P .05) means there is no difference between groups.

- A non-significant difference only means the null effect is statistically consistent with the observation
- It does not make the null effect most likely
- The most important aspect of a study's outcome is the actual observed effect itself: how strong or weak it is, and the practical or clinical significance of this finding, regardless of the p-value.

Steven Goodman: “A Dirty Dozen: Twelve P-Value Misconceptions”
MISCONCEPTION #3

A statistically significant finding is (clinically) important

The P value carries no information about the magnitude of an effect, which is captured by the effect estimate and confidence interval.
MISCONCEPTION #4

“Studies with P values on opposite sides of .05 are conflicting”

H_0: Drug T has no effect
H_1: Drug T has a positive effect

Study I: $P=0.3$
Study II: $P=0.002$
MISCONCEPTION #5

Studies with the same P value do not provide the same evidence against the null hypothesis.

![Graph showing different results with the same P value](image)
The Basic and Applied Social Psychology (BASP) 2014 Editorial emphasized that the null hypothesis significance testing procedure (NHSTP) is invalid, and thus authors would be not required to perform it (Trafimow, 2014). However, to allow authors a grace period, the Editorial stopped short of actually banning the NHSTP. The purpose of the present Editorial is to announce that the grace period is over. From now on, BASP is banning the NHSTP.

With the banning of the NHSTP from BASP, what are the implications for authors? The following are anticipated questions and their corresponding answers.

Question 1. Will manuscripts with p-values be desk rejected automatically?

Answer to Question 1. No. If manuscripts pass the a strong case for rejecting it, confidence intervals do not provide a strong case for concluding that the population parameter of interest is likely to be within the stated interval. Therefore, confidence intervals also are banned from BASP.

Bayesian procedures are more interesting. The usual problem with Bayesian procedures is that they depend on some sort of Laplacian assumption to generate numbers where none exist. The Laplacian assumption is that when in a state of ignorance, the researcher should assign an equal probability to each possibility. The problems are well documented (Chihara, 1994; Fisher, 1973; Glymour, 1980; Popper, 1983; Suppes, 1994; Trafimow, 2003, 2005, 2006). However, there have been Bayesian proposals that at least somewhat circumvent
P-HACKING (ALSO DATA DREDGING, DATA FISHING, DATA SNOOPING, DATA BUTCHERY)

Figure 1. There is no overall effect of jelly beans on acne. Bummer. How about subgroups? Often subgroups are explored without alerting the reader to the number of questions at issue. Courtesy xkcd, http://xkcd.com/882/
\[P(\text{detecting an effect when there is none}) = \alpha = 0.05 \]

\[P(\text{detecting an effect when it exists}) = 1 - \alpha \]

\[P(\text{detecting an effect when it exists on every experiment}) = (1 - \alpha)^k \]

\[P(\text{detecting an effect when there is none on at least one experiment}) = 1 - (1 - \alpha)^k \]

\[\alpha = 0.05 \]

“Familywise Error Rate”
MISTAKES AND FRAUD

2001 – 2011:
• 10X increase in retractions
• only 1.44X increase in papers

The Rise of the Retractions

PUBLICATION BIAS

"decline effect"

effect size (positive is good)

study size

26.04.24
Bill Howe, UW
"decline effect" = publication bias!
FAMILY-WISE ERROR RATE CORRECTIONS

Bonferroni Correction
- Just divide by the number of hypotheses

\[\alpha_c = \frac{\alpha}{k} \]

Šidák Correction
- Asserts independence

\[\alpha = 1 - \left(1 - \alpha_c\right)^k \]

\[\alpha_c = 1 - \left(1 - \alpha\right)^\frac{1}{k} \]
MANY ANALYSTS, ONE DATA SET
Abstract:

“Twenty-nine teams involving 61 analysts used the same data set to address the same research question: whether soccer referees are more likely to give red cards to dark-skin-toned players than to light-skin-toned players. Analytic approaches varied widely across the teams, and the estimated effect sizes ranged from 0.89 to 2.93 (Mdn = 1.31) in odds-ratio units. Twenty teams (69%) found a statistically significant positive effect, and 9 teams (31%) did not observe a significant relationship. Overall, the 29 different analyses used 21 unique combinations of covariates. Neither analysts’ prior beliefs about the effect of interest nor their level of expertise readily explained the variation in the outcomes of the analyses. ….

Crowdsourcing data analysis, a strategy in which numerous research teams are recruited to simultaneously investigate the same research question, makes transparent how defensible, yet subjective, analytic choices influence research results.”
“It is easy to lie with statistics, but it is easier to lie without them.”

attributed to Frederick Mosteller (1916-2006)
REFERENCES

• How to lie with Statistics - Darrell Huff
• How to lie with Maps - Mark Monmonier
• http://www.sciencebasedmedicine.org/psychology-journal-bans-significance-testing/