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Parallelism Goal
• Make a job faster by running on multiple processors

• What do we mean by faster?

𝑠𝑝𝑒𝑒𝑑 𝑢𝑝 =
𝑜𝑙𝑑 𝑡𝑖𝑚𝑒
𝑛𝑒𝑤 𝑡𝑖𝑚𝑒 on same problem,with N times more hardware

𝑠𝑐𝑎𝑙𝑒 𝑢𝑝 =
1𝑥 𝑙𝑎𝑟𝑔𝑒𝑟 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑜𝑛 1𝑥 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒
𝑁𝑥 𝑙𝑎𝑟𝑔𝑒𝑟 𝑝𝑟𝑜𝑏𝑒𝑙𝑚 𝑜𝑛 𝑁𝑥 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒

• Not necessarily the same: smaller problem may be harder to parallelize 



Speedup Goal
• Linear?
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Barriers to Linear Scaling
• Startup times

• e.g., may take time to launch each parallel executor

• Interference
• processors depend on some shared resource
• E.g., input or output queue, or other data item

• Skew
• workload not of equal size on each processor

• Almost all workloads will stop scaling at some point!

• What are some barriers in data science workloads?



Properties of Parallelizable Workloads

• Provide linear speedup
• Usually can be decomposed into small units that can be 

executed independently
• "embarrassingly parallel"

• As we will see, SQL-style operations generally provide this
• Some ML algorithms support it, but often tricky
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Ping Test (Ethernet inside CSAIL)
• csail.mit.edu
• 0.7 ms

• mit.edu
• 14.0 ms

• harvard.edu
• 7.0 ms

• berkeley.edu
• 65.1 ms

• tsinghua.edu
• 229.5 ms
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Threads vs Processes

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html



Python Threads API
import threading

t = threading.Thread(target=func_name, args=(a1,a2,…))

t.start()   #start thread running – main thread continues

t.join()   #wait for thread to finish

lock = threading.Lock()   #create a lock object

lock.acquire() #acquire the lock; block if another thread has it

lock.release()  #release the lock

Problem:  Python Global Interpreter Lock (GIL)
Only one thread can be executing python code at once



Python Multiprocessing API
import multiprocessing

p = multiprocessing.Process(target=func_name, args=(a1,a2,…))

p.start()   #start thread running – main thread continues

p.join()   #wait for thread to finish

lock = multiprocessing.Lock()   #create a lock object

lock.acquire() #acquire the lock; block if another thread has it

lock.release()  #release the lock



Parallel Aggregation

0.json

{"age": 30, "name": ["Michal", "Sharpe"], 
"occupation": "Archivist", "telephone": 
"285.290.9033", "address": {"address": 
"458 Girard Plantation", "city": 
"Wentzville"}, "credit-card": {"number": 
"5384 0033 6904 0042", "expiration-date": 
"06/23"}}

Worker 1

Worker 2

Worker n

…

Task: compute average age across all people

Coordinator

Sum1, count1

Sum2, count2

SumN, countN

∑!"#
$ 𝑠𝑢𝑚!

∑!"#$ 𝑐𝑜𝑢𝑛𝑡!



Parallel Aggregation Implementation
• Use multiprocessing, not threading
• Main thread creates a work queue

q = multiprocessing.Queue()
• Puts work on it, as pointers to files

q.put(file1); q.put(file2)
• Starts threads, passing them the work queue, as well as a result queue
• Threads pull from queue in a loop:

while True:
f = q.get(block=False)
process(f)

• Threads compute running sum and average
• Once complete, threads put their running sum and average on the result queue:

out_q.put((age_sum, age_cnt))
• Main thread blocks on result queue to read a result from each worker:

for p in procs:
(p_sum,p_count) = out_q.get()



What happened here?
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Clicker
Why didn’t this program speed up beyond 8 processes?  Choose 
all that apply

a) Not enough memory
b) Not enough processors
c) Startup overheads of launching processes
d) Too much coordination between processes

https://clicker.mit.edu/6.S079



Break



Parallelism Approach
Split given data set split into N partitions
Use M processors to process this data in parallel

We will need to come up with parallel implementations of 
common operators



Parallel Dataflow 
Example

T2
Filter

Join

T1

Aggregate

• Directed Acyclic Graph of Operators
• Data flows from files to output

• Internally each operator is a parallel job
• Intermediate results between jobs typically buffered in mem or 

on disk between tasks
• May be possible to pipeline directly

Worker 1

Worker 2

Worker n

…

Coordinator

Sum1, count1

Sum2, count2

SumN, countN

∑!"#
$ 𝑠𝑢𝑚!

∑!"#
$ 𝑐𝑜𝑢𝑛𝑡!

Could send 
results of 
filter directly 
to join 
instead of 
buffering



Parallel Dataflow Operations
• Filter
• Project
• Element-wise or row-wise transform
• Join
• Repartition vs broadcast

• Aggregate
• Sort
• Train an ML model
• Arbitrary python "UDF"s

Which of these are easy to 
parallelize?



Partitioning Strategies
• Random / Round Robin

• Evenly distributes data (no skew)
• Requires us to repartition for joins

• Range partitioning
• Allows us to perform joins/merges without repartitioning, when tables 

are partitioned on join attributes
• Subject to skew

• Hash partitioning
§ Allows us to perform joins/merges without repartitioning, when tables 

are partitioned on join attributes
§ Only subject to skew when there are many duplicate values



Round Robin Partitioning

Partition 1

Partition 2

Partition n

…

Table

Advantages:

Each partition has 
the same number of 
records

Disadvantage:

No ability to push 
down predicates to 
filter out some 
partitions



Range Partitioning

Table

Attribute A Partition 1

A < 10

Partition 2
10 < A < 17

…

Partition n

…

98 < A < 109

Advantages:

Easy to push down 
predicates (on 
partitioning 
attribute)

Disadvantage:

Difficult to ensure 
equal sized 
partitions, 
particularly in the 
face of inserts and 
skewed data



Hash Partitioning

Partition 1

Partition 2

Partition n

…

Table

H(T.A) = 1

H(T.A) = 2

H(T.A) = n

H(T.A) is a hash function mapping from 
each record in T to its partition, based 
on value of attribute A.

Advantages:

Each partition has 
about the same 
number of records, 
unless one value is 
very frequent

Possible to push 
down equality 
predicates on 
partitioning attribute

Disadvantages:

Can’t push down 
range predicates



Parallel Join – Random Partitioning Naïve Algo
(1, …) indicates value of join attribute 

1, …
2, …
4, …
7, …

2, ...
5, …
7, …
9, …

1, …
3, …
4, …
6, …

2, …
3, …
5, …

4, …
6, …
7, …

1, …
2, ..
3, …
4, …

T1

T2

Worker 1

Must join each partition with every 
other partition

Worker 2

Worker 3

(2, …) ⨝ (2, …)

(4, …) ⨝ (4, …)
(7, …) ⨝ (7, …)

(1, …) ⨝ (1, …)
(2, …) ⨝ (2, …)
(4, …) ⨝ (4, …)

Each worker has to read all of T2
Speedup will be limited, unless T2 is much smaller than T1



Parallel Join – Prepartitioned
(1, …) indicates value of join attribute 

1, …
1, …
2, ...
2, …

3, …
4, …
4, …

5, …
6, …
7, …
7, …
9, …

1, …
2, ..
2, …

3, …
3, …
4, …
4, …

5, …
6, …
7, …

T1

T2

Worker 1

Only need to join partitions that 
match

Worker 2

Worker 3

(1, …) ⨝ (1, …)
(1, …) ⨝ (1, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)

Better speedup, only works if data is properly 
prepartitioned
Should be 3x faster than single node join
Skew problem (hashing may help)

1-2 3-4 5+
This is what our Postgres 
example showed



Parallel Join – Repartitioning
Aka shuffle join

1, …
2, …
4, …
7, …

2, ...
5, …
7, …
9, …

1, …
3, …
4, …
6, …

2, …
3, …
5, …

4, …
6, …
7, …

1, …
2, ..
3, …
4, …

T1

T2

Worker 1

1, …
2, …

4, … 7, …

Worker 2

2, …
5, …
7, …
9, …

Worker 3

3, …
4, …

6, …
1, …

Worker 2

6,…
7,….

4,…Worker 1

2, … 3, … 5, …
1,…
2,…

Worker 3

3,…
4,…

Following repartitioning, can run prepartitioned join
Here, partitioning can be done in parallel, so better than naïve

No worker has to operate on all of T2 

Resulting partitions are divided by 
range



Dask
• General purpose python parallel / distributed computation 

framework
• Includes parallel implementation of Pandas dataframes
• Usually straightforward to translate a pandas program into a 

parallel implementation
• Just use dask.dataframe instead of pandas.dataframe
• Have to specify a parallel configuration to run on, via Client() object

• Can be a local machine or distributed cluster

• Also has support for other types of parallelism, e.g., dask.bag
class that allows parallel operation on collections of python 
objects

https://dask.org



Large Join Demo
• Changing number of nodes
• Changing join algorithm



Dask Partitioned Join



Dask Shuffle Join



Many alternatives
• MapReduce / Hadoop
• Rewrite you program as collection of parallel map() and reduce() jobs
• Hard to do, slow()

• Spark
• Popular library -- similar to dask, more focused on large scale 

distributed
• Includes parallel implementations of ML and other operations
• Difficult to use



Summary
• Parallelism is a good way to improve performance
• Ideal: linear speedup
• Difficult to achieve in practice

• Some operations can be trivially parallelized with partitioned 
parallelism, e.g., filters and maps
• Other operations – like joins – are more difficult
• Dask is a popular open-source parallel programming library for 

Python
• Next time – you’ll get to try it out as a part of Lab 6


