Parallelism 6.S079 Lecture 18

Sam Madden 4/11/2022

Lab 5 Due Weds

Parallelism Goal

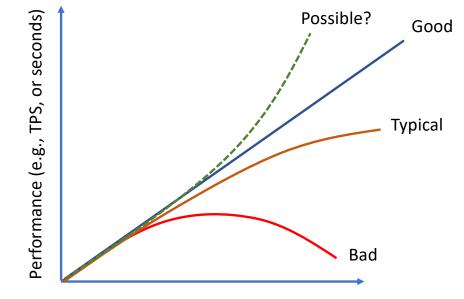
- Make a job faster by running on multiple processors
- What do we mean by faster?

speed $up = \frac{old \ time}{new \ time}$ on same problem, with N times more hardware

 $scale up = \frac{1x \ larger \ problem \ on \ 1x \ hardware}{Nx \ larger \ problem \ on \ Nx \ hardware}$

• Not necessarily the same: smaller problem may be harder to parallelize

• Linear?



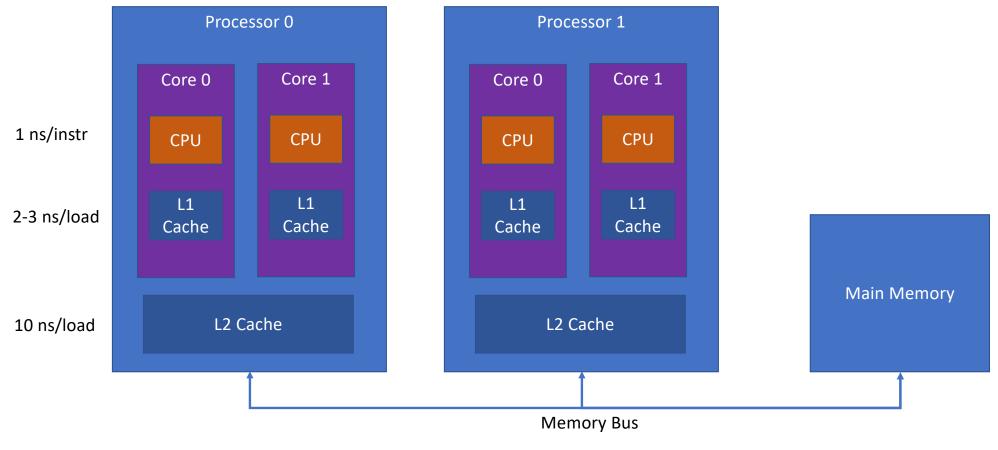
Number of parallel units

Barriers to Linear Scaling

- Startup times
 - e.g., may take time to launch each parallel executor
- Interference
 - processors depend on some shared resource
 - E.g., input or output queue, or other data item
- Skew
 - workload not of equal size on each processor
- Almost all workloads will stop scaling at some point!
- What are some barriers in data science workloads?

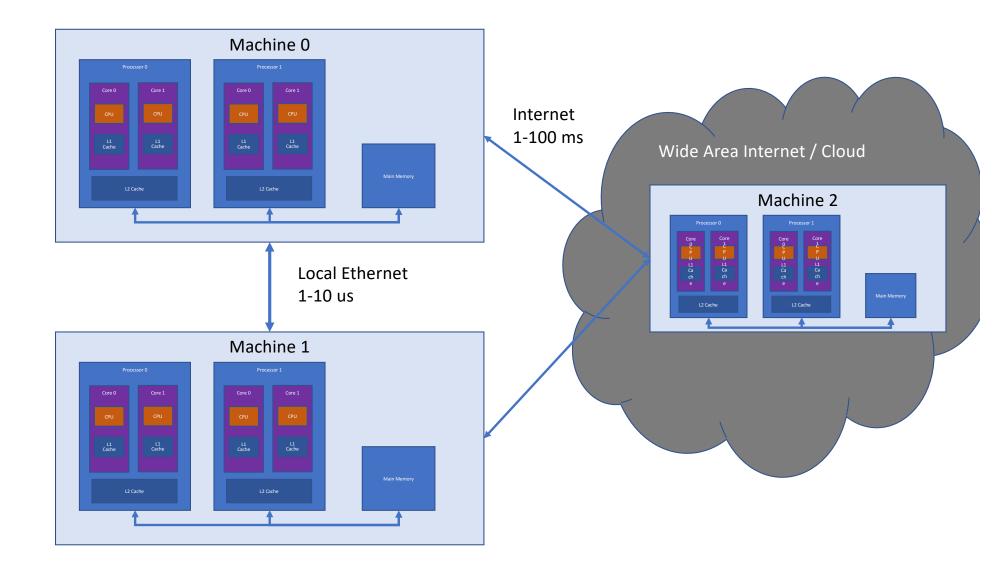
Properties of Parallelizable Workloads

- Provide linear speedup
- Usually can be decomposed into small units that can be executed independently
 - "embarrassingly parallel"
- As we will see, SQL-style operations generally provide this
- Some ML algorithms support it, but often tricky



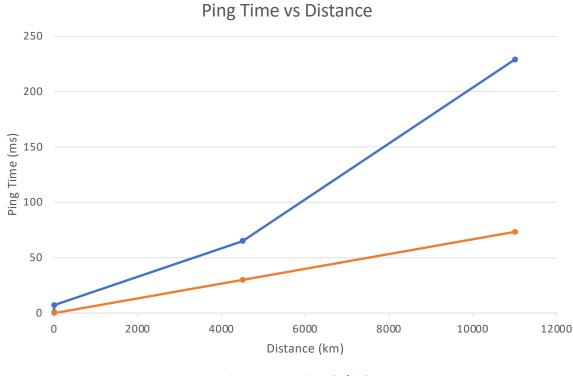
100 ns/load

Some machines may have 2 levels of cache per core



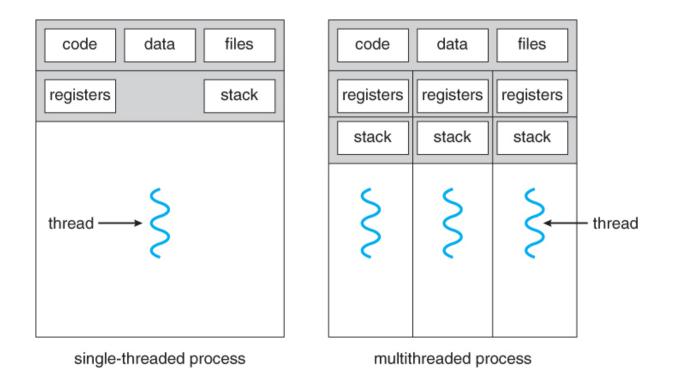
Ping Test (Ethernet inside CSAIL)

- csail.mit.edu
 - 0.7 ms
- mit.edu
 - 14.0 ms
- harvard.edu
 - 7.0 ms
- berkeley.edu
 - 65.1 ms
- tsinghua.edu
 - 229.5 ms



← Ping RTT ← Speed of Light

Threads vs Processes



https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html

Python Threads API

import threading

```
t = threading.Thread(target=func_name, args=(a1,a2,...))
t.start() #start thread running — main thread continues
t.join() #wait for thread to finish
```

lock = threading.Lock() #create a lock object
lock.acquire() #acquire the lock; block if another thread has it
lock.release() #release the lock

Problem: Python Global Interpreter Lock (GIL) Only one thread can be executing python code at once

Python Multiprocessing API

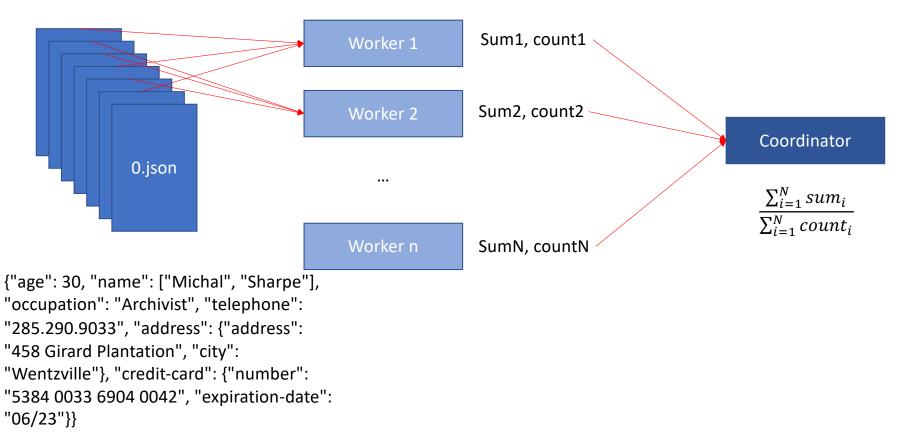
import multiprocessing

p = multiprocessing.Process(target=func_name, args=(a1,a2,...))
p.start() #start thread running - main thread continues
p.join() #wait for thread to finish

lock = multiprocessing.Lock() #create a lock object
lock.acquire() #acquire the lock; block if another thread has it
lock.release() #release the lock

Parallel Aggregation

Task: compute average age across all people



Parallel Aggregation Implementation

- Use multiprocessing, not threading
- Main thread creates a work queue

```
q = multiprocessing.Queue()
```

• Puts work on it, as pointers to files

```
q.put(file1); q.put(file2)
```

- Starts threads, passing them the work queue, as well as a result queue
- Threads pull from queue in a loop:

```
while True:
```

```
f = q.get(block=False)
```

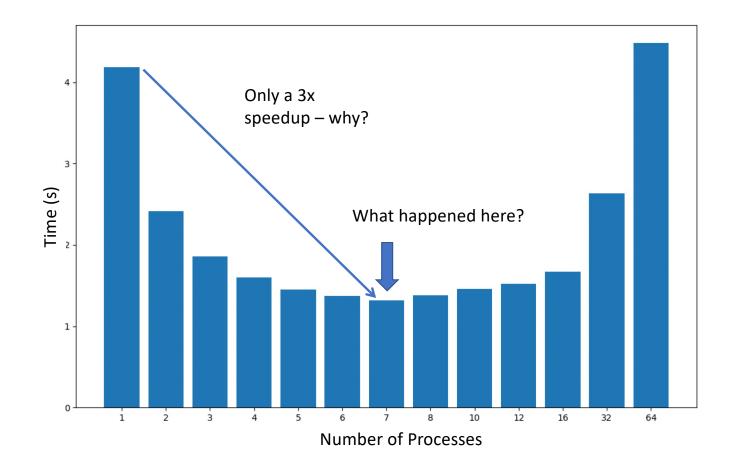
```
process(f)
```

- Threads compute running sum and average
- Once complete, threads put their running sum and average on the result queue:

```
out_q.put((age_sum, age_cnt))
```

• Main thread blocks on result queue to read a result from each worker:

```
for p in procs:
    (p_sum,p_count) = out_q.get()
```



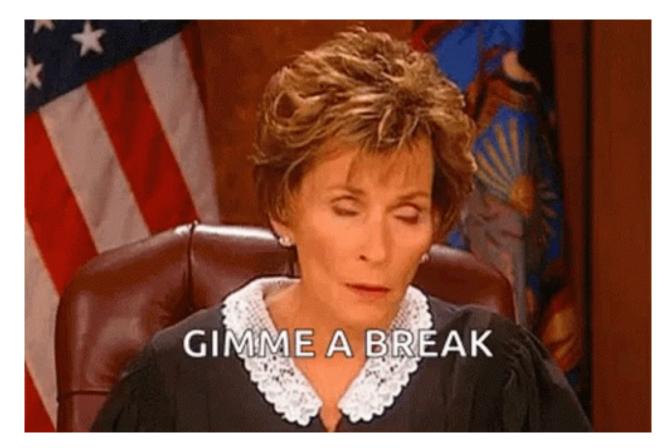
Clicker

Why didn't this program speed up beyond 8 processes? Choose all that apply

- a) Not enough memory
- b) Not enough processors
- c) Startup overheads of launching processes
- d) Too much coordination between processes

https://clicker.mit.edu/6.S079

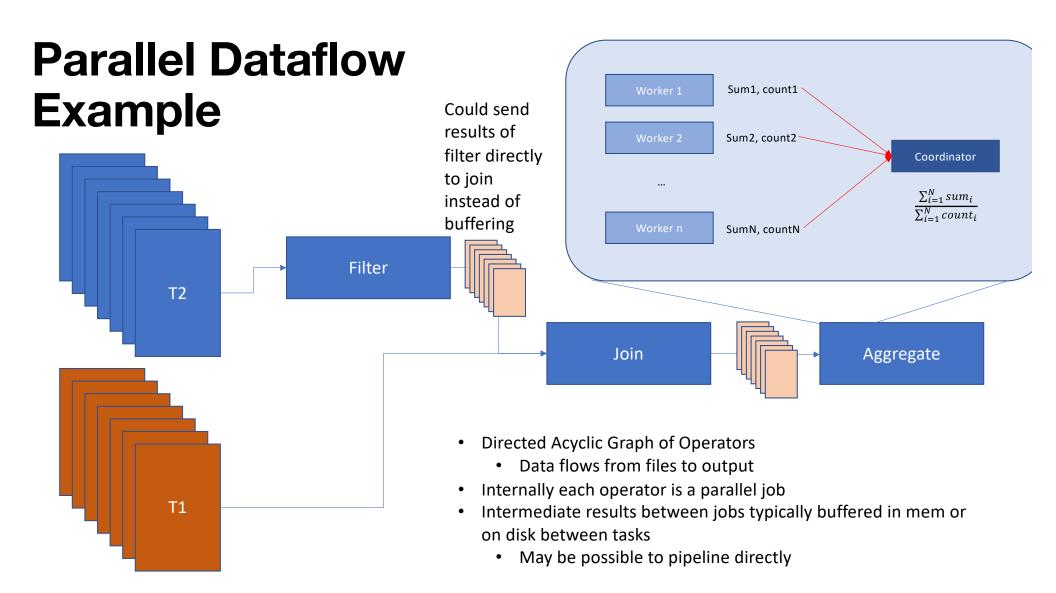
Break



Parallelism Approach

Split given data set split into N partitions Use M processors to process this data in parallel

We will need to come up with parallel implementations of common operators



Parallel Dataflow Operations

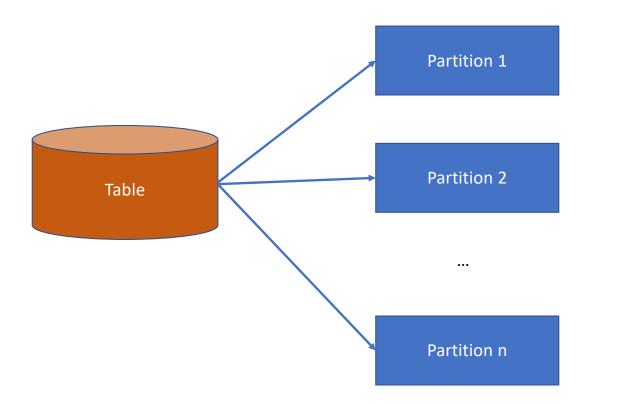
- Filter
- Project
- Element-wise or row-wise transform
- Join
 - Repartition vs broadcast
- Aggregate
- Sort
- Train an ML model
- Arbitrary python "UDF"s

Which of these are easy to parallelize?

Partitioning Strategies

- Random / Round Robin
 - Evenly distributes data (no skew)
 - Requires us to repartition for joins
- Range partitioning
 - Allows us to perform joins/merges without repartitioning, when tables are partitioned on join attributes
 - Subject to skew
- Hash partitioning
 - Allows us to perform joins/merges without repartitioning, when tables are partitioned on join attributes
 - Only subject to skew when there are many duplicate values

Round Robin Partitioning



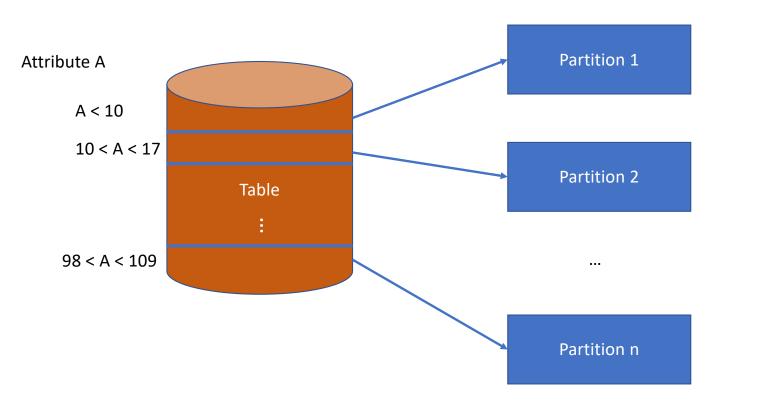
Advantages:

Each partition has the same number of records

<u>Disadvantage:</u>

No ability to push down predicates to filter out some partitions

Range Partitioning



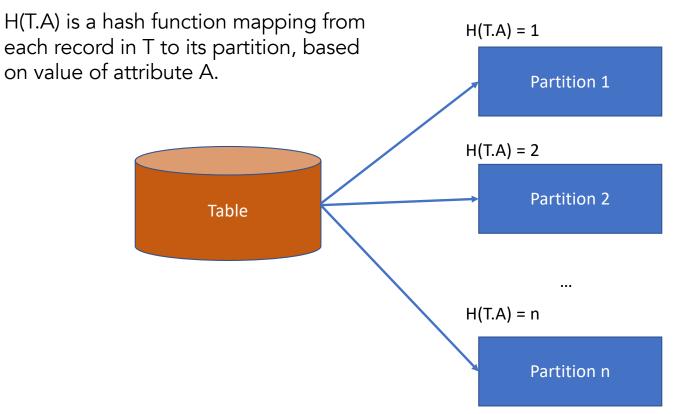
Advantages:

Easy to push down predicates (on partitioning attribute)

<u>Disadvantage:</u>

Difficult to ensure equal sized partitions, particularly in the face of inserts and skewed data

Hash Partitioning



Advantages:

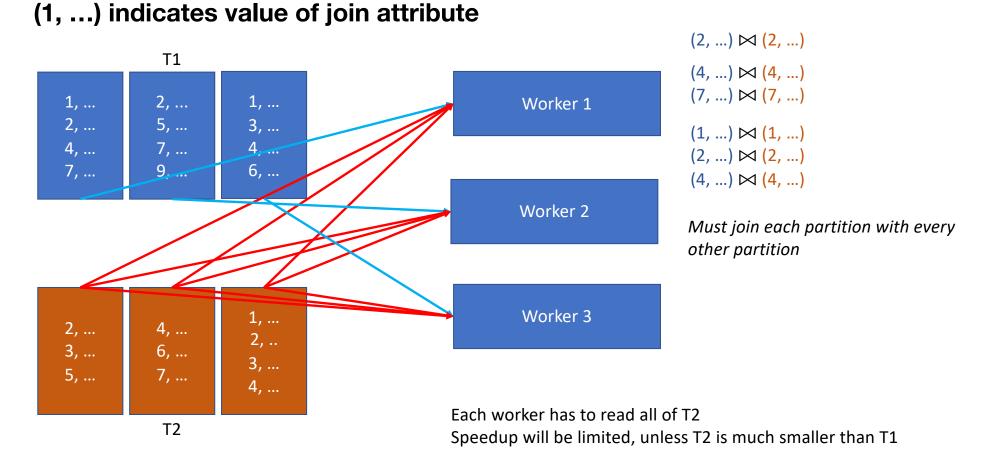
Each partition has about the same number of records, unless one value is very frequent

Possible to push down equality predicates on partitioning attribute

Disadvantages:

Can't push down range predicates

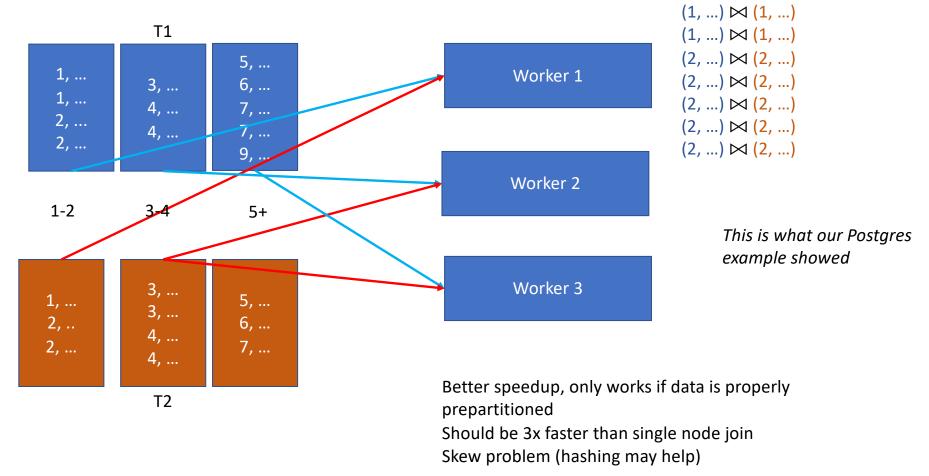
Parallel Join – Random Partitioning Naïve Algo

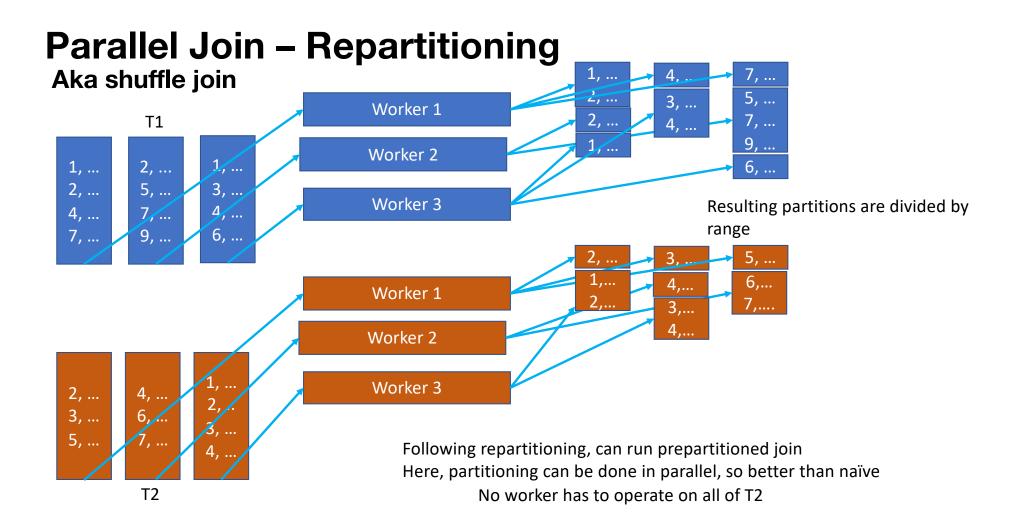


Parallel Join – Prepartitioned

(1, ...) indicates value of join attribute

Only need to join partitions that match





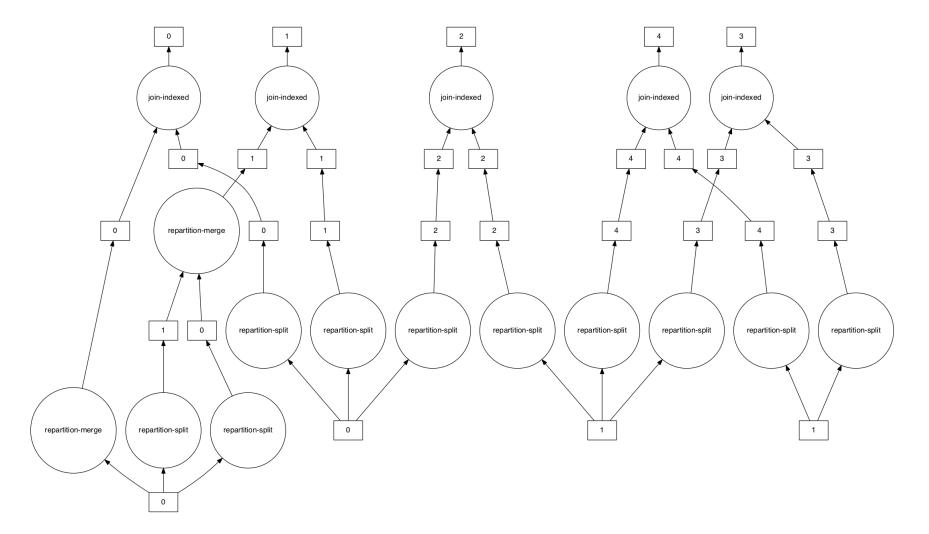
Dask https://dask.org

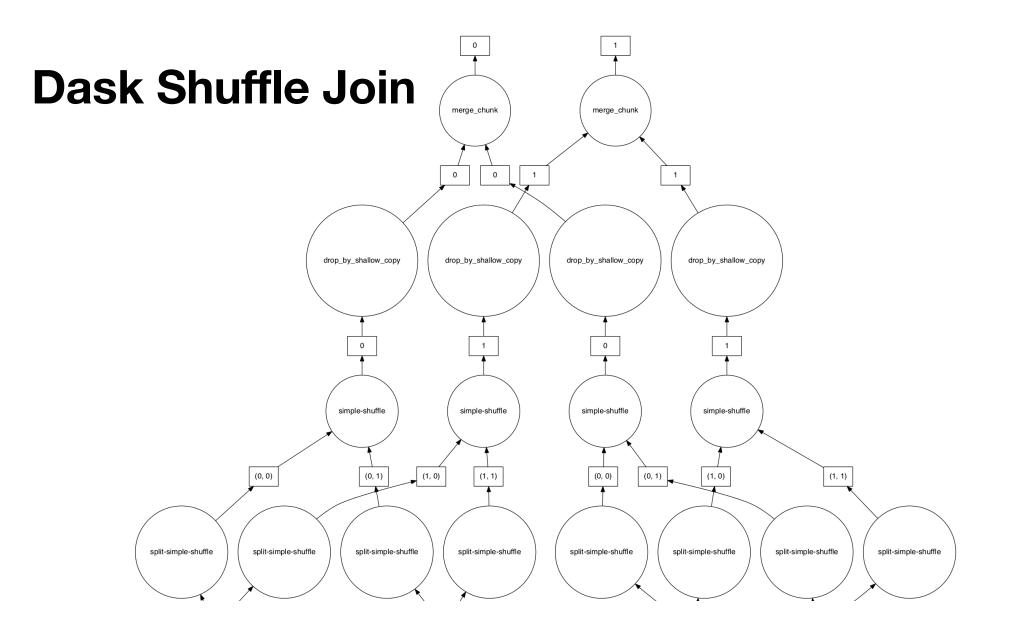
- General purpose python parallel / distributed computation framework
- Includes parallel implementation of Pandas dataframes
- Usually straightforward to translate a pandas program into a parallel implementation
 - Just use dask.dataframe instead of pandas.dataframe
 - Have to specify a parallel configuration to run on, via Client() object
 - Can be a local machine or distributed cluster
- Also has support for other types of parallelism, e.g., dask.bag class that allows parallel operation on collections of python objects

Large Join Demo

- Changing number of nodes
- Changing join algorithm

Dask Partitioned Join





Many alternatives

- MapReduce / Hadoop
 - Rewrite you program as collection of parallel map() and reduce() jobs
 - Hard to do, slow()
- Spark
 - Popular library -- similar to dask, more focused on large scale distributed
 - Includes parallel implementations of ML and other operations
 - Difficult to use

Summary

- Parallelism is a good way to improve performance
- Ideal: linear speedup
 - Difficult to achieve in practice
- Some operations can be trivially parallelized with partitioned parallelism, e.g., filters and maps
- Other operations like joins are more difficult
- Dask is a popular open-source parallel programming library for Python
 - Next time you'll get to try it out as a part of Lab 6