
Cambridge Mobile Telematics
& Sampling / Sketching

6.S079 Lecture 22

Final Project Meeting Signups Out
Quiz 2 Review Monday
Quiz 2 Wednesday

We’ve left off the slides from CMT from the
deck; it won’t be covered on the exam.

Sampling and Sketching

Do We Always Need to Process All the Data?
• For many data analytics applications, it may

not be necessary to look at every record.

• E.g., suppose we want to see how revenue
changed over the past 12 months

• Could scan all data

or

• Could randomly sample data and
compute estimate / error bars

Error Bars: Central Limit Theorem
• Given a population with a finite mean μ and a finite non-zero variance σ2, the

sampling distribution of the mean approaches a normal distribution with a
mean of μ and a variance of σ2/N as N, the sample size, increases.

• Here, the sampling distribution of the mean is the distribution of the means of
samples of the dataset

• This means we can estimate the mean, and estimate the error in the mean
• μ = mean(sample)

• σ = !"##$%(!'()*$)
,

, 𝑠𝑡𝑑𝑑𝑒𝑣 𝑠𝑎𝑚𝑝𝑙𝑒 =
∑! !" #$%&'((. /μ))

,

Similar closed form solutions for sum, count, and other simple statistics

What if CLT Doesn’t Apply
• E.g., suppose you want error bars on the median, or on

percentiles in a histogram

• Or some complex predictive function, e.g., some ML
algorithm

• The Nonparametric Bootstrap is a generic technique for this
• Idea: repeatedly resample a sample

Bootstrap Method
Given a function F and a sample S of size N, with parameter K
(the number of bootstraps)

Goal is +/- p confidence interval
For i in 1 .. K
• S_new = sample of size N of S with replacement
• Results[i] = F(S_new)

Sort results, return p, 1-p percentile of results

Example
[36,23,7,25,27,31,27,10,11,8,21,4,41,0,20,5,0,36,40,10,12,31,24,2,28,8,9,25,48,43,40,2,26,0,2
5,32,9,0,10,33,1,23,7,39,18,32,16,40,4,42,28,28,26,42,0,45,25,10,13,31,3,11,28,25,23,16,31,2
2,6,34,19,48,27,48,39,40,6,3,28,26,19,34,38,42,1,47,22,7,36,38,35,35,42,49,41,40,11,10,1,1]

[25,10,35,25,23,0,20,24,23,25,6,42,40,38,40,4,8,16,38,8]

Mean = 24.1

Mean = 22.91

Mean = 22.5

Resample 1: [42, 40, 8, 25, 0, 42, 24, 0, 16, 42, 23, 25, 25, 10, 40]

Resample 2: [23, 25, 10, 42, 23, 0, 0, 24, 23, 23, 38, 25, 16, 35, 25] Mean = 22.1

Resample 3: [6, 38, 40, 23, 23, 40, 23, 4, 8, 25, 4, 8, 25, 20, 0] Mean = 19.13

Data:

Sample:

Resulting Means after 100 runs
14.93, 15.27, 15.33, 15.47, 16.60, 17.40, 17.53, 17.60, 17.80, 18.20,
18.27, 18.47, 18.47, 18.93, 18.93, 19.07, 19.07, 19.07, 19.13, 19.13,
19.53, 19.80, 19.80, 19.93, 20.00, 20.00, 20.13, 20.27, 20.40, 20.47,
20.60, 20.73, 20.80, 20.80, 21.07, 21.13, 21.13, 21.13, 21.20, 21.27,
21.33, 21.40, 21.47, 21.47, 21.87, 21.87, 22.13, 22.20, 22.27, 22.33,
22.33, 22.40, 22.73, 22.73, 22.80, 22.87, 22.93, 22.93, 23.00, 23.07,
23.13, 23.20, 23.20, 23.47, 23.53, 23.67, 23.67, 23.73, 23.73, 23.80,
23.93, 23.93, 23.93, 23.93, 24.00, 24.20, 24.20, 24.27, 24.47, 24.67,
24.80, 24.87, 24.87, 25.00, 25.13, 25.47, 25.47, 25.53, 26.07, 26.07,
26.07, 27.13, 27.33, 28.20, 28.47, 28.87, 28.87, 30.00, 30.53, 32.40,

Confidence interval of mean 16.6 … 28.87

Why Does This Work
• A random sample is an approximation of the distribution of the data

• If it’s big enough, it’s a good approximation

• Resampling the sample is close to resampling from the original data
• Variation in those samples captures variation in the original data
• Of course, it will miss outliers, extrema, etc.
• But it will work well for a variety of descriptive statistics, including quantiles,

regression errors, precision/recall estimates, etc.

Samples approximate the
true distribution well

When Doesn’t This Work
• Your sample needs to be big enough (N > 20 is a rule of

thumb, but it will vary a lot depending on data)
• It won’t work for extrema (e.g., min / max)
• It won’t work well for highly structured data (i.e., you can’t

randomly sample a graph, compute the average connectivity,
and expect to get something meaningful)
• It won’t work if your sample is not truly random

BlinkDB

Sameer Agarwal, Barzan Mozafari, Aurojit Panda,
Henry Milner, Samuel Madden, Ion Stoica. BlinkDB:
Queries with Bounded Errors and Bounded Response
Times on Very Large Data. In ACM EuroSys 2013

http://www.cs.berkeley.edu/~sameerag/blinkdb_eurosys13.pdf

Ultimate Goal of BlinkDB

•Observation: Many applications can tolerate
quick, approximate answers over data

• Trade-off: few percent error for up orders of
magnitude in efficiency

• Acceptable in decision support,
recommendation system, diagnosis, root
cause analysis

Overview
• Problem
Users are overwhelmed by data volumes AND
increasingly want to compute sophisticated
statistics over their data. Existing database
systems do not satisfy their needs.
• Our Goal
Provide interactive ad-hoc analytical (SQL)
queries over very large data sets.
• Basic Approach
Run queries over stored/precomputed samples,
providing answers with bounded errors for
arbitrary functions.

Challenges/Solutions

Generality: Accurate error estimates for complex SQL statements and
user-defined functions

• Investigating techniques like bootstrap and jack knife for providing error
estimates for arbitrary user-defined (differentiable) functions

Flexibility/Reliability: Accurate estimations of response times for ad hoc
queries (including over small domains)

• Using stratified sampling rather than random sampling

Parallelism/Scalability: Sub-second latencies for parallel queries running
on hundreds of machines

• Not doing online aggregation, but pre-computing samples
• Optimization problem!

System Architecture

TABLE

Original
Data

System Architecture

TABLE

Sa
m

pl
in

g
M

od
ul

e …

…

…

…

…

…Original
Data

Offline-sampling:
multiple data
samples at various
granularities and
across different
dimensions
(columns)

Initial Prototype

TABLE

Sa
m

pl
in

g
M

od
ul

e …

…

…

…

…

…Original
Data

In-Memory
Samples

On-Disk
Samples

Samples striped over
100s or 1,000s of
machines both on
disks and in-memory
(i.e., RDDs)

SELECT
foo (*)
FROM

TABLE;

Query Plan

HiveQL/SQL
Query

Sample Selection

System Architecture

TABLE

Sa
m

pl
in

g
M

od
ul

e …

…

…

…

…

…Original
Data

Predict cost and
error for ad-hoc
queries using
smaller samples and
historical context

In-Memory
Samples

On-Disk
Samples

SELECT
foo (*)
FROM

TABLE;

Query Plan

HiveQL/SQL
Query

Sample Selection

System Architecture

TABLE

Sa
m

pl
in

g
M

od
ul

e …

…

…

…

…

…Original
Data

Online sample
selection to pick
best sample(s)
based on query
latency and
accuracy
requirements

In-Memory
Samples

On-Disk
Samples

System Architecture

TABLE

Sa
m

pl
in

g
M

od
ul

e …

…

…

…

…

…Original
Data

Hive

SELECT
foo (*)
FROM

TABLE;

Query Plan

HiveQL/SQL
Query

Sample Selection

Error Bars &
Confidence Intervals

Result
182.23 ± 5.56

(95% confidence)

Parallel query execution
on multiple samples
striped across multiple
machines

In-Memory
Samples

On-Disk
Samples

System Architecture

TABLE

Sa
m

pl
in

g
M

od
ul

e …

…

…

…

…

…Original
Data

Hive

SELECT
foo (*)
FROM

TABLE;

Query Plan

HiveQL/SQL
Query

Sample Selection

Error Bars &
Confidence Intervals

Result
182.23 ± 5.56

(95% confidence)

Error Bars & Confidence
intervals using bootstrap

In-Memory
Samples

On-Disk
Samples

Handling Rare Values
• Some values in tables much less popular

Q1: SELECT avg(Salary) FROM employees WHERE city=‘New York’

Q2: SELECT avg(Salary) FROM employees WHERE city=‘Cambridge’

Solution: Stratified sampling – only sample values that appear
more than K times; preserve other values

Example

What Samples to Create
1. Always maintain a uniform sample
2. For stratified samples, start from past “query

templates”
3. Choose the combinations of columns that are

“best” for those templates
• Favor Non-uniform columns

4. Avoid “over-fitting” the past workload
• Favor sample families useful for answering queries

not captured by exiting templates

Experimental Setup
• 30-day log of media accesses by users from a

video analytics company. Raw data 17 TB,
partitioned this data across 100 nodes.
• Log of 20,000 queries (a sample of 200 queries

had 42 templates).

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Results

2.5 TB 7.5 TB
BlinkDB (1% error) 9 10
Hive 2000 6000

1

10

100

1000

10000

R
un

tim
e

(s
, l

og
 s

ca
le

)

Runtime Vs. Dataset Size

BlinkDB – Summary
• A massively parallel DB that supports ad-hoc queries with

error and response-time bounds.

• An optimal strategy for building & maintaining multi-
dimensional, multi-granularity samples

• Dynamic Query Cost Estimation and Sample Selection

Extreme Statistics
• What about cases where you need to estimate the max, min, # of

distinct values etc?

• Sampling won’t work

• No free lunch: Need to look at all of the values

• For min/max, can keep a running value

• But what about distinct values, top-N, etc?

Sketching Algorithms
Count distinct: hyperloglog
Heavy hitters (top K): countmin
Quantiles (median): quantile sketch
…

Today : hyperloglog

How many samples on average until
there are k trailing zeros?
25 0b110010
10 0b101000
35 0b100011
25 0b110010
23 0b101110
0 0b000000
20 0b101000
24 0b110000
23 0b101110
25 0b110010
6 0b110000
42 0b101010
40 0b101000
38 0b100110
40 0b101000
4 0b100000
8 0b100000
16 0b100000
38 0b100110
8 0b100000

Clicker:

a. k
b. 1
c. 2k

d. k2

How many samples on average until
there are k trailing zeros?
25 0b110010
10 0b101000
35 0b100011
25 0b110010
23 0b101110
0 0b000000
20 0b101000
24 0b110000
23 0b101110
25 0b110010
6 0b110000
42 0b101010
40 0b101000
38 0b100110
40 0b101000
4 0b100000
8 0b100000
16 0b100000
38 0b100110
8 0b100000

Clicker:

a. k
b. 1
c. 2k

d. k2

Hyperloglog Algorithm – Approach 0

Given a vector of values, V, compute H(v) for all v in V
H is a hash function that goes from v to a large random integer

MaxZeros = 0
For each h in H(v):

Zeros = count the number of leading zeros in h
MaxZeros = max(Zeros, MaxZeros)

Distinct vals = 2MaxZeros

Discussion
• This is an accurate estimator, but it is noisy
• We can do better by averaging a bunch of estimators

• Could repeat the previous algorithm N times, but requires
computing N hashes per data item, which is expensive

• This is the problem hyperloglog tries to solve

Hyperloglog Algorithm – Approach 1

Given a vector of values, V, compute H(v) for all v in V
H is a hash function that goes from v to a large random integer

MaxZeros = [0, 0, ..] // length 2^m
For each h in H(v):

bucket = bits 0 … m-1 of h
value = bits m … 128 of h
zeros = count the number of leading zeros in value
MaxZeros[bucket] = max(zeros, MaxZeros[bucket])

Distinct vals = avg(2MaxZeros[0], …, 2MaxZeros[2^m])

Idea: split hash value into m “bucket” bits and 128 – m “value” bits; store 2m max’s
m “bucket” bits 128 – m hash bits Creates 2^m

hashes out of a
single hash

Algorithm 1 Discussion
• Paper shows that taking the harmonic mean of the estimates,

instead of the average, results in a better estimate. H(1,3,4) =

• Error is 1.04/sqrt(m), where m is the number of maximums we
maintain

• Discarding outlier buckets also helps

• Also can be updated – i.e., merged with another set of counters to
get a new estimate of the cardinality

Summary

