
Parallelism
6.S079 Lecture 18

Sam Madden
4/11/2022

Lab 5 Due Weds

Parallelism Goal
• Make a job faster by running on multiple processors

• What do we mean by faster?

𝑠𝑝𝑒𝑒𝑑 𝑢𝑝 =
𝑜𝑙𝑑 𝑡𝑖𝑚𝑒
𝑛𝑒𝑤 𝑡𝑖𝑚𝑒 on same problem,with N times more hardware

𝑠𝑐𝑎𝑙𝑒 𝑢𝑝 =
1𝑥 𝑙𝑎𝑟𝑔𝑒𝑟 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑜𝑛 1𝑥 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒
𝑁𝑥 𝑙𝑎𝑟𝑔𝑒𝑟 𝑝𝑟𝑜𝑏𝑒𝑙𝑚 𝑜𝑛 𝑁𝑥 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒

• Not necessarily the same: smaller problem may be harder to parallelize

Speedup Goal
• Linear?

Bad

Typical

GoodPossible?

Pe
rf

or
m

an
ce

 (e
.g

.,
TP

S,
 o

r s
ec

on
ds

)

Number of parallel units

Barriers to Linear Scaling
• Startup times

• e.g., may take time to launch each parallel executor

• Interference
• processors depend on some shared resource
• E.g., input or output queue, or other data item

• Skew
• workload not of equal size on each processor

• Almost all workloads will stop scaling at some point!

• What are some barriers in data science workloads?

Properties of Parallelizable Workloads

• Provide linear speedup
• Usually can be decomposed into small units that can be

executed independently
• "embarrassingly parallel"

• As we will see, SQL-style operations generally provide this
• Some ML algorithms support it, but often tricky

Processor 0

Core 0

CPU

L1
Cache

L2 Cache

Core 1

CPU

L1
Cache

Processor 1

Core 0

CPU

L1
Cache

L2 Cache

Core 1

CPU

L1
Cache

Some machines may have 2 levels of cache per core

Main Memory

Memory Bus

1 ns/instr

2-3 ns/load

10 ns/load

100 ns/load

Machine 0
Processor 0

Core 0

CPU

L1
Cache

L2 Cache

Core 1

CPU

L1
Cache

Processor 1

Core 0

CPU

L1
Cache

L2 Cache

Core 1

CPU

L1
Cache

Main Memory

Machine 1
Processor 0

Core 0

CPU

L1
Cache

L2 Cache

Core 1

CPU

L1
Cache

Processor 1

Core 0

CPU

L1
Cache

L2 Cache

Core 1

CPU

L1
Cache

Main Memory

Local Ethernet
1-10 us

Wide Area Internet / Cloud

Machine 2
Processor 0

Core
0C
P
U
L1
Ca
ch
e

L2 Cache

Core
1C
P
U
L1
Ca
ch
e

Processor 1

Core
0C
P
U
L1
Ca
ch
e

L2 Cache

Core
1C
P
U
L1
Ca
ch
e

Main Memory

Internet
1-100 ms

Ping Test (Ethernet inside CSAIL)
• csail.mit.edu
• 0.7 ms

• mit.edu
• 14.0 ms

• harvard.edu
• 7.0 ms

• berkeley.edu
• 65.1 ms

• tsinghua.edu
• 229.5 ms

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000

Pi
ng

 T
im

e
(m

s)

Distance (km)

Ping Time vs Distance

Ping RTT Speed of Light

Threads vs Processes

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html

Python Threads API
import threading

t = threading.Thread(target=func_name, args=(a1,a2,…))

t.start() #start thread running – main thread continues

t.join() #wait for thread to finish

lock = threading.Lock() #create a lock object

lock.acquire() #acquire the lock; block if another thread has it

lock.release() #release the lock

Problem: Python Global Interpreter Lock (GIL)
Only one thread can be executing python code at once

Python Multiprocessing API
import multiprocessing

p = multiprocessing.Process(target=func_name, args=(a1,a2,…))

p.start() #start thread running – main thread continues

p.join() #wait for thread to finish

lock = multiprocessing.Lock() #create a lock object

lock.acquire() #acquire the lock; block if another thread has it

lock.release() #release the lock

Parallel Aggregation

0.json

{"age": 30, "name": ["Michal", "Sharpe"],
"occupation": "Archivist", "telephone":
"285.290.9033", "address": {"address":
"458 Girard Plantation", "city":
"Wentzville"}, "credit-card": {"number":
"5384 0033 6904 0042", "expiration-date":
"06/23"}}

Worker 1

Worker 2

Worker n

…

Task: compute average age across all people

Coordinator

Sum1, count1

Sum2, count2

SumN, countN

∑!"#
$ 𝑠𝑢𝑚!

∑!"#$ 𝑐𝑜𝑢𝑛𝑡!

Parallel Aggregation Implementation
• Use multiprocessing, not threading
• Main thread creates a work queue

q = multiprocessing.Queue()
• Puts work on it, as pointers to files

q.put(file1); q.put(file2)
• Starts threads, passing them the work queue, as well as a result queue
• Threads pull from queue in a loop:

while True:
f = q.get(block=False)
process(f)

• Threads compute running sum and average
• Once complete, threads put their running sum and average on the result queue:

out_q.put((age_sum, age_cnt))
• Main thread blocks on result queue to read a result from each worker:

for p in procs:
(p_sum,p_count) = out_q.get()

What happened here?

Ti
m

e
(s

)

Number of Processes

Only a 3x
speedup – why?

Clicker
Why didn’t this program speed up beyond 8 processes? Choose
all that apply

a) Not enough memory
b) Not enough processors
c) Startup overheads of launching processes
d) Too much coordination between processes

https://clicker.mit.edu/6.S079

Break

Parallelism Approach
Split given data set split into N partitions
Use M processors to process this data in parallel

We will need to come up with parallel implementations of
common operators

Parallel Dataflow
Example

T2
Filter

Join

T1

Aggregate

• Directed Acyclic Graph of Operators
• Data flows from files to output

• Internally each operator is a parallel job
• Intermediate results between jobs typically buffered in mem or

on disk between tasks
• May be possible to pipeline directly

Worker 1

Worker 2

Worker n

…

Coordinator

Sum1, count1

Sum2, count2

SumN, countN

∑!"#
$ 𝑠𝑢𝑚!

∑!"#
$ 𝑐𝑜𝑢𝑛𝑡!

Could send
results of
filter directly
to join
instead of
buffering

Parallel Dataflow Operations
• Filter
• Project
• Element-wise or row-wise transform
• Join
• Repartition vs broadcast

• Aggregate
• Sort
• Train an ML model
• Arbitrary python "UDF"s

Which of these are easy to
parallelize?

Partitioning Strategies
• Random / Round Robin

• Evenly distributes data (no skew)
• Requires us to repartition for joins

• Range partitioning
• Allows us to perform joins/merges without repartitioning, when tables

are partitioned on join attributes
• Subject to skew

• Hash partitioning
§ Allows us to perform joins/merges without repartitioning, when tables

are partitioned on join attributes
§ Only subject to skew when there are many duplicate values

Round Robin Partitioning

Partition 1

Partition 2

Partition n

…

Table

Advantages:

Each partition has
the same number of
records

Disadvantage:

No ability to push
down predicates to
filter out some
partitions

Range Partitioning

Table

Attribute A Partition 1

A < 10

Partition 2
10 < A < 17

…

Partition n

…

98 < A < 109

Advantages:

Easy to push down
predicates (on
partitioning
attribute)

Disadvantage:

Difficult to ensure
equal sized
partitions,
particularly in the
face of inserts and
skewed data

Hash Partitioning

Partition 1

Partition 2

Partition n

…

Table

H(T.A) = 1

H(T.A) = 2

H(T.A) = n

H(T.A) is a hash function mapping from
each record in T to its partition, based
on value of attribute A.

Advantages:

Each partition has
about the same
number of records,
unless one value is
very frequent

Possible to push
down equality
predicates on
partitioning attribute

Disadvantages:

Can’t push down
range predicates

Parallel Join – Random Partitioning Naïve Algo
(1, …) indicates value of join attribute

1, …
2, …
4, …
7, …

2, ...
5, …
7, …
9, …

1, …
3, …
4, …
6, …

2, …
3, …
5, …

4, …
6, …
7, …

1, …
2, ..
3, …
4, …

T1

T2

Worker 1

Must join each partition with every
other partition

Worker 2

Worker 3

(2, …) ⨝ (2, …)

(4, …) ⨝ (4, …)
(7, …) ⨝ (7, …)

(1, …) ⨝ (1, …)
(2, …) ⨝ (2, …)
(4, …) ⨝ (4, …)

Each worker has to read all of T2
Speedup will be limited, unless T2 is much smaller than T1

Parallel Join – Prepartitioned
(1, …) indicates value of join attribute

1, …
1, …
2, ...
2, …

3, …
4, …
4, …

5, …
6, …
7, …
7, …
9, …

1, …
2, ..
2, …

3, …
3, …
4, …
4, …

5, …
6, …
7, …

T1

T2

Worker 1

Only need to join partitions that
match

Worker 2

Worker 3

(1, …) ⨝ (1, …)
(1, …) ⨝ (1, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)

Better speedup, only works if data is properly
prepartitioned
Should be 3x faster than single node join
Skew problem (hashing may help)

1-2 3-4 5+
This is what our Postgres
example showed

Parallel Join – Repartitioning
Aka shuffle join

1, …
2, …
4, …
7, …

2, ...
5, …
7, …
9, …

1, …
3, …
4, …
6, …

2, …
3, …
5, …

4, …
6, …
7, …

1, …
2, ..
3, …
4, …

T1

T2

Worker 1

1, …
2, …

4, … 7, …

Worker 2

2, …
5, …
7, …
9, …

Worker 3

3, …
4, …

6, …
1, …

Worker 2

6,…
7,….

4,…Worker 1

2, … 3, … 5, …
1,…
2,…

Worker 3

3,…
4,…

Following repartitioning, can run prepartitioned join
Here, partitioning can be done in parallel, so better than naïve

No worker has to operate on all of T2

Resulting partitions are divided by
range

Dask
• General purpose python parallel / distributed computation

framework
• Includes parallel implementation of Pandas dataframes
• Usually straightforward to translate a pandas program into a

parallel implementation
• Just use dask.dataframe instead of pandas.dataframe
• Have to specify a parallel configuration to run on, via Client() object

• Can be a local machine or distributed cluster

• Also has support for other types of parallelism, e.g., dask.bag
class that allows parallel operation on collections of python
objects

https://dask.org

Large Join Demo
• Changing number of nodes
• Changing join algorithm

Dask Partitioned Join

Dask Shuffle Join

Many alternatives
• MapReduce / Hadoop
• Rewrite you program as collection of parallel map() and reduce() jobs
• Hard to do, slow()

• Spark
• Popular library -- similar to dask, more focused on large scale

distributed
• Includes parallel implementations of ML and other operations
• Difficult to use

Summary
• Parallelism is a good way to improve performance
• Ideal: linear speedup
• Difficult to achieve in practice

• Some operations can be trivially parallelized with partitioned
parallelism, e.g., filters and maps
• Other operations – like joins – are more difficult
• Dask is a popular open-source parallel programming library for

Python
• Next time – you’ll get to try it out as a part of Lab 6

