
Scaling Beyond Python

Sam Madden
madden@csail.mit.edu

Lecture 16

Lab 5 Out

Project Signups

mailto:madden@csail.mit.edu

Overview
• High level tools like Python are fine for many

problems but may be too slow, especially as you
scale up problem size

• Typically requires optimization and redesign
• Some strategies

– Buy more hardware
– Use a different runtime
– Improve implementation

• Today we will focus on some simple data-oriented
improvements; parallelism and algorithmic tricks
in later lectures

General Approach

• Find the bottleneck
– Most programs have several stages
– Some may be I/O based, some CPU based

• Improve performance of bottleneck
• Iterate

– Did the bottleneck change?

How Slow is Slow?

• Different applications have different
performance demands

• In an online setting, e.g., serving a web
page, 100ms may be too long

• For an interactive dashboard, 1s may
be too long

• For an ML prediction, minutes may be
too long

Performance metrics

• Performance metrics:
– Throughput: request/time for many requests
– Latency: time / request for single request

• Latency = 1/throughput?
– Often not; e.g., server may have two CPUs

Server
Client

Client

…

Heavily-loaded systems

• Once system busy, requests queue up
requests

bottleneck

Latency

requests

Throughput

Approaches to finding
bottleneck

• Measure utilization of each resource
– CPU is 100% busy, disk is 20% busy
– CPU is 50% busy, disk is 50% busy, alternating

• Model performance of your approach
– What performance do you expect?

• Guess, check, and iterate
– Don’t prematurely optimize

df = pd.read_csv(PATH, delimiter='|’,
header=None, names=header)

print df[df['NAME'].str.contains("MADDEN”)

300 MB file

How Long Do We Expect This
To Take?

• I/O vs CPU
• Which will dominate?

Convert to
DataFrame

Search For String
‘Madden’Read From

Disk

Some Tools

• print statements / timing
• top / system profilers
• code profilers

Python code profile
python3 -m cProfile -o my_program.prof slow_pandas.py
snakeviz my_program.prof

Why Is This So Slow?

• Takes 7+ seconds. Why?
• Seems to be ~6s to load data frame,

~1s to perform search
• For loading, is it I/O? How long should

reading from disk take?

Model Your Code

• How long should I/O take?
• How long should data loading take?
• How long should search take?

Important numbers
• Latency:

– 0.000001 ms: instruction time (1 ns)
– 0.0001 ms: DRAM load (100 ns)
– 0.1 ms: LAN network packets (100 usec)
– 0.2 ms: SSD random I/O (variable)
– 10 ms: random HDD I/O
– 25 ms: Internet east -> west coast

• Throughput:
– 10,000 MB/s: DRAM
– 4,000 MB/s: sequential SSD
– 1,000 Mbits/s: Gbit LAN (or ~100 MB/s)
– 500 MB/s: sequential HDD, or random SSD
– 1 MB/s: random disk I/O

Disk Primer

• Two main types of disks; hard
disks(HDD) and solid state disks (SSD)

• Hard disks are rotating platters;
cheaper and slower

• Both are block oriented, i.e., they allow
reading or writing of blocks (usually a
few KB)

• Unlike RAM, which is byte oriented

Solid State Disk (SSD)

• Faster storage technology than disk
– Flash memory that exports disk interface
– No moving parts

• Modern Apple 2TB SSD
– Sequential read: 2.5 GB/sec
– Sequential write: 250 MB/sec
– Random 4KB read: 100K+/s (>400 GB/s)

• See next slides
– Random 4KB write: 10K+/s (>40 MB/s)

SSD Random Reads

https://www.anandtech.com/show/8104/intel-ssd-dc-p3700-review-the-pcie-ssd-transition-begins-with-nvme/3

2014 Numbers

Block Size Block Size

Th
ro

ug
hp

ut
 (M

b/
se

c)

La
te

nc
y

(m
s)

SSD Random Writes

Th
ro

ug
hp

ut
 (M

b/
se

c)

La
te

nc
y

(m
s)

Block Size Block Size

SSDs and writes

• Write performance is slower:
– Flash can erase only large units (e.g, 512 KB)

• Writing a small block:
1. Read 512 KB
2. Update 4KB of 512 KB
3. Write 512 KB

• Controllers try to avoid this using
aggressive caching, logging tricks

SSD versus HDD
• HDD: ~$100 for 4 TB

– $0.025 per GB
• SSD: ~$200 for 2 TB

– $1.00 per TB

HDD increasingly less common
• Many performance issues still the same:

– Both SSD and Disks much slower than RAM
– Avoid random small writes using batching

So How Much of 6s is I/O?

• Disk can read 1 GB/sec, 300 MB should
take ~.3s. So disk I/O is not the issue!
– But loading the data frame takes 6 s???

• What about CPU? 2M records, a few
hundred instructions per record
è ~400M instructions
– Should take ~.2 seconds on a 2GHz proc
– Actually takes 5-10x as long!

Fixing a bottleneck
• Get better hardware
• Use better execution environment
• Find better algorithm
• Write better implementation; strategies

– Indexing
– Predicate push down
– Early projection
– Caching
– Efficient joins
– Partitioning & parallelism -- not today

What Improvement Can We
Expect

• Always keep Amdahl’s law in mind

Slatency is the over all speedup in all stages of a task
s is the speedup on a stage of the task that we optimize
p is the original proportion of time the optimized stage took

If a
component
takes 50%
of time,
max
speedup is
2x!

Clicker Question

Which do you think is going to result in best
performance:
A. rewrite to use lower-level python instead

of pandas, e.g., loops w/ readlines
B. rewrite in C
C. rewrite to use a relational database
D. none of these, pandas is best

Let’s Try It
• Pandas version
read_time = 6.09, scan_time = 0.72

• Python loops
read_time = 11.72, scan_time = 0.71

• Rewrite in C
init_time = 0.00s, read_time = 1.58s, scan_time = 0.15s

• Use a Relational DB
donations=# \copy donations from
'indiv20/by_date/itcont_2020_20010425_20190425.txt' delimiter '|';
COPY 1976644
Time: 9345.116 ms (00:09.345)

donations=# select NAME, EMPLOYER, TRANSACTION_AMT from donations
where NAME ~ 'MADDEN' ;
Time: 405.118 ms

Why is Python So Slow

Virtual machine (VM) implementation is a loop that reads an
instruction, and jumps to the code to execute the instruction

On modern CPUs this is very inefficient, because it results in
many branch misses and poor processor cache locality

• Loops python are very slow
– Because it is an “interpreted” language,

each operation takes 100’s of CPU cycles
– Even though a CPU can run ~2B

instructions per second, can only do
about 5M loop iterations per second

• Pandas/numpy vectorized operations
generally faster
– Beware apply & co.

29

Python In Practice

Summary

• Parsing data is the bottleneck
– We will look at solutions next time

• Python is very slow
• Pandas is not bad

– uses C implementations underneath
• Rewriting in C is painful, can be a big win

– Can call into C from python if you have a
specific algo you want to rewrite

Break

Algorithmic Bottlenecks

• Can we speed up text search?
• What about other kinds of slow

algorithms?

Trigrams

• MADDEN -> MAD, ADD, DDE, DEN …
• Index:

Trigram Start Offsets in Text
ADD 2, …
DDE 3, …
DEN 4, …
MAD 1, …
…

Sorted List

1 23456

Lookup: MAD -> 1, DEN -> 4
These are consecutive, so found a match

Tree Index
A .. C D … G G .. P P ... Z

Tree Index

ADD: {2, …}

A .. C D … G G .. P P ... Z

AA..BCD BCF..BZ CAA..CF CF…CZ

…

Tree Index

ADD: {2, …} DDE: {3, ...}

DEN: {4, …}

{MAD: 1, …}

A .. C D … G G .. P P ... Z

AA..BCD BCF..BZ CAA..CF CF…CZ

…

…

…

What are advantages of tree
organization over sorted list?

Creating Tree Index in
Postgres

CREATE INDEX tbl_col_gin_trgm_idx
ON donations USING gin (NAME
gin_trgm_ops);

gin is a generic interface for describing
tree indexes in Postgres

Performance
donations=# CREATE INDEX tbl_col_gin_trgm_idx ON donations USING gin
(NAME gin_trgm_ops);
Time: 8237.870 ms (00:08.238)

donations=# select NAME, EMPLOYER, TRANSACTION_AMT from donations
where NAME ~ 'MADDEN' ;
Time: 2.129 ms

Other Common Algorithmic
Bottlenecks

• What’s wrong with this code?

read_time = 11.13, join_time =
79.29

Solution 1

read_time = 11.19, join_time = 0.18

Solution 2

10x larger

read_time = 11.38, join_time = 0.07

Full 2M x 2M join

read_time =
11.79, join_time
= 200.26

Let’s Try it In SQL

1. Base performance
2. Change algo from Merge to Hash
3. Increase Parallelism
4. Partition Data

SQL Advantages

• Many different implementations
• Declarative Control

– Algorithm
• Sort merge vs Hash

– Parallelism
• Memory conscious – able to spill to

disk

Summary
• Python is often slow
• Identifying performance bottlenecks is an art

– Figure out if you have an I/O or CPU problem
– Estimate expected performance
– Remember Amdahl’s law!

• Rewriting in low level languages can help
• Using more efficient data accesses can help
• Next time: How to efficiently store & access

data on disk

