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Static Web-page with e-mail order form

https://docs.aws.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html

1. Sign in to the AWS Management Console and open the Amazon S3 console 
at https://console.aws.amazon.com/s3/.

2. Create two buckets that match your domain name and subdomain 
(dimestore.com and www.dimestore.com).

Use the Amazon S3 console to  configure the bucket for website hosting
1. In the S3 buckets list, choose the bucket with the same name as your domain. Then Choose Properties -> 

Static website hosting.-> Use this bucket to host a website & Index Document box, enter the name of 
your index page (index.html) 

2. Redirect requests from www.dimestore.com to dimestore.com: Choose Properties -> Choose Static 
website hosting -> Choose Redirect requests. In the Target bucket or domain box, enter your domain (for 
example, example.com).

3. Upload Index and Website Content
4. Edit Block Public Access Settings: choose Edit public access settings. Clear Block all public access, and 

choose Save.
5. Get Your Endpoints and Test Your Domain Endpoint
6. Add Alias Records for dimestore.com and www.dimestore.com

https://docs.aws.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html
https://console.aws.amazon.com/s3/


Werner Vogel: “Let me emphasize the internal technology part before it gets misunderstood: Dynamo is 
not directly exposed externally as a web service; however, Dynamo and similar Amazon technologies are used to power 
parts of our Amazon Web Services, such as S3.” 
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Eventual Consistency

Amazon S3

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan 
Sivasubramanian, Peter Vosshall, Werner Vogels: Dynamo: amazon's highly available key-value store. SOSP 2007: 205-220

https://dblp.org/pers/hd/d/DeCandia:Giuseppe
https://dblp.org/pers/hd/h/Hastorun:Deniz
https://dblp.org/pers/hd/j/Jampani:Madan
https://dblp.org/pers/hd/k/Kakulapati:Gunavardhan
https://dblp.org/pers/hd/l/Lakshman:Avinash
https://dblp.org/pers/hd/p/Pilchin:Alex
https://dblp.org/pers/hd/v/Vosshall:Peter
https://dblp.org/pers/hd/v/Vogels:Werner
https://dblp.org/db/conf/sosp/sosp2007.html#DeCandiaHJKLPSVV07
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• After one too many arguments about how 
all the music that everyone else likes is 
terrible, and Sam finds that he is the only 
one with impeccable musical taste. Sam 
decides to start his own Anti-Nickelback 
website for making fun of these people.

• Sam distrusts all large businesses (except 
hardware manufacturers for some reason) 
and decides to host the website on a web 
server running in his basement
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DimeStore is getting traction



DimeStores first real web-store



Typical scalable architecture on Amazon



Why do we need a database and 
transactions?



What do you do when your database fails?
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Amazon RDS - Traditional Replication

 

 

it takes to repair one of these failures (Mean Time to Repair – 

MTTR). If the probability of a double fault is sufficiently high, we 

may see these on an AZ failure, breaking quorum. It is difficult, 

past a point, to reduce the probability of MTTF on independent 

failures. We instead focus on reducing MTTR to shrink the 

window of vulnerability to a double fault. We do so by 

partitioning the database volume into small fixed size segments, 

currently 10GB in size. These are each replicated 6 ways into 

Protection Groups (PGs) so that each PG consists of six 10GB 

segments, organized across three AZs, with two segments in each 

AZ. A storage volume is a concatenated set of PGs, physically 

implemented using a large fleet of storage nodes that are 

provisioned as virtual hosts with attached SSDs using Amazon 

Elastic Compute Cloud (EC2). The PGs that constitute a volume 

are allocated as the volume grows. We currently support volumes 
that can grow up to 64 TB on an unreplicated basis. 

Segments are now our unit of independent background noise 

failure and repair. We monitor and automatically repair faults as 

part of our service. A 10GB segment can be repaired in 10 

seconds on a 10Gbps network link. We would need to see two 

such failures in the same 10 second window plus a failure of an 

AZ not containing either of these two independent failures to lose 

quorum. At our observed failure rates, that’s sufficiently unlikely, 
even for the number of databases we manage for our customers. 

2.3 Operational Advantages of Resilience 
Once one has designed a system that is naturally resilient to long 

failures, it is naturally also resilient to shorter ones. A storage 

system that can handle the long-term loss of an AZ can also 

handle a brief outage due to a power event or bad software 

deployment requiring rollback. One that can handle a multi-

second loss of availability of a member of a quorum can handle a 
brief period of network congestion or load on a storage node.  

Since our system has a high tolerance to failures, we can leverage 

this for maintenance operations that cause segment unavailability. 

For example, heat management is straightforward. We can mark 

one of the segments on a hot disk or node as bad, and the quorum 

will be quickly repaired by migration to some other colder node in 

the fleet. OS and security patching is a brief unavailability event 

for that storage node as it is being patched. Even software 
upgrades to our storage fleet are managed this way. We execute 

them one AZ at a time and ensure no more than one member of a 

PG is being patched simultaneously. This allows us to use agile 

methodologies and rapid deployments in our storage service.  

3. THE LOG IS THE DATABASE 
In this section, we explain why using a traditional database on a 

segmented replicated storage system as described in Section 2 

imposes an untenable performance burden in terms of network 

IOs and synchronous stalls. We then explain our approach where 

we offload log processing to the storage service and 

experimentally demonstrate how our approach can dramatically 

reduce network IOs. Finally, we describe various techniques we 

use in the storage service to minimize synchronous stalls and 

unnecessary writes.  

3.1 The Burden of Amplified Writes 
Our model of segmenting a storage volume and replicating each 

segment 6 ways with a 4/6 write quorum gives us high resilience. 

Unfortunately, this model results in untenable performance for a 

traditional database like MySQL that generates many different 

actual I/Os for each application write. The high I/O volume is 

amplified by replication, imposing a heavy packets per second 

(PPS) burden. Also, the I/Os result in points of synchronization 

that stall pipelines and dilate latencies. While chain replication [8] 

and its alternatives can reduce network cost, they still suffer from 

synchronous stalls and additive latencies.  

Let’s examine how writes work in a traditional database. A 

system like MySQL writes data pages to objects it exposes (e.g., 

heap files, b-trees etc.) as well as redo log records to a write-ahead 

log (WAL). Each redo log record consists of the difference 

between the after-image and the before-image of the page that was 

modified. A log record can be applied to the before-image of the 

page to produce its after-image.  

In practice, other data must also be written. For instance, consider 

a synchronous mirrored MySQL configuration that achieves high 

availability across data-centers and operates in an active-standby 

configuration as shown in Figure 2. There is an active MySQL 

instance in AZ1 with networked storage on Amazon Elastic Block 

Store (EBS). There is also a standby MySQL instance in AZ2, 

also with networked storage on EBS. The writes made to the 

primary EBS volume are synchronized with the standby EBS 

volume using software mirroring. 

Figure 2 shows the various types of data that the engine needs to 

write: the redo log, the binary (statement) log that is archived to 

Amazon Simple Storage Service (S3) in order to support point-in-

time restores, the modified data pages, a second temporary write 

of the data page (double-write) to prevent torn pages, and finally 

the metadata (FRM) files. The figure also shows the order of the 

actual IO flow as follows.  In Steps 1 and 2, writes are issued to 

EBS, which in turn issues it to an AZ-local mirror, and the 

acknowledgement is received when both are done. Next, in Step 

3, the write is staged to the standby instance using synchronous 

block-level software mirroring. Finally, in steps 4 and 5, writes 

are written to the standby EBS volume and associated mirror. 

The mirrored MySQL model described above is undesirable not 

only because of how data is written but also because of what data 

is written. First, steps 1, 3, and 5 are sequential and synchronous. 

Latency is additive because many writes are sequential. Jitter is 

amplified because, even on asynchronous writes, one must wait 

for the slowest operation, leaving the system at the mercy of 

Figure 2: Network IO in mirrored MySQL 
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Steps 1, 3, and 5 are sequential 
and synchronous. 
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Amazon Aurora

 

 

outliers. From a distributed system perspective, this model can be 

viewed as having a 4/4 write quorum, and is vulnerable to failures 

and outlier performance. Second, user operations that are a result 

of OLTP applications cause many different types of writes often 

representing the same information in multiple ways – for example, 

the writes to the double write buffer in order to prevent torn pages 

in the storage infrastructure.  

3.2 Offloading Redo Processing to Storage 
When a traditional database modifies a data page, it generates a 

redo log record and invokes a log applicator that applies the redo 

log record to the in-memory before-image of the page to produce 

its after-image. Transaction commit requires the log to be written, 

but the data page write may be deferred. 

In Aurora, the only writes that cross the network are redo log 

records. No pages are ever written from the database tier, not for 

background writes, not for checkpointing, and not for cache 

eviction. Instead, the log applicator is pushed to the storage tier 

where it can be used to generate database pages in background or 

on demand. Of course, generating each page from the complete 

chain of its modifications from the beginning of time is 

prohibitively expensive. We therefore continually materialize 

database pages in the background to avoid regenerating them from 

scratch on demand every time. Note that background 

materialization is entirely optional from the perspective of 

correctness: as far as the engine is concerned, the log is the 

database, and any pages that the storage system materializes are 

simply a cache of log applications. Note also that, unlike 

checkpointing, only pages with a long chain of modifications need 

to be rematerialized. Checkpointing is governed by the length of 

the entire redo log chain. Aurora page materialization is governed 

by the length of the chain for a given page. 

Our approach dramatically reduces network load despite 

amplifying writes for replication and provides performance as 

well as durability. The storage service can scale out I/Os in an 

embarrassingly parallel fashion without impacting write 

throughput of the database engine. For instance, Figure 3 shows 

an Aurora cluster with one primary instance and multiple replicas 

instances deployed across multiple AZs. In this model, the 

primary only writes log records to the storage service and streams 

those log records as well as metadata updates to the replica 

instances. The IO flow batches fully ordered log records based on 

a common destination (a logical segment, i.e., a PG) and delivers 

each batch to all 6 replicas where the batch is persisted on disk 

and the database engine waits for acknowledgements from 4 out 

of 6 replicas in order to satisfy the write quorum and consider the 

log records in question durable or hardened. The replicas use the 

redo log records to apply changes to their buffer caches.  

To measure network I/O, we ran a test using the SysBench [9] 

write-only workload with a 100GB data set for both 

configurations described above: one with a synchronous mirrored 

MySQL configuration across multiple AZs and the other with 

RDS Aurora (with replicas across multiple AZs). In both 

instances, the test ran for 30 minutes against database engines 

running on an r3.8xlarge EC2 instance.  

Table 1: Network IOs for Aurora vs MySQL 

Configuration Transactions IOs/Transaction 

Mirrored MySQL 780,000 7.4 

Aurora with Replicas 27,378,000 0.95 

 

The results of our experiment are summarized in Table 1. Over 

the 30-minute period, Aurora was able to sustain 35 times more 

transactions than mirrored MySQL. The number of I/Os per 

transaction on the database node in Aurora was 7.7 times fewer 

than in mirrored MySQL despite amplifying writes six times with 

Aurora and not counting the chained replication within EBS nor 

the cross-AZ writes in MySQL. Each storage node sees 

unamplified writes, since it is only one of the six copies, resulting 

in 46 times fewer I/Os requiring processing at this tier. The 

savings we obtain by writing less data to the network allow us to 

aggressively replicate data for durability and availability and issue 

requests in parallel to minimize the impact of jitter.  

Moving processing to a storage service also improves availability 

by minimizing crash recovery time and eliminates jitter caused by 

background processes such as checkpointing, background data 

page writing and backups.  

Let’s examine crash recovery. In a traditional database, after a 

crash the system must start from the most recent checkpoint and 

replay the log to ensure that all persisted redo records have been 

applied. In Aurora, durable redo record application happens at the 

storage tier, continuously, asynchronously, and distributed across 

the fleet. Any read request for a data page may require some redo 

records to be applied if the page is not current. As a result, the 

process of crash recovery is spread across all normal foreground 

processing. Nothing is required at database startup.  

3.3 Storage Service Design Points 
A core design tenet for our storage service is to minimize the 

latency of the foreground write request. We move the majority of 

storage processing to the background. Given the natural 

variability between peak to average foreground requests from the 

storage tier, we have ample time to perform these tasks outside the 

foreground path. We also have the opportunity to trade CPU for 

disk. For example, it isn’t necessary to run garbage collection 

(GC) of old page versions when the storage node is busy 

processing foreground write requests unless the disk is 

approaching capacity. In Aurora, background processing has 

negative correlation with foreground processing. This is unlike a 

traditional database, where background writes of pages and 

checkpointing have positive correlation with the foreground load 

on the system. If we build up a backlog on the system, we will 

throttle foreground activity to prevent a long queue buildup. Since 

segments are placed with high entropy across the various storage 

nodes in our system, throttling at one storage node is readily 

handled by our 4/6 quorum writes, appearing as a slow node.  

AZ 1 AZ 3

Primary

Instance

Amazon S3

AZ 2

Replica

Instance

ASYNC

4/6 QUORUM

DISTRIBUTED 

WRITES

Replica

Instance

Figure 3: Network IO in Amazon Aurora 
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Question: 
Why does Amazon do 4/6 replication?

The log stream generated by the writer 

and sent to the storage nodes is also sent 

to all read replicas. Each replica typically 
lags behind the writer by a short interval 
(20 ms or less) 

Based on MySQL. Changed InnoDB version
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Everyone thinks they have impeccable 
musical taste and emails wanting to buy anti-
nickelback merch.



TakeYourNickelBack.com

• Has a forum for people complaining about Nickelback

• Has a store for great Anti-Nickelback merch

• Allows users to design their own merch and the top voted designs will 
be sold on the website.

• Has a blog where I talk about how much better my music tastes are 
than my friends. Allows users to like and comment.

• Maybe more in the future.

• Maybe I could build on top of an existing embedded database key 
value store like RocksDB or SQLite



Application Server

Choice of DBMS

Embedded DBMS

• If you application server fails, you 
lose data

• Do not easily scale to application 
workload

• Usually runs in the same process

DBMS



SQLite

• An embedded SQL database that supports transactions. A row-store 
optimized for transactions.

• Disadvantages: Single user and not built for not built for large 
applications.



SQLite

• An embedded SQL database that supports transactions. A row-store 
optimized for transactions.

• Disadvantages: ?



RocksDB

• Log Structure Merge Tree (previous lecture by Sam)

• You get a key-value database (like a hash table) that stores data on 
disk, supports transactions and is optimized for write-heavy 
workloads, and can support range scans.

• Is used as a storage engine for other systems (MySQL)

• Disadvantages: ?



RocksDB

• Log Structure Merge Tree (previous lecture by Sam)

• You get a key-value database (like a hash table) that stores data on disk, 
supports transactions and is optimized for write-heavy workloads, and can 
support range scans.

• Is used as a storage engine for other systems (MySQL)

• Disadvantages: 
1. Lacks a full query language, and many common database features. If you need 

foreign keys, columns, indexes etc you have to build it yourself.
2. Single User
3. Doesn’t scale beyond a single process (what do we do when our website grows to 

more users?)



Application Server

Choice of DBMS

Embedded DBMS

• If you application server fails, you 
lose data

• Do not easily scale to application 
workload

• Usually runs in the same process

Independent DMBS 

• Scale Application and DB 
independently

• Designed for many concurrent 
users

DBMS

DBMS

Application 
Server

Application 
Server

Application 
Server



What are my options for data management?

• A full featured transaction processing SQL system like Postgres, 
MySQL (MariaDB), Oracle or Microsoft SQL Server (but not open 
source). Optimized for many concurrent users and offers failover 
features.

• Used by the largest companies for their most important operational 
data. If tuned well, you can trust them to handle your data properly.

• Since we are running these ourselves, we need to hire a database 
administrator to ensure things are running smoothly and safely.



What does it mean to host your own 
database on-premise (or on EC2)
• Increasing reliability requires buying new machines
• Scale-out/Scale-up requires buying new machines
• They have to be configured correctly

• Independent drives
• Backups
• …

• Disaster recovery needs to be automated (how to recover from power-
outage) 

• Load-balancing etc. needs to be implemented
• Hire administrators
• ….



What about NoSQL?

• Stores JSON Documents in key-value pairs
• JSON only API
• Distributed across multiple nodes 
• Has indexes for fast access
• Tend to store data in a denormalized way (instead of customer, orders 

table, each customer document stores all their orders)
• Started with no multi-document transactions, no joins. Have since added 

this functionality
• Have to give up SQL functionality, query optimization and other common 

DB features.
• Is Web Scale
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MongoDB  for building a BitCoin exchange?

How Do You Transfer BitCoins with MongoDB?



“Flexcoin was a Bitcoin exchange that shut down on March 3rd, 
2014, when someone allegedly hacked in and made off with 896 
BTC in the hot wallet. Because the half-million dollar heist from 
the hot wallet was too large for the company to bear, it folded.” 

“The attacker successfully exploited a flaw in the code which 
allows transfers between flexcoin users. By sending thousands of 
simultaneous requests, the attacker was able to "move" coins 
from one user account to another until the sending account was 
overdrawn, before balances were updated. “

See more at: http://hackingdistributed.com/2014/04/06/another-one-bites-the-dust-flexcoin/#sthash.rWoYKi78.dpuf
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mybalance = database.read("account-number") 

newbalance = mybalance - amount 

database.write("account-number", newbalance) 

dispense_cash(amount) // or send bitcoins to customer



MongoDB Started To Support Secondary 
Indexes
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Yeah
Finally

Awesom
e

HUGEEE

No Recovery for Indexes???

WHAT?



38



The rapid growth of Nickelback fans causes a 
backlash, and my store is growing!
• I bought a ton of new machines and put them in my basement!

• My ISP is starting to wonder what I’m doing and my hardware costs 
are through the roof. 



DimeStor
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The official unofficial Nickelback Fan-Store



Sales are dropping and we need to find new revenue. 
Data Science to the rescue



Data Science to the rescue

?



Data Science to the rescue

Data Warehouse



OLTP Schema

Order

Line Items

Customer

Products

Reviews

OrderStatus

FactTable

CustomerProduct

OrderStatus

OLAP Schema

ETL

AWS Glue



Fact Table

- Shop_ID
- Customer_ID
- Date_ID
- Product_ID
- Amount
- Volume
- Profit
- …

Shop

- Shop_ID
- Business_Type
- City
- City_Population
- State
- …

Customer

- Customer_ID
- Name
- Segment
- Group_Name
- …

Time

- Date_ID
- Month
- Quarter
- Year
- …

Product

- Product_ID
- Type
- Brand
- Description
- …

Star
Schema



Shop

- Shop_ID
- City_ID
- Business_Type

City

- City_ID
- State_ID
- Name
- Population
- …

State

- State_ID
- Name
- …

Customer

- Customer_ID
- Name
- …

Customer Group

- Group_ID
- Segment
- Name

Month

- Month_ID
- Quarter_ID
- Name
- …

Quarter

- Quarter_ID
- Year_ID
- Name
- …

Product

- Product_ID
- Type_ID
- Brand
- …

Product_Type

- Tyoe_ID
- Name
- Description
- …

Brand

- Brand_ID
- Name
- …

Day

- Date_ID
- Month_ID
- Week_ID
- …

Snowflake
Schema

Fact Table

- Shop_ID
- Customer_ID
- Date_ID
- Product_ID
- Amount
- Volume
- Profit
- …

Week

- Week_ID
- Year_ID
- Name
- …

Year

- Year_ID
- Name
- …



Star vs. Snowflake Schema

Snowflake Star
Space

Query Performance

Ease of Use

When to use

Normalization/ 
De-Normalization



Star vs. Snowflake Schema

Snowflake Star
Space Smaller Bigger (Redundancy) 

Query Performance More Joins → slower Fewer Joins → faster

Ease of Use Complex Queries Pretty Simply Queries

When to use When dimension table is 
relatively big in size, snowflaking
is better as it reduces space.

When dimension table contains less 
number of rows, we can go for Star 
schema.

Normalization/ 
De-Normalization

Dimension Tables are in 
Normalized form but Fact Table 
is still in De-Normalized form

Both Dimension and Fact Tables are in 
De-Normalized form



What are the most common use cases for a 
datawarehouse? 

Data Exploration Dashboards

(AWS QuickSight)



Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano Stefani, Vidhya Srinivasan:
Amazon Redshift and the Case for Simpler Data Warehouses. SIGMOD Conference 2015: 1917-1923

2.1 Data Plane 
The Amazon Redshift engine is a SQL-compliant, massively-

parallel, query processing and database management system 

designed to support analytics workload. We consider analytic 

workloads those that regularly ingest incremental sets of data that 

can be large in size and run queries that join, scan, filter and 

aggregate data that can comprise a significant fraction of the total 

stored data. The initial version of the engine was derived from a 

code base licensed from ParAccel. Data storage and compute is 

distributed across one or more nodes, which provides near-linear 

scalability for maintaining & querying datasets from 100s of 

gigabytes on up to petabyte scale. An Amazon Redshift cluster is 

comprised of a leader node and one or more compute nodes. We 

also support a single-node design where leader and compute work 

is shared on a single node.  

 
Figure 3: Amazon Redshift system architecture 

The leader node accepts connections from client programs, 

parses requests, generates & compiles query plans for execution 

on the compute nodes, performs final aggregation of results when 

required, and coordinates serialization and state of transactions. 

The compute node(s) perform the heavy lifting inherent in both 

query processing and data manipulation against local data. 

Data stored within each Amazon Redshift table is automatically 

distributed both across compute nodes, to enable scale out of large 

data sets, and within a compute node, to reduce contention across 

processing cores. A compute node is partitioned into slices; one 

slice for each core of the node's multi-core processor. Each slice is 

allocated a portion of the node's memory and disk space, where it 

processes a portion of the workload assigned to the node. The user 

can specify whether data is distributed in a round robin fashion, 

hashed according to a distribution key, or duplicated on all slices. 

Using distribution keys allows join processing on that key to be 

co-located on individual slices, reducing IO, CPU and network 

contention and avoiding the redistribution of intermediate results 

during query execution. Within each slice, data storage is column-

oriented. Each column within each slice is encoded in a chain of 

one or more fixed size data blocks. The linkage between the 

columns of an individual row is derived by calculating the logical 

offset within each column chain. This linkage is stored as meta-

data.  

Data blocks are replicated both within the database instance and 

within Amazon Simple Storage Service (S3). Each data block is 

synchronously written to both its primary slice as well as to at 

least one secondary on a separate node. Cohorting is used to limit 

the number of slices impacted by an individual disk or node 

failure. Here, we attempt to balance the resource impact of re-

replication against the increased probability of correlated failures 

as disk and node counts increase. Data blocks are also 

asynchronously and automatically backed up to Amazon S3, 

which is designed to provide 99.9999999% durability by storing 

multiple copies across multiple data centers. The primary, 

secondary and Amazon S3 copies of the data block are each 

available for read, making media failures transparent. Loss of 

durability requires multiple faults to occur in the time window 

from the first fault to re-replication or backup to Amazon S3. 

Customers can also choose to have their backups occur to 

Amazon S3 in a second region for further protection against 

disasters.  

Query processing within Amazon Redshift begins with query plan 

generation and compilation to C++ and machine code at the leader 

node. The use of query compilation adds a fixed overhead per 

query that we feel is generally amortized by the tighter execution 
at compute nodes vs. the overhead of execution in a general-

purpose set of executor functions. The executable and plan 

parameters are sent to each compute node participating in the 

query. At the compute nodes, the executable is run with the plan 

parameters and the intermediate results are sent back to the leader 

node for final aggregation. Each slice in the compute node may 

run multiple operations such as scanning, filtering, processing 

joins, etc., in parallel. 

Data loading is a special case of query processing, using a 

modified version of the PostgreSQL COPY command. The 

Amazon Redshift version of COPY provides direct access to load 

data from Amazon S3, Amazon DynamoDB, Amazon EMR, or 

over an arbitrary SSH connection. COPY is parallelized across 

slices, with each slice reading data in parallel, distributing as 

needed, and sorting locally. By default, compression scheme and 

optimizer statistics are updated with load. While customers can 

override these, they represent some of the dustier knobs still 

remaining in the system. COPY also directly supports ingestion of 

JSON data as well as data that is encrypted and/or compressed.  

2.2 Control Plane 
In addition to the database engine software itself, each Amazon 

Redshift node has host manager software that helps with 

deploying new database engine bits, aggregating events and 

metrics, generating instance-level events, archiving and rotating 

logs, and monitoring the host, database and log files for errors. 

The host manager also has limited capability to perform actions, 

for example, restarting a database process on failure.  

Most control plane actions are coordinated off-instance by a 

separate Amazon Redshift control plane fleet. These nodes are 

responsible for fleet-wide monitoring and alarming as well as 

initiating maintenance tasks based on telemetry from instance host 

managers or actions requested by end-customers through the 

console or API. Example tasks would include node replacements, 

cluster resize, backup, restore, provisioning, patching, etc.  

2.3 Dependent AWS Services 
In addition to the core Amazon Redshift software itself, we 

leverage multiple AWS services, most significantly Amazon 

Elastic Compute Cloud (EC2) for instances, Amazon S3 for 

backup, Amazon Simple Workflow (SWF) for control plane 

actions, Amazon CloudWatch for customer instance metrics, 

Amazon Simple Notification Service (SNS) for customer alarms, 

Amazon VPC for network isolation, Amazon Route53 for DNS 

lookup, AWS CloudTrail for audit logging, and AWS Key 

Management Service and AWS CloudHSM for key management.  
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Amazon Redshift

The leader node accepts connections from 
client programs, parses requests, generates & 
compiles query plans for execution on the 
compute nodes, performs final aggregation of 
results when required

https://dblp.uni-trier.de/pers/hd/g/Gupta:Anurag
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https://dblp.uni-trier.de/pers/hd/t/Tan:Derek
https://dblp.uni-trier.de/pers/hd/p/Pathak:Rahul
https://dblp.uni-trier.de/pers/hd/s/Stefani:Stefano
https://dblp.uni-trier.de/pers/hd/s/Srinivasan:Vidhya
https://dblp.uni-trier.de/db/conf/sigmod/sigmod2015.html#GuptaATKPSS15


Amazon RedshiftChoose Best Table Distribution Style

All

Node 1

Slice 
1

Slice 
2

Node 2

Slice 
3

Slice 
4

All data on 

every node

Key

Node 1

Slice 
1

Slice 
2

Node 2

Slice 
3

Slice 
4

Same key to 

same location

Node 1

Slice 
1

Slice 
2

Node 2

Slice 
3

Slice 
4

Even
Round robin 

distribution

The user can specify whether data is distributed in a round robin fashion, hashed according to a distribution 
key, or duplicated on all slices



Amazon Redshift Spectrum



Query

SELECT COUNT(*)

FROM S3.EXT_TABLE

GROUP BY…

Life of a query

Amazon 
Redshift

JDBC/ODBC

...

1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore

1



Query is optimized and compiled at 

the leader node. Determine what gets 

run locally and what goes to Amazon 

Redshift Spectrum

Life of a query

Amazon 
Redshift

JDBC/ODBC

...

1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore

2



Query plan is sent to 

all compute nodes

Life of a query

Amazon 
Redshift

JDBC/ODBC

...

1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore

3



Compute nodes obtain partition info from 

Data Catalog; dynamically prune partitions 

Life of a query

Amazon 
Redshift

JDBC/ODBC

...

1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore

4



Each compute node issues multiple 

requests to the Amazon Redshift 

Spectrum layer

Life of a query

Amazon 
Redshift

JDBC/ODBC

...

1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore

5



Amazon Redshift Spectrum nodes 

scan your S3 data 

Life of a query

Amazon 
Redshift

JDBC/ODBC

...

1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore

6



7
Amazon Redshift 

Spectrum projects, 

filters, joins and 

aggregates

Life of a query

Amazon 
Redshift

JDBC/ODBC

...

1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore



Final aggregations and joins 

with local Amazon Redshift 

tables done in-cluster

Life of a query

Amazon 
Redshift

JDBC/ODBC

...

1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore
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Result is sent back to client

Life of a query

Amazon 
Redshift

JDBC/ODBC

...

1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore

9



Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu, Michael Stonebraker, David J. 
DeWitt, Marco Serafini, Ashraf Aboulnaga, Tim Kraska: Choosing A Cloud DBMS: Architectures and 
Tradeoffs. PVLDB 12(12): 2170-2182 (2019)

Comparison of DW

https://dblp.uni-trier.de/pers/hd/t/Tan:Junjay
https://dblp.uni-trier.de/pers/hd/g/Ghanem:Thanaa
https://dblp.uni-trier.de/pers/hd/p/Perron:Matthew
https://dblp.uni-trier.de/pers/hd/y/Yu:Xiangyao
https://dblp.uni-trier.de/pers/hd/d/DeWitt:David_J=
https://dblp.uni-trier.de/pers/hd/s/Serafini:Marco
https://dblp.uni-trier.de/pers/hd/a/Aboulnaga:Ashraf
https://dblp.uni-trier.de/pers/hd/k/Kraska:Tim
https://dblp.uni-trier.de/db/journals/pvldb/pvldb12.html#TanGPYSDSAK19


AWS Lambda

https://aws.amazon.com/blogs/architecture/ten-things-serverless-architects-should-know/

https://aws.amazon.com/blogs/architecture/ten-things-serverless-architects-should-know/


TakeYourNickelBac
k.com



TakeYourNickelBack.com

• As we get more cash hungry, we decide to do analytics on our 
companies data. We purchase data from Cambridge Analytica to find 
more potential customers (shh)

• Now we need an analytical system that can store tens of terabytes of 
data and query it quickly (for our new Marketing team)



Data Warehousing systems

• Not as many options for Open source systems

• Mostly have columnar storage and are optimized for analytical 
queries on TBs of data 

• Run SQL but are not optimized for small transactions

• Usually ingesting new data from operational database at a granularity 
of minutes to days



Extract Transform Load

• Need a way to get our data from operational system to the analytical 
systems.

• Extract data from the operational system (where we are making sales)

• Transform it as necessary for our analytical system

• Load it into the analytical system

• Could use Spark or Hadoop to write these jobs (and many others)



DimeStor

e
The official unofficial Nickelback Fan-Store



Unfortunately it only got worse



Last attempt – Pay for positive reviews



Microtasking – Virtualized Humans

• Current leader: Amazon Mechanical Turk

• Requestors place Human Intelligence Tasks (HITs)
• Minimum price: $0.01

• Other parameters: #of replicas (assignments), expiration, 
User Interface,…

• API-based: “createHit()”, “getAssignments()”, 
“approveAssignments()”, “forceExpire()”

• Requestors approve jobs and payment

• Workers (a.k.a. “turkers”) choose jobs, do them, get paid

71



Aftermath
Nickelback ranked one of the worst 
bands ever

https://www.rollingstone.com/music/music-lists/readers-poll-
the-ten-worst-bands-of-the-nineties-13654/5-nirvana-241095/

DimeStore was banned on AWS 
because of UA violations

https://www.rollingstone.com/music/music-lists/readers-poll-the-ten-worst-bands-of-the-nineties-13654/5-nirvana-241095/

