MACHINE LEARNING OVERVIEW

What if your model has a high error?

- Try getting more training examples
- Try smaller sets of features
- Try getting additional features
- Try creating features from existing features (kernels)
- Try decrease regularization
- Try increase regularization

Training set M

Training set M

Training Set (m)

Clicker:

Test error

- a) decreases with M
- b) increases with M
- c) stays constant

Training set M

Training Set (m)

High Bias

Training set M

High Bias

Training set M

Clicker: If you have high-bias, does more data help?

- a) No
- b) Yes

High Variance

Clicker: If you have high-variance, does more data help?

- a) No
- b) Yes

1. Get more training examples

- 2. Try smaller sets of features
- 3. Try getting additional features
- 4. Try adding polynomial features (kernels)
- 5. Try increase regularization
- 6. Try decrease regularization

- A. High Variance
- B. High Bias
- C. Both
- D. None

- 1. Get more training examples
- 2. Try smaller sets of features
- 3. Try getting additional features
- 4. Try adding polynomial features (kernels)
- 5. Try increase regularization
- 6. Try decrease regularization

- A. High Variance
- B. High Bias
- C. Both
- D. None

- 1. Get more training examples
- 2. Try smaller sets of features
- 3. Try getting additional features
- 4. Try adding polynomial features (kernels)
- 5. Try increase regularization
- 6. Try decrease regularization

- A. High Variance
- B. High Bias
- C. Both
- D. None

- 1. Get more training examples
- 2. Try smaller sets of features
- 3. Try getting additional features
- 4. Try adding polynomial features (kernels)
- 5. Try increase regularization
- 6. Try decrease regularization

- A. High Variance
- B. High Bias
- C. Both
- D. None

- 1. Get more training examples
- 2. Try smaller sets of features
- 3. Try getting additional features
- 4. Try adding polynomial features (kernels)
- 5. Try increase regularization
- 6. Try decrease regularization

- A. High Variance
- B. High Bias
- C. Both
- D. None

- 1. Get more training examples
- 2. Try smaller sets of features
- 3. Try getting additional features
- 4. Try adding polynomial features (kernels)
- 5. Try increase regularization
- 6. Try decrease regularization

- A. High Variance
- B. High Bias
- C. Both
- D. None

Cross-validation

k-fold: split the data into k groups, train on every group except for one, which you test on.

Repeat for all groups

Parameter Tuning

Grid Search

Training set size

Training set size

Training set size

Can we prune now?

Algorithm 1 training error > Algorithm 2 validation error

Northstar's (now Einblick) AutoML

Built for *interactive results*, unlike all other Auto-ML tools, which can take hours to produce results

Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann, Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, Tim Kraska: Democratizing Data Science through Interactive Curation of ML Pipelines. SIGMOD Conference 2019: 1171-1188

Free to use for MIT students: <u>https://einblick.ai/</u>

AutoML Tools

				pipeline
pe	erformance valid	ation steps		
		86.67% accuracy		ex
	cohen kappa 0.722	f1 macro 0.861	f1 micro 0.867	
	roc auc macro 0.937	roc auc micro 0.941	f1 0.889: "False" 0.832: "True" 0.861: "macro a	
	precision 0.898: "False" 0.82: "True" 0.859: "macro	recall 0.881: "False" 0.844: "True" 0.863: "macro	support 1.83k: "False" 1.17k: "True" 3k: "macro avg"	
: 🕥	8 ? 🔒			

ecutor

plainer

https://einblick.ai/

Feature Engineering

Class Task: Feature Engineering

How would you predict the unemployment rate before the official numbers come out?

		T RENEFITS
UNEMP	APPLICAT	TION FORM
nersonal Information	0	-
Sumana Nama Address		

https://www.washingtonpost.com/news/wonk/wp/2014/04/07/twitter-issurprisingly-accurate-at-predicting-unemployment/
Feature engineering

- Dropping features
 - Remove duplicates
 - Highly correlated values (Zip code, Lon/Lat)
- Feature creation
 - Feature crosses: Cost per square feet
 - Creating special features ("I lost my job")
 - Row statistics
 - Number of 0, nulls, negative value, mean, max, min,...
 - Projection to circle
 - Turn a single feature (like day_of_week) into two coordinates on a circle
 - Ensures that distance between Monday and Sunday etc is the same
 - Spatial
 - GPS encoding
 - Categorized locations (e.g., close to city, rural, nearby hospital, etc.)
 - Use embeddings from other models (more on that later)
 - Discretization (date \rightarrow weekend/weekday)

- ...

Transformations

- Rounding
 - Lossy
 - Precision can just be noise -> might improve training
 - Log transform before rounding often useful
- Binning
 - Removes information
 - Can work gracefully with variables outside of ranges seen in the train set
- Scaling
 - Sandard (Z) Scaling
 - MinMax Scaling
 - Root Scaling
 - Log Scaling
- Outlier removal
- Imputation (mean, median, ...)
- Interaction encoding : Specifically encodes the interaction between two numerical variables
 - Substraction, Addition, Multiplication....
 - Polynomial encoding
 - Linear algorithms can not solve XOR problem
 - A polynomial kernel can solve XOR

Encodings

One-hot

- NaN, null, etc \rightarrow create explicit encoding
- Hash-encoding (careful might introduce collisions)
- **Count encoding:** replace categorical value with their count
 - Useful for both linear and non-linear algorithms
 - Sensitive to outliers
 - Might create collisions
- Rank encoding: Rank categorical variables by count in train set
 - Useful for both linear and non-linear algorithms
 - Not sensitive to outliers
 - Won't give same encoding to different variables
- **Target encoding**: Encode categorical variables by their ratio of target (binary classification) in train set
 - Be careful to avoid overfit
 - Add smoothing to avoid setting variable encoding to 0
 - Add random noise?
 - Can work extremely well when done right
- Consolidation/expansion encoding: map different categorical variables to the same
 - Spelling errors, slightly different job descriptions, abbreviations

Example: Customer Conversion

Questions:

- What sequence of emails, phone calls, showing ads in the platform, etc. leads to the highest conversion rate (e.g., open an account)
- How many emails/phone calls are too much?
- What should the timing be?
- How can we annotate the data with custom information we have available (notes from 1on1 conversations, portal logins, current accounts, etc.)?
- How do we quickly adjust to changing conditions (e.g., covid happens, increasing interest rates, inflation,...)?

→ This is not a standardized process.
Rather it requires to quickly experiment with new models

The data

Customer	Date	Event	Info
Tim	2022/01/03	E11	Promotion email to savings bank account
Paul	2022/01/03	E11	Promotion email to savings bank account
Tim	2022/01/04	P10	Phone call.
Mark	2022/01/05	E11	Promotion email to savings bank account
Tim	2022/01/05	E11	Promotion email to start saving
Tim	2022/01/06	D1	Display ad regarding savings account
Paul	2022/01/07	D1	Display ad regarding savings account
Tim	2022/01/08	B1	User opens saving account

Customer	Event	Log
Tim	1on1 Meeting	Had a good meeting. Expressed some interest in savings account but was worried about inflation
Paul	1on1 Meeting	Good conversation, but expressed no interest in savings accounts
Mark	Phone call	Talked about insurance and mortgages

Customer	Account	Balance
Tim	Checking	10k
Paul	Checking	20k
Tim	Trading	40k
Mark	Checking	15k

...

Example: Customer Conversion

The	data

Customer	Date	Event	Info				
Tim	2022/01/03	E11	Promotion email to savings bank account				
Paul	2022/01/03	E11	Promotion email to savings bank account				
Tim	2022/01/04	P10	Phone call.				
Mark	2022/01/05	E11	Promotion email to savings bank account				
Tim	2022/01/05	E11	Promotion email to start saving				
Tim	2022/01/06	D1	Display ad regarding savings account				
Paul	2022/01/07	D1	Display ad regarding savings account				
Tim	2022/01/08	B1	User opens saving account				

How would you build a model over this data to predict if a user opens a a new savings account?

CustomerEventLogTim1on1 MeetingHad a good meeting. Expressed some interest in
savings account but was worried about inflationPaul1on1 MeetingGood conversation, but expressed no interest in
savings accountsMarkPhone callTalked about insurance and mortgages.........

Customer	Account	Balance
Tim	Checking	10k
Paul	Checking	20k
Tim	Trading	40k
Mark	Checking	15k

• • •

Example: Customer Conversion

				Custome	r	Event		Log
Customer	Date	Event	Info	Tim	10	n1 Meeting	Had a good me	eeting. Expressed some interest in
Tim	2022/01/03	E11	Promotion email to savings bank account			0	savings accour	nt but was worried about inflation
Paul	2022/01/03	E11	Promotion email to savings bank account	Paul	10	n1 Meeting	Good conversa	ation, but expressed no interest in
Tim	2022/01/04	P10	Phone call.					savings accounts
Mark	2022/01/05	E11	Promotion email to savings bank account	Mark	F	Phone call	Talked ab	out insurance and mortgages
Tim	2022/01/05	L1	User logged into platform					
Tim	2022/01/06	D1	Display ad regarding savings account					
Paul	2022/01/07	L1	Display ad regarding savings account	Cu	stomer	Account	Balance	
Tim	2022/01/08	B1	User opens saving account		Tim	CK1	10k	
					Paul	CK2	20k	
					Tim	TD	40k	•••
					Mark	CK1	15k	

Customer	Checking	Trading	Looking for	Last Phone	Last Email	Last Email	Previous	Previous	Conversation	Next Action	Result open
	Account	Account	Savings	outreach		Encoding	Email	Email	Encoding		account
			account					Encoding			
Tim	Yes	Yes	Yes	2022/01/0	2022/01/05	32423423	2022/01/03	084308934	7897979	\$100 Promotion	80%
				4						Email	
Paul	Yes	No	No	-	2022/01/03	234234234	-	23947829374	797897	Email promotion	2%
Mark	Yes	No	unknown	-	2022/01/05	23423424	-	2349729347	7789789	Phone call	3%

Other time-related feature engineering tricks

- Trendlines
 - Instead of encoding: total spend, encode things like: spend in last week, spend last month, spend in last year
 - Gives a trend to the algorithm
- Closeness to major events
 - Hardcode categorical features like date_3_days_before_holidays
 - Try national holidays, major sport events, weekends, end of quarter, etc. → All can have impact on spending behavior
- Projection to circle

Word embeddings

• Idea: learn an embedding from words into vectors

Cat - {0.002, 0.244, 0.546, ..., 0.345}

• Need to have a function W(word) that returns a vector encoding that word.

• Applications: ???

Word embeddings: properties

Relationships between words correspond to difference between vectors.

Word embeddings: questions

- How big should the embedding space be?
 - Trade-offs like any other machine learning problem greater capacity versus efficiency and overfitting.
- How do we find W?
 - Often as part of a prediction or classification task involving neighboring words.

Learning word embeddings

https://arxiv.org/ftp/arxiv/papers/1102/1102.1808.pdf

- First attempt:
 - Input data is sets of 5 words from a meaningful sentence.
 E.g., "one of the best places". Modify half of them by replacing middle word with a random word. "one of function best places"
 - W is a map (depending on parameters, Q) from words to 50 dim'l vectors. E.g., a look-up table or an RNN.
 - Feed 5 embeddings into a module R to determine 'valid' or 'invalid'
 - Optimize over Q to predict better

Word-Embeddings: word2vec

- Predict words using context
- Two versions: CBOW (continuous bag of words) and Skip-gram

Continuous Bag of words (CBOS

- Bag of words (BOW)
 - Gets rid of word order. Used in discrete case using counts of words that appear.

• CBOW

- Takes vector embeddings of n words before target and n words after and adds them (as vectors).
- Also removes word order, but the vector sum is meaningful enough to deduce missing word.

Continuous Bag of Words -Window Size 2

Jay was hit by a _____ bus in...

by	а	red	bus	in
----	---	-----	-----	----

inpu	t 1	input 2	input 3	input 4	output
by	r	а	bus	in	red

Continuous Bag of Word

- E.g. "The cat sat on floor"
 - Window size = 2

COBW

$$\sigma(ec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

Softmax turns the vector into proabilities

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

We can consider either W or W' as the word's representation. Or even take the average.

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

Some interesting results

Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

Word analogies

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

Skip gram

- Map from center word to probability on surrounding words. One input/output unit below.
- Start with a single word embedding and try to predict the surrounding words.
- Much less well-defined problem, but works better in practice (scales better).

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Skip Gram (window 2)

Sam	likes	Celine	Dion	and	biking
Sam	likos	Colino	Dion	and	hiking
Salli	irkes	Cenne	DIOII	anu	DIKING
Sam	likes	Celine	Dion	and	biking
Sam	likes	Celine	Dion	and	biking

Sam	likes
Sam	Celine

Sam	likes
Sam	Celine
likes	Sam
likes	Celine
likes	Dion

Sam	likes
Sam	Celine
likes	Sam
likes	Celine
likes	Dion
Celine	Sam
Celine	likes
Celine	Dion
Celine	and

Skip gram

Skip gram example

- Vocabulary of 10,000 words.
- Embedding vectors with 300 features.
- So the hidden layer is going to be represented by a weight matrix of size 300 with 10,000 rows

Word2vec shortcomings

- **Problem:** 10,000 words and 300 dim embedding gives a large parameter space to learn. And 10K words is minimal for real applications.
- Slow to train, and need lots of data, particularly to learn uncommon words.

Any ideas how to make the approach more scalable?

Word2vec improvements: word pairs and phrases

- Idea: Treat common word pairs or phrases as single "words."
 - E.g., Boston Globe (newspaper) is different from Boston and Globe separately. Embed Boston Globe as a single word/phrase.
- **Method:** make phrases out of words which occur together often relative to the number of individual occurrences. Prefer phrases made of infrequent words in order to avoid making phrases out of common words like "and the" or "this is".
- **Pros/cons:** Increases vocabulary size but decreases training expense.

Word2vec improvements: subsample frequent words

- Idea: Subsample frequent words to decrease the number of training examples.
 - The probability that we cut the word is related to the word's frequency. More common words are cut more.
 - Uncommon words (anything < 0.26% of total words) are kept
 - E.g., remove some occurrences of "the."
- **Method:** For each word, cut the word with probability related to the word's frequency.
- **Benefits:** If we have a window size of 10, and we remove a specific instance of "the" from our text:
 - As we train on the remaining words, "the" will not appear in any of their context windows.

Word2vec improvements: selective updates

- Idea: Use "Negative Sampling", which causes each training sample to update only a small percentage of the model's weights.
- **Observation:** A "correct output" of the network is a one-hot vector. That is, one neuron should output a 1, and *all* of the other thousands of output neurons to output a 0.
- **Method:** With negative sampling, randomly select just a small number of "negative" words (let's say 5) to update the weights for. (In this context, a "negative" word is one for which we want the network to output a 0 for). We will also still update the weights for our "positive" word.

Applications

- Clustering
- Next word prediction

• Translation

• Other: Images

- Can apply to get a joint embedding of words and images or other multi-modal data sets.
- New classes map near similar existing classes: e.g., if 'cat' is unknown, cat images map near dog.

WHAT IS THE PROBLEM WITH WORD EMBEDDINGS?

Solution: Train contextual representations on text corpus

LITTLE HISTORY

Semi-Supervised Sequence Learning, Google, 2015

ELMo: Deep Contextual Word Embeddings, Al2 & University of Washington, 2017

GPT

Improving Language Understanding by Generative Pre-Training, OpenAI, 2018 – Based on transformers/attention from "Attention is All You Need" Vaswani et al

BERT

BERT VS OPENAI GPT VS ELMO

See also http://jalammar.github.io/illustrated-gpt2/

TASKS

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

http://www.msmarco.org/leaders.aspx

MICROSOFT MACHINE READING COMPREHENSION DATASET (MS MARCO)

KeyPhrase Extraction(10/18/2019) ranked by F1 @3 on Eval

Rank	Model	Submission Date	Precision @1,@3,@5	Recall @1,@3,@5	F1 @1,@3,@5
1	BERT (Base) Sequence Tagging Si Sun (Tsinghua University), Chenyan Xiong (MSR Al), Zhiyuan Liu (Tsinghua University) [Code]	November 5th, 2019	0.484, 0.312, 0.227	0.255, 0.469, 0.563	0.321, 0.361 , 0.314
2	Baseline finetuned on Bing Queries MSMARCO Team	October 19th, 2019	0.397, 0.249, 0.149	0.215, 0.391, 0.391	0.267, 0.292 , 0.209
3	Baseline MSMARCO Team	October 19th, 2019	0.365, 0.237, 0.142	0.196, 0.367, 0.367	0.244, 0.277 , 0.198

Passage Retrieval(10/26/2018-Present) ranked by MRR on Eval

Rank	Model	Ranking Style	Submission Date	MRR@10 On Eval	MRR@10 On Dev
1	Enriched BERT base + AOA index + CAS Ming Yan of Alibaba Damo NLP	Full Ranking	August 20th, 2019	0.393	0.408
2	W-Index retrieval + BERT-F re-rank Zhuyun Dai of Carnegie Mellon University	Full Ranking	September 12th,2019	0.388	0.394
3	Enriched BERT base + AOA index V1 Ming Yan of Alibaba Damo NLP	Full Ranking	May 13th, 2019	0.383	0.397

Q&A Task(03/01/2018-Present)

Rank	Model	Submission Date	Rouge-L	Bleu-1
1	Multi-doc Enriched BERT Ming Yan of Alibaba Damo NLP	June 20th, 2019	0.540	0.565
2	Human Performance	April 23th, 2018	0.539	0.485
3	BERT Encoded T-Net Y. Zhang, C. Wang, X.L. Chen	August 5th, 2019	0.526	0.539

Q&A + Natural Language Generation Task(03/01/2018-Present)

Rank	Model	Submission Date	Rouge-L	Bleu-1
1	Human Performance	April 23th, 2018	0.632	0.530
2	Masque NLGEN Style NTT Media Intelligence Laboratories [Nishida et al. '19]	January 3rd, 2019	0.496	0.501
3	BERT+ Multi-Pointer-Generator Tongjun Li of the ColorfulClouds Tech and BUPT	June 11th,2019	0.495	0.476

GOOGLE IS NOW USING BERT

Q parking on a hill with no curb

BEFORE

Parking on a Hill. Uphill: When headed uphill at a curb, turn the front wheels away from the curb and let your vehicle roll backwards slowly until the rear part of the front wheel rests against the curb using it as a block. Downhill: When you stop your car headed downhill, turn your front wheels toward the curb.

Parking on a Hill - DriversEd com

9:00 google.com

For either uphill or downhill **parking**, if there is no **curb**, turn the wheels toward the side of the road so the car will roll away from the center of the road if the brakes fail. When you park on a sloping driveway, turn the wheels so that the car will not roll into the street if the brakes fail.

Parking on a Hill

AFTER

GOOGLE IS NOW USING BERT

V / I

Can you get medicine for someone pharmacy

BEFORE

AFTER

V / I

9	ė	0	0		
-	7	-	~		

google.com

MedlinePlus (.gov) + ency + article

Getting a prescription filled: MedlinePlus Medical Encyclopedia

Aug 26, 2017 · Your health care provider may give you a prescription in ... Writing a paper prescription that you take to a local pharmacy ... Some people and insurance companies choose to use ...

google.com

9:00

HHS.gov + hipaa + for-professionals

Can a patient have a friend or family member pick up a prescription ...

Dec 19, 2002 · A pharmacist may use professional judgment and experience with common practice to ... the patient's best interest in allowing a person, other that the patient, to pick up a prescription.

GOOGLE IS NOW USING BERT

2019 brazil traveler to usa need a visa

BEFORE

()

AFTER

9:00	₹41
	google.com
top	Washington Post > 2019/03/21
U.S tap	5. citizens can travel to Brazil without the red e of a visa
Mar with	21, 2019 - Starting on June 17, you can go to Brazil rout a visa and Australia, Japan and Canada will

no longer need a visa to ... washingtonpost.com; ©

1996-2019 The Washington Post ...

9:00 google.com

© USEmbassy.gov (br) Visas

Tourism & Visitor | U.S. Embassy & Consulates
in Brazil

In general, tourists traveling to the United States require
valid B-2 visas. That is unless they are eligible to travel
visa ...

ADABOOST - CORE IDEA

Take a set of weak classifiers (normally they should do better than guessing)

ADABOOST - CORE IDEA

Take a set of weak classifiers (normally they should do better than guessing)

ADABOOST - CORE IDEA

Take a set of weak classifiers (normally they should do better than guessing)

Desc	Protein	Carb	Sugar	Iron	Kcal
CHEESE,GRUYERE	30	0	0.36	0.17	413
ICE CRM SNDWCH	4	37	18.57	0.26	237
PORK,LOIN	21	0	0	0.84	143
CARROTS,RAW	1	10	4.74	0.3	41
APPLES,RAW,WITH SKIN	0	14	10.39	0.12	52
BEEF,STRIP STEAKS	23	0	0	1.85	117

Step 1: Build baseline model

Desc	Protein	Carb	Sugar	Iron	Kcal
CHEESE,GRUYERE	30	0	0.36	0.17	413
ICE CRM SNDWCH	4	37	18.57	0.26	237
PORK,LOIN	21	0	0	0.84	143
CARROTS,RAW	1	10	4.74	0.3	41
APPLES,RAW,WITH SKIN	0	14	10.39	0.12	52
BEEF,STRIP STEAKS	23	0	0	1.85	117

Step 1: Build baseline model

1a) Naïve baseline: average (413+237+...+117)/6 = 167

Desc	Protein	Carb	Sugar	Iron	Kcal	Residual
CHEESE,GRUYERE	30	0	0.36	0.17	413	246
ICE CRM SNDWCH	4	37	18.57	0.26	237	70
PORK,LOIN	21	0	0	0.84	143	-24
CARROTS,RAW	1	10	4.74	0.3	41	-126
APPLES,RAW,WITH SKIN	0	14	10.39	0.12	52	-115
BEEF,STRIP STEAKS	23	0	0	1.85	117	-50

Step 1: Build baseline model

1a) Naïve baseline: average (413+237+...+117)/6 = 167

1b) Calculate residuals: actual value - predicted value

For example, for Brie: 413 - 167 = 246

Desc	Protein	Carb	Sugar	Iron	Kcal	Residual
CHEESE,GRUYERE	30	0	0.36	0.17	413	246
ICE CRM SNDWCH	4	37	18.57	0.26	237	70
PORK,LOIN	21	0	0	0.84	143	-24
CARROTS,RAW	1	10	4.74	0.3	41	-126
APPLES,RAW,WITH SKIN	0	14	10.39	0.12	52	-115
BEEF,STRIP STEAKS	23	0	0	1.85	117	-50

- Step 1: Build baseline model
- Step 2: Build tree over residuals (not labels)

Desc	Protein	Carb	Sugar	Iron	Kcal	Residual
CHEESE,GRUYERE	30	0	0.36	0.17	413	246
ICE CRM SNDWCH	4	37	18.57	0.26	237	70
PORK,LOIN	21	0	0	0.84	143	-24
CARROTS,RAW	1	10	4.74	0.3	41	-126
APPLES,RAW,WITH SKIN	0	14	10.39	0.12	52	-115
BEEF,STRIP STEAKS	23	0	0	1.85	117	-50

Step 1: Build baseline model

Step 2: Build tree over residuals (not labels)

Compute average for residuals in the same leaf

Desc	Protein	Carb	Sugar	Iron	Kcal	Residual	Predictions
CHEESE,GRUYERE	30	0	0.36	0.17	413	246	413
ICE CRM SNDWCH	4	37	18.57	0.26	237	70	237
PORK,LOIN	21	0	0	0.84	143	-24	130
CARROTS,RAW	1	10	4.74	0.3	41	-126	47
APPLES,RAW,WITH SKIN	0	14	10.39	0.12	52	-115	47
BEEF,STRIP STEAKS	23	0	0	1.85	117	-50	130

- Step 1: Build baseline model
- Step 2: Build tree over residuals (not labels)
- Step 3': Predict the target labels using all trees (currently just one) Prediction: avg + residual predicted by decision tree For example for Gruyere: 167 + 246 = 413

Desc	Protein	Carb	Sugar	Iron	Kcal	Residual	Predictions	New Residuals
CHEESE, GRUYERE	30	0	0.36	0.17	413	246	413	0
ICE CRM SNDWCH	4	37	18.57	0.26	237	70	237	0
PORK,LOIN	21	0	0	0.84	143	-24	130	13
CARROTS,RAW	1	10	4.74	0.3	41	-126	47	-6
APPLES,RAW,WITH SKIN	0	14	10.39	0.12	52	-115	47	6
BEEF,STRIP STEAKS	23	0	0	1.85	117	-50	130	-13

- Step 1: Build baseline model
- Step 2: Build tree over residuals (not labels)
- Step 3': Predict the target labels using all trees (currently just one)
- Step 4': Compute the new residuals

Desc	Protein	Carb	Sugar	Iron	Kcal	Residual	Predictions
CHEESE,GRUYERE	30	0	0.36	0.17	413	246	192
ICE CRM SNDWCH	4	37	18.57	0.26	237	70	174
PORK,LOIN	21	0	0	0.84	143	-24	163
CARROTS,RAW	1	10	4.74	0.3	41	-126	155
APPLES,RAW,WITH SKIN	0	14	10.39	0.12	52	-115	155
BEEF,STRIP STEAKS	23	0	0	1.85	117	-50	163

- Step 1: Build baseline model
- Step 2: Build tree over residuals (not labels)
- Step 3:Predict the target labels using all trees with Learning RatePrediction: avg+ LR * residual predicted by decision treeFor example for Gruyere:167 + 0.1 * 246 = 191.6

Desc	Protein	Carb	Sugar	Iron	Kcal	Residual 1	Predictions 1	Residual2
CHEESE, GRUYERE	30	0	0.36	0.17	413	246	192	221
ICE CRM SNDWCH	4	37	18.57	0.26	237	70	174	63
PORK,LOIN	21	0	0	0.84	143	-24	163	-20
CARROTS,RAW	1	10	4.74	0.3	41	-126	155	-114
APPLES,RAW,WITH SKIN	0	14	10.39	0.12	52	-115	155	-103
BEEF,STRIP STEAKS	23	0	0	1.85	117	-50	163	-46

- Step 1: Build baseline model
- Step 2: Build tree over residuals (not labels)
- Step 3: Predict the target labels using all trees
- Step 4: Compute the new residuals
- Step 5: Repeat steps 3 to 5 until breaking criteria (test/validation error, iterations, etc.)

Once trained, use all of the trees in the ensemble to make a final prediction as to the value of the target variable

AVG + LR * Predicted Residual1 + LR * Predicted Residual2 + ...

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components

FIRST PRINCIPLE COMPONENT

CLICKER: CAN WE USE LR TO FIND THE FIRST PRINCIPLE COMPONENT?

- a) Yes
- b) No

(if you say yes, argue why. If not, create a toy example to explain why not)

PCA FOR NUTRITION DATA

Shrt_Desc	Protein_(g)	Fiber_TD_(g)	Vit_C_(mg)	FA_Sat_(g)
CHICKEN,GIZZARD,ALL CLASSES,RAW	17.66	0	3.7	0.529
PORK,FRSH,LEG (HAM),RUMP HALF,LN&FAT,CKD,RSTD	27.03	0	0	3.369
BABYFOOD, DINNER, VEG&TURKEY, STR	2.32	1.5	0.7	0.236
CEREALS RTE, FRSTD OAT CRL W/MARSHMALLOWS	7.1	4.3	20	0.62
CANDIES,FRUIT SNACKS,W/ HI VIT C	0.08	0	136.4	0
PIKE,NORTHERN,CKD,DRY HEAT	24.69	0	3.8	0.151
APPLEBEE'S,CHICK TENDERS,FROM KIDS' MENU	19.25	1.2		2.852
FRUIT JUC SMOOTHIE, BOLTHOUSE FARMS, BERRY BOOST	0.63	0	108.6	0.003
NOODLES,EGG,DRY,UNENR	14.16	3.3	0	1.18
BABYFOOD,FRUIT,BANANAS W/TAPIOCA,STR	0.4	1.6	16.7	0.035
EGG,WHOLE,COOKED,OMELET	10.57	0	0	3.319
FAST FOODS,BISCUIT,W/HAM	11.85	0.7	0.1	10.096
CEREALS RTE, GENERAL MILLS, COOKIE CRISP	5.2	5.1	23.1	0.8
CANDIES, MARS SNACKFOOD US, MILKY WAY MIDNIGHT BAR	3.2	2.9	0.2	11.474
BEEF,RND,BTTM RND RST,LN,1/8" FAT,SEL,CKD,RSTD	28.45	0	0	1.608
BEEF,NZ,IMP,SUBCUTANEOUS FAT,CKD	6.5	0	0	30.256
WHEAT GERM,CRUDE	23.15	13.2	0	1.665
APPLEBEE'S,FRENCH FR	3.31	3.9	0.7	2.333
TSTR PSTRS,KELLOGG,KELLOGG'S LF POP TARTS,FRSTD STRAWBERRY	4.2	5.6		1.7
CHICKEN, BROILERS OR FRYERS, WING, MEAT ONLY, CKD, RSTD	30.46	0	0	2.26
DILL WEED, DRIED	19.96	13.6	50	0.234
FAT,BEEF TALLOW	0	0	0	49.8
TUNA,LT,CND IN H2O,WO/SALT,DRND SOL	25.51	0	0	0.234
PORK SAUSAGE,LINK/PATTY,UNPREP	15.39	0	0	7.57
INF FORMULA,NESTLE,GOOD START SUPREME,W/ IRON,PDR	11.3	0	46.1	11.66
BEEF,RIB,BACK RIBS,BONE-IN,LN,0" FAT,CHOIC,RAW	18.72	0	0	7.812
BREAD,PUMPERNICKEL	8.7	6.5	0	0.437
PIE,BANANA CRM,PREP FROM RECIPE	4.4	0.7	1.6	3.758
DIGIORNO PIZZA,CHS TOPPING,CHS STUFFED CRUST,FRZ,BKD	13.48	1.9	0.5	5.63
PORK,FRSH,LOIN,BLADE (ROASTS),BNLESS,LN,CKD,RSTD	27.58	0	0	2.56

TRYING TO MAP FOOD INTO 1 DIM

https://annalyzin.wordpress.com/2016/06/15/principal-component-analysis-tutorial/

TRYING TO MAP FOOD INTO 1 DIM

TRYING TO MAP FOOD INTO 1 DIM

	PC1
Fat	-0.45
Protein	-0.55
Fiber	0.55
Vitamin C	0.44

	PC1	PC2	PC3	PC4
Fat	-0.45	0.66	0.58	0.18
Protein	-0.55	0.21	-0.46	-0.67
Fiber	0.55	0.19	0.43	-0.69
Vitamin C	0.44	0.70	-0.52	0.22

	PC1	PC2
Fat	-0.45	0.66
Protein	-0.55	0.21
Fiber	0.55	0.19
Vitamin C	0.44	0.70

1st Principal Component

https://annalyzin.wordpress.com/2016/06/15/principal-component-analysis-tutorial/

HOW MANY COMPONENTS TO USE

1st Principal Component

https://annalyzin.wordpress.com/2016/06/15/principal-component-analysis-tutorial/

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components

