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Last Time: Performance
• Python vs pandas vs C vs SQL
• Quantifying performance: bandwith, latency, etc
• Finding & fixing performance issues
• Indexing & join algorithms



This Time: Data Layouts
• Key ideas:
• Data Locality
• Horizontal and Vertical Partitioning
• Multi-dimensional Layouts
• Compression
• Sparse Data
• Log-structured Merge Trees



What is Data Locality?
• Data “near” to data you’ve already accessed can usually be

read more quickly

• Why?
• Blocking:  data is often arranged in blocks, and read a block at a time

• If you just read a record in a block B, if the next record is in B that will be fast

• Pre-fetching: hardware often retrieves the next N data items after the 
data item you just read



Example
• SELECT name FROM donations WHERE name ~ ‘MAD%’

…
MACADAM
MADDAN
MADDEN
MADSEN
MADYAM
MARDEN
…

…
MADYAM
…
MADDEN
…
MARDEN
...
MADDAN
…
MACADAM
…
MADSEN
…

Sorted in name 
order
All “MAD” 
records on same 
few 
disk/memory  
blocks è
Sequential 
access to just 
those blocks

Not sorted
Each “MAD” 
records on 
different block 
è Random 
access
(or sequential 
read through 
whole file)



Sequential Access is Much Faster

SSD Memory



Is Data Transformation Worth the Price?
• Many of the techniques we will discuss only make sense if 

frequently re-accessing data
• E.g., querying in a database

• Not worth spending a lot of time reorganizing data you’re 
going to use once
• E.g., to build an ML model

• But sometimes writing directly into a more efficient 
representation can benefit even infrequently read data



Data is N dimensional, Memory is Linear
• Have to “linearize” data somehow
• Examples:
• Row-by-row
• Column-by-column
• Some more complicated N dimensional partitioning scheme

• Quad-trees
• Zorder



Linearizing a Table – Row store

C1 C2 C3 C4 C5 C6

R1 C1
R1 C2
R1 C3
R1 C4
R1 C5
R1 C6
R2 C1
R2 C2
R2 C3
R2 C4
R2 C5
R2 C6
R3 C1
R3 C2
R3 C3
R3 C4
R3 C5
R3 C6
R4 C1
R4 C2
R4 C3
R4 C4
R4 C5
R4 C6

Memory/Disk 
(Linear Array)



Linearizing a Table –
Vertical Partitioning – aka ”Column Store”

C1 C2 C3 C4 C5 C6

R1 C1
R2 C1
R3 C1
R4 C1
R5 C1
R6 C1
R1 C2
R2 C2
R3 C2
R4 C2
R5 C2
R6 C2
R1 C3
R2 C3
R3 C3
R4 C3
R5 C3
R6 C3
R1 C4
R2 C4
R3 C4
R4 C4
R5 C4
R6 C4

Memory/Disk 
(Linear Array)



When Are Columns a Good Idea?
• When only a subset of columns need to be accessed
• When looking at many records
• Reading data from N columns of a few column-oriented records 

may be worse than using a row-oriented representation

1
2
3
4
5

A
B
C
D
E

6
7
8
9

10

Col 1 
Block 1

Col 2 
Block 1

Col 3 
Block 1

1 A 6
2 B 7

3 C 8
4 D 9

5 E 10

Block 1

Block 2

Block 3

Columns Rows

Read 1 
block

Read 3 
blocks
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Query Processing Example
• Traditional 

Row Store

SELECT avg(price)
FROM tickstore
WHERE symbol = ‘GM’
AND date = ‘1/17/2007’

Disk
GM 30.77 1,000 NYSE 1/17/2007
GM 30.77 10,000 NYSE 1/17/2007
GM 30.78 12,500 NYSE 1/17/2007

AAPL 93.24 9,000 NQDS 1/17/2007

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Complete tuples

Complete tuples

Complete tuples
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Query Processing Example
• Basic Column  Store
• “Early Materialization”

SELECT avg(price)
FROM tickstore
WHERE symbol = ‘GM’
AND date = ‘1/17/2007’

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Disk
30.77
30.77
30.78
93.24

GM
GM
GM
AAPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

1/17/2007
1/17/2007
1/17/2007
1/17/2007

Construct Tuples

GM 30.77 1/17/07

Fields from same 
tuple at same index 
(position) in each 

column file

Row-oriented 
plan

Complete tuples

Complete tuples

Complete tuples
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Query Processing Example
• C-Store
• “Late 

Materialization”

Disk
30.77
30.77
30.78
93.24

GM
GM
GM
AAPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

1/17/2007
1/17/2007
1/17/2007
1/17/2007

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND
Position Bitmap

(1,1,1,1)

Position Bitmap
(1,1,1,0)

Position Bitmap
(1,1,1,0)

Position Lookup

Prices

AVG

Much less data 
flowing through 

memory

See Abadi et al
ICDE 07



Parquet: Column Representation for
Data Science
• Parquet is a column-oriented data form for storing tabular data

• Advantages are not just due to column orientation:
• Data is stored in binary format, so more compact
• Data is typed and types are stored, so parsing is much faster
• Supports compression directly



Parquet Layout

From “A Cost-based Storage Format Selector for 
Materialization in Big Data Frameworks”, Faisal et al



Parquet vs CSV Load Times



Parquet vs CSV File Sizes



Break



More Layout Tricks
• Data Partitioning
• Sorting
• Multi-dimensional Partitioning
• Compression
• Loading



Horizontal Partitioning
• Slice dataset according to some 

attribute
Date Region Profit

1/1/2019 NE

1/2/2019 NE

1/2/2019 SW

1/2/2019 SE

1/2/2019 NW

1/3/2019 NE

1/3/2019 SW

1/3/2019 SE

1/4/2019 SE

1/4/2019 NW

1/4/2019 NE

Date Region Profit

1/1/2019 NE

Date Region Profit

1/2/2019 NE

1/2/2019 SW

1/2/2019 SE

1/2/2019 NW

Date Region Profit

1/3/2019 NE

1/3/2019 SW

1/3/2019 SE

Date Region Profit

1/4/2019 SE

1/4/2019 NW

1/4/2019 NE



Postgres Example (From Lec 16)
Partitioned table "public.donations_hash"

Column      |       Type        | Collation | Nullable | Default | Storage  | Stats target | Description
-----------------+-------------------+-----------+----------+---------+----------+--------------+-------------
cmte_id | character varying |           |          |         | extended |              |
amndt_ind | character varying |           |          |         | extended |              |
rpt_tp | character varying |           |          |         | extended |              |
transaction_pgi | character varying |           |          |         | extended |              |
image_num | character varying |           |          |         | extended |              |
transaction_tp | character varying |           |          |         | extended |              |
entity_tp | character varying |           |          |         | extended |              |
name            | character varying |           |          |         | extended |              |
city            | character varying |           |          |         | extended |              |
state           | character varying |           |          |         | extended |              |
zip_code | character varying |           |          |         | extended |              |
employer        | character varying |           |          |         | extended |              |
occupation      | character varying |           |          |         | extended |              |
transaction_dt | character varying |           |          |         | extended |              |
transaction_amt | character varying |           |          |         | extended |              |
other_id | character varying |           |          |         | extended |              |
tran_id | character varying |           |          |         | extended |              |
file_num | character varying |           |          |         | extended |              |
memo_cd | character varying |           |          |         | extended |              |
memo_text | character varying |           |          |         | extended |              |
sub_id | character varying |           |          |         | extended |              |
Partition key: HASH (name)
Partitions: donations_hash_1 FOR VALUES WITH (modulus 4, remainder 0),

donations_hash_2 FOR VALUES WITH (modulus 4, remainder 1),
donations_hash_3 FOR VALUES WITH (modulus 4, remainder 2),
donations_hash_4 FOR VALUES WITH (modulus 4, remainder 3)



Sorting
• Can also order data according to some attribute

Date Region Profit

1/1/2019 NE

1/2/2019 NE

1/2/2019 SW

1/2/2019 SE

1/2/2019 NW

1/3/2019 NE

1/3/2019 SW

1/3/2019 SE

1/4/2019 SE

1/4/2019 NW

1/4/2019 NE

Date Region Profit

1/1/19 NE

1/2/19 NE

1/3/19 NE

1/4/19 NE

1/2/19 NW

1/4/19 NW

1/2/19 SE

1/3/19 SE

1/4/19 SE

1/2/19 SW

1/3/19 SW



Can both sort & partition

• E.g., partition on date, sort 
by region in each partition
• Or vice versa

• Best choice depends on how 
we plan to access data, and 
on how much scanning we 
can avoid
• If new data is arriving in some 

order (e.g., time) easy to write 
partitions in that order

Date Region Profit

1/1/2019 NE

Date Region Profit

1/2/2019 NE

1/2/2019 NW

1/2/2019 SE

1/2/2019 SW

Date Region Profit

1/3/2019 NE

1/3/2019 SE

1/3/2019 SW

Date Region Profit

1/4/2019 NE

1/4/2019 NW

1/4/2019 SW



What if I want to partition on several 
attributes?
• Basic idea:  ”tile” data into N dimesions
• 2 approaches:
• Quad-tree: recursively subdivide until tiles are under a target 

size
• Z-order: interleave multiple dimensions, order by interleaving



Quad-Tree

x

y



Quad-Tree

x

y

Recursively subdivide



Quad-Tree
Until partitions are of some maximum size

Index stores 
boundaries of 
rectangles, and 
pointers on disk

x

y

.25

.25

.5

.5

.5

.75

.75

A B

DC

E

F

G H

I J

X1 X2 Y1 Y2 Part

0 .25 0 .25 A

0 .25 .25 .5 C

.25 .5 0 .25 B

.25 .25 .25 .5 D

.5 1 0 .5 E

0 .5 .5 1 F

…



Quad-Tree
Until partitions are of some maximum size

Index stores 
boundaries of 
rectangles, and 
pointers on disk

x

y

.25

.25

.5

.5

.5

.75

.75

A B

DC

E

F

G H

I J

X1 X2 Y1 Y2 Part

0 .25 0 .25 A

0 .25 .25 .5 C

.25 .5 0 .25 B

.25 .25 .25 .5 D

.5 1 0 .5 E

0 .5 .5 1 F

…

Query



ZOrder

X

Y



Zorder Implementation
• To generate a Zorder, interleave bits of numbers
e.g., Zorder(3,2)
3 = 0011
2 = 0010
è 00001110 = 14

i j zorder bits
0 0 0[0, 0, 0, 0, 0, 0]
0 1 1[0, 0, 0, 0, 0, 1]
1 0 2[0, 0, 0, 0, 1, 0]
1 1 3[0, 0, 0, 0, 1, 1]
0 2 4[0, 0, 0, 1, 0, 0]
0 3 5[0, 0, 0, 1, 0, 1]
1 2 6[0, 0, 0, 1, 1, 0]
1 3 7[0, 0, 0, 1, 1, 1]
2 0 8[0, 0, 1, 0, 0, 0]
2 1 9[0, 0, 1, 0, 0, 1]
3 0 10[0, 0, 1, 0, 1, 0]
3 1 11[0, 0, 1, 0, 1, 1]
2 2 12[0, 0, 1, 1, 0, 0]
2 3 13[0, 0, 1, 1, 0, 1]
3 2 14[0, 0, 1, 1, 1, 0]
3 3 15[0, 0, 1, 1, 1, 1]



Zorder Querying
• Support we want to look up data in Rectange((1,1),(2,3))

Zorder(1,1) = 0011 = 3
Zorder(2,3) = 1101 = 13

3

14

i j zorder bits
0 0 0[0, 0, 0, 0, 0, 0]
0 1 1[0, 0, 0, 0, 0, 1]
1 0 2[0, 0, 0, 0, 1, 0]
1 1 3[0, 0, 0, 0, 1, 1]
0 2 4[0, 0, 0, 1, 0, 0]
0 3 5[0, 0, 0, 1, 0, 1]
1 2 6[0, 0, 0, 1, 1, 0]
1 3 7[0, 0, 0, 1, 1, 1]
2 0 8[0, 0, 1, 0, 0, 0]
2 1 9[0, 0, 1, 0, 0, 1]
3 0 10[0, 0, 1, 0, 1, 0]
3 1 11[0, 0, 1, 0, 1, 1]
2 2 12[0, 0, 1, 1, 0, 0]
2 3 13[0, 0, 1, 1, 0, 1]
3 2 14[0, 0, 1, 1, 1, 0]
3 3 15[0, 0, 1, 1, 1, 1]



Larger Example
10x10 zorder



Larger Example
10x10 zorder

Query from  
(2,4) to (3,7)

All records in 
rectangle are 
contiguous in 
zorder

Overlaying 
pages, we 
can read just 
one

See zorder.py



Larger Example
10x10 zorder

Query from  
(2,2) to (4,4)

9 records in
range are

37 records 
between 
smallest and 
largest zorder

Actual wasted I/O 
depends on page 
structure

Here we would 
read 4 pages, with 
64 records, 9 of 
which we need



Row Order Example
8 records in range

32 records between smallest 
and largest roworder

If split into pages, need to 
read 3 pages, with 60 
records on them, to get 8 
records 



Clicker Q1
• Table of sales, with sale price, region, date, store, customer, and 

many other columns
• For each query, which layout would you recommend, if this is the 

only query your system needs to run

Choose A, B, or C
A) Column store, ordered by date, partitioned region
B) Row store
C) Column store, ordered by price, partitioned by store

SELECT MAX(price) FROM sales GROUP BY store



Clicker Q2
• Table of sales, with sale price, region, date, store, customer, and 

many other columns
• For each query, which layout would you recommend, if this is the 

only query your system needs to run

Choose A, B, or C
A) Column store, ordered by date, partitioned region
B) Row store
C) Column store, ordered by price, partitioned by store

INSERT INTO sales VALUES (….)



Clicker Q3
• Table of sales, with sale price, region, date, store, customer, and 

many other columns
• For each query, which layout would you recommend, if this is the 

only query your system needs to run

Choose A, B, or C
A) Column store, ordered by date, partitioned region
B) Row store
C) Column store, ordered by price, partitioned by store

SELECT * FROM sales WHERE customerid = 123211
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Compression
• Storage is expensive
• System performance is proportional to the 

amount of data flowing through the system



Compression Methods
• Entropy coding, e.g., gzip, zlib, … 

• General purpose, good overall compression
• Delta encoding

• Encode differences, e.g., 1, 2, 3, 4 -> 1, +1, +1, +1
• Run length encoding

• Suppress duplicates, e.g., 2, 2, 2, 3, 4, 4, 4, 4, 4, -> 2x3, 3x1, 4x5
• Bit packing

• Use fewer bits for short integers
• Pairs well with delta coding

• Performance vs space tradeoff
• Some compression can be directly operated on, e.g., RLE 
• As with sorting, modifying compressed data in place is difficult

Good for mostly sorted, 
numeric data (floats)

Good for mostly sorted 
ints or categorical data 

Good for limited precision 
data



Speed / Performance Tradeoff In 
Entropy Compression Methods

http://facebook.github.io/zstd/

Compressing a 
range of text data 
from the Internet

Lightweight
schemes will be
faster, and less
good at text
compression, but 
can do very well for 
tabular data with 
few values or 
regular values

Even 4GB/sec 
may not be 
able to keep 
up with 
memory!



Delta encoding
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8 * 64bits values = 64 bytes 8 * 64bits values = 64 bytes

101 100101 105102 107101 11499 116101 102 101 119 120 121

values:

deltas

1 10 51 2-1 7-2 20 1 -1 3 1 1100

100

101 100101 105102 107101 11499 116101 102 101 119 120 121100

reference block 1 block 2

Source “Efficient Data Storage for Analytics with Apache Parquet 2.0”, Julian Le Dem

Delta Encoding in Parquet



Delta encoding

24

3 02 43 11 60 12 3 1 2 0 0100 -2

min
delta

1 10 51 2-1 7-2 20 1 -1 3 1 1100

1

min
delta

make deltas > 0 
by subtracting min

Source “Efficient Data Storage for Analytics with Apache Parquet 2.0”, Julian Le Dem

Delta Encoding in Parquet



3 02 43 11 60 12 3 1 2 0 0

maxbits = 2

11 10 11 01 0010 11 01

1110110110110100

maxbits = 3

8 * 2 bits = 2 bytes

000 100 001 110 001 010 000 000

000100001110001010000000

8 * 3 bits = 3 bytes

2 3

bits bits

100 -2

100 -2

1

1
min
delta

min
delta

reference packing packing

1110110110110100 0001000011100010100000002 3100 -2 1result:

min
delta

min
delta

Delta encoding

25Source “Efficient Data Storage for Analytics with Apache Parquet 2.0”, Julian Le Dem

Delta Encoding in Parquet



Delta encoding
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3 02 43 11 60 12 3 1 2 0 0

maxbits = 2

11 10 11 01 0010 11 01

1110110110110100

8 * 64bits values = 64 bytes 8 * 64bits values = 64 bytes

maxbits = 3

8 * 2 bits = 2 bytes

000 100 001 110 001 010 000 000

000100001110001010000000

8 * 3 bits = 3 bytes

2 3

bits bits

101 100101 105102 107101 11499 116101 102 101 119 120 121

100

values:

-2

min
delta

100 -2

deltas

1 10 51 2-1 7-2 20 1 -1 3 1 1100

1

min
delta

make deltas > 0 
by subtracting min

1
min

delta
min

delta

100

101 100101 105102 107101 11499 116101 102 101 119 120 121100

reference block 1 block 2

reference packing packing

1110110110110100 0001000011100010100000002 3100 -2 1result:

Source “Efficient Data Storage for Analytics with Apache Parquet 2.0”, Julian Le Dem

Delta Encoding in Parquet



Compression comparison
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TPCH: compression of two 64 bits id columns with delta encoding

Primary key

0%

20%

40%

60%

80%

100%

plain delta

no compression + snappy
Foreign key

0%

20%

40%

60%

80%

100%

plain delta

Source “Efficient Data Storage for Analytics with Apache Parquet 2.0”, Julian Le Dem



Delta Encoding Can be Very Fast

https://dl.acm.org/doi/10.
1145/3229710.3229715

Blue lines are delta encoding



• Dictionary encoding
• Replace long, frequent values (e.g., 

strings) with an integer 
• Integer comes from a “dictionary” 

that maps words to ints

• Reduces data sizes

• Increases access efficiency by 
eliminating variable size data

Compression, Con’t: Dictionary Encoding
Column

Red

Purple

Turquoise

Red

Red

Turquoise

Purple

Encoded 
Column

1

2

3

1

1

3

2

Val Decoding

1 Red

2 Purple

3 Turquoise

Dictionary



Compression, Con’t: Sparse Data

A B C D E F

X {} {} {} {} Z

{} {} {} {} {} Y

{} {} {} {} {} U

{} {} {} K {} {}

{} {} {} {} {} {}

Table with a lot of NULLs ({})
Arises frequently in ML apps, 
e.g., due to one-hot encoding

If we represent NULLs as a value, will waste 
a lot of space

If > X% of data is NULL, store data as a list 
of non-null tuples, e.g.:

1A: X, 1F: Z, 2F: Y, 3F:U, 4D: K

Need to store row/column identifiers 
explicitly, but can be much more compact

1

2

3

4

5



Handling New Data
• In most data science applications, we don’t update existing data

• Do need need to deal with new data that is arriving

• If we have a complex data layout, e.g., sorted, partitioned, columns, 
inserting that data will be slow, because we’ll have to rewrite all data

• Idea:  just create a new partition for new data, and write your 
program to merge results from all partitions



Problem: Lots of Partitions
• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a 
logarithmic number of times

P1 P2 P3



Problem: Lots of Partitions
• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a 
logarithmic number of times

P1-2
P3 P4 P5



Problem: Lots of Partitions
• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a 
logarithmic number of times

P1-2 P3-4
P6 P7P5



Problem: Lots of Partitions
• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a 
logarithmic number of times

P1-2 P3-4 P5-6
P7



Problem: Lots of Partitions
• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a 
logarithmic number of times

P1-4

P1 has merged 2 times, but won’t merge again until after 8 
more partitions arrive

P5-6
P7



P1 P2 P3 P4 P5 P6 P7 P8

1-2 3-4

1-4

5-6 7-8

Exponentially 
Larger & Less 
Frequent 
Merges

Log Structure Merge Tree



Summary
• Proper data layouts can dramatically increase performance of 

data accesses
• Looked at many variations:
• Column vs row-orientation
• Multidimensional layouts

• Quad trees
• Z-Order

• Compression
• Log-structured merging


