ADMIN

- Project Proposals (March 4)
- Lab 2 is out
- Lab 1 docker and M1
- Class ends at 3:40

6.S080 Data Cleaning

3

EXAMPLE TASK

How many people work in the US IT industry? What is the avg revenue per employee in the tech industry?

EXAMPLE TASK

Rank ^[1]	[1] Company		Fiscal Year Ending	Revenue (\$B) USD	Employees	Headquarters
1		Apple Inc.	30 September 2017 ^[2]	\$229.2 ^{[1][3]}	123,000 ^[3]	Cupertino, CA, US
2	::	Samsung Electronics	31 December 2017 ^[4]	\$211.9 ^{[1][5][6]}	320,670 ^{[7][8]}	Suwon, South Korea
3	-	Amazon	31 December 2017 ^{[9][10]}	\$177.9 ^{[1][10]}	613,300 ^[11]	Seattle, WA, US
4	•	Foxconn	31 December 2017 ^{[12][13]}	\$154.7–158 ^{[1][13][14]}	803,126 ^[15]	New Taipei City, Taiwan
5		Alphabet Inc.	31 December 2017 ^{[16][17]}	\$110.8 ^{[1][17]}	80,110 ^[18]	Mountain View, CA, US
6		Microsoft	30 June 2017 ^[19]	\$90.0 ^[1]	124,000 ^[19]	Redmond, WA, US
7	•2	Huawei	31 December 2017 ^{[20][21]}	\$89.3-92.5 ^{[1][21]}	180,000	Shenzhen, China
8	•	Hitachi	31 March 2018 ^[22]	\$84.6 ^[1]	307,275	Tokyo, Japan
9	-	IBM	31 December 2017 ^{[23][24]}	\$79.1 ^[1]	397,800	Armonk, NY, US
10		Dell Technologies	31 January 2018 ^{[25][26]}	\$78.7 ^{[1][26]}	145,000 ^[25]	Round Rock, TX, US
11	•	Sony	31 March 2018 ^[27]	\$77.1 ^{[1][28]}	117,300 ^[27]	Tokyo, Japan
12	•	Panasonic	31 March 2018 ^[29]	\$72.0 ^[1]	274,143	Osaka, Japan
13	-	Intel	31 December 2017 ^[30]	\$62.8 ^[1]	102,700	Santa Clara, CA, US
14	:0:	LG Electronics	31 December 2017 ^[31]	\$54.3 ^[1]	74,000	Seoul, South Korea
15	*)	JD.com	31 December 2017 ^[32]	\$54.0 ^[1]	157,831	Beijing, China
16		HP Inc.	31 October 2017 ^[33]	\$52.0 ^[1]	49,000	Palo Alto, CA, US

		United States Larges	st Private Employers (as of 2017) ^{[1][2][3][4]} [hide]
Rank 🗢	Employer ¢	Global number of Employees ¢	Median annual pay 🗢
1	Walmart	2,300,000	\$19,177
2	Amazon	469,690	\$36,969
	Deutsche Post DHL	499,018	
3	United Parcel Service	456,415	\$53,443
4	Yum! Brands	450,000	\$9,111
5	Kroger	449,000	\$21,075
6	Home Depot	413,000	\$20,095
7	Berkshire Hathaway	377,000	\$53,510 (BH directly employs c. 30 people. All the others are employed by the companies BH purchases.)
8	International Business Machines	366,000	\$55,088
9	FedEx	357,000	\$50,017
10	Target Corporation	345,000	\$20,581
11	General Electric	313,000	\$57,211
12	Walgreens Boots Alliance	290,000	\$31,132
13	Starbucks	277,000	\$12,754
14	Albertsons	273,000	
15	PepsiCo	263,000	\$47,801
16	Wells Fargo	262,700	\$60,466
17	Cognizant Technology Solutions	260,000	\$31,998
18	UnitedHealth Group	260,000	\$58,378
19	Lowe's	240,000	\$23,905
20	AT&T	268,540	\$95,814

Priv	Private and semipublic companies with the most employees in the world								
Rank ¢	Employer 🗢	Country \$	Employees +						
1	Walmart	United States	2,200,000						
2	China National Petroleum	* China	1,382,401						
3	China Post Group	* China	935,191						
4	State Grid	* China	917,717						
5	Hon Hai Precision Industry (Foxconn)	Taiwan	667,680						
6	Volkswagen	Germany	664,496						
7	Amazon	United States	647,500						
8	Sinopec Group	* China	619,151						
9	Compass Group	Standard Kingdom	595,841						
10	United States Postal Service	United States	565,802						

,name,domain,year founded,industry,size range,locality,country,linkedin url,current employee estimate,total employee estimate 5872184,ibm,ibm.com,1911,information technology and services,10001+,"new york, new york, united states",united states,linkedin.com/company/ibm,274047,716906

4425416,tata consultancy services,tcs.com,1968,information technology and services,10001+,"bombay, maharashtra,

india", india, linkedin.com/company/tata-consultancy-services, 190771, 341369

21074, accenture, accenture.com, 1989, information technology and services, 10001+, "dublin, dublin,

ireland", ireland, linkedin.com/company/accenture, 190689, 455768

2309813,us army,goarmy.com,1800,military,10001+,"alexandria, virginia, united states", united states, linkedin.com/company/usarmy,162163,445958

1558607,ey,ey.com,1989,accounting,10001+,"london, greater london, united kingdom",united kingdom,linkedin.com/company/ernstandyoung,158363,428960

3844889, hewlett-packard, hpe.com, 1939, information technology and services, 10001+, "palo alto, california, united states", united states, linkedin.com/company/hewlett-packard-enterprise, 127952, 412952

2959148, cognizant technology solutions, cognizant.com, 1994, information technology and services, 10001+, "teaneck, new jersey, united states", united states, linkedin.com/company/cognizant, 122031, 210020

5944912, walmart, walmartcareers.com, 1962, retail, 10001+, "withee, wisconsin, united states", united states, linkedin.com/company/walmart, 120753, 272827

3727010,microsoft,microsoft.com,1975,computer software,10001+, "redmond, washington, united states", united

states,linkedin.com/company/microsoft,116196,276983

3300741,at&t,att.com,1876,telecommunications,10001+,"dallas, texas, united states",united

states,linkedin.com/company/at&t,115188,269659

5412257, united states air force, airforce.com, 1947, defense & space, 10001+, "randolph, texas, united states", united states, linkedin.com/company/united-states-air-force, 113997, 316549

2780814,pwc,pwc.com,1998,accounting,10001+,"new york, new york, united states",united

states,linkedin.com/company/pwc,111372,379447

3972223, wells fargo, wells fargo.com, , financial services, 10001+, "san francisco, california, united states", united states, linkedin.com/company/wellsfargo, 109532, 264101

1454663, infosys, infosys.com, 1981, information technology and services, 10001+, "bangalore, karnataka, india", india, linkedin.com/company/infosys, 104752, 215718

3221953,deloitte,deloitte.com,1900,management consulting,10001+,"new york, new york, united states",united states,linkedin.com/company/deloitte,104112,329145

2994580,citi,citigroup.com,1812,financial services,10001+, "new york, new york, united states", united states, linkedin.com/company/citi,101482,298171

5372097, bank of america, bank of america. com, 1968, banking, 10001+, "charlotte, north carolina, united states", united states and the states and the states and the states and the states are stated as a state of the states and the states are stated as a state of the state and the states are stated as a state of the state and the state are stated as a state of the state are state are stated as a state are state are stated as a state are stated as a state are st

EXAMPLE TASK

On average what is the revenue per employee in the tech sector in the US?

CLICKER: <u>HTTPS://CLICKER.MIT.EDU/6.S079/</u>

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$21 <i>5</i> B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
International Business Machine	10504; 1 New Orchard Rd	380k	\$-999B	\$12B
Microsoft	Albuquerque, Mexico	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States	-	\$0.9B	\$1B
Tamr	64 Church St, Cmabridge, MA 02138, United States	20	null	\$-Y

How many different **types** of errors can you find, which could influence our result (avg revenue per employee in the US)?

- a) 1-2 error types d) 7-8
- b) 3-4 error types e) over 8
- c) 5-6 error types

CLICKER: <u>HTTPS://CLICKER.MIT.EDU/6.S079/</u>

	Name	Address		#Employees	Revenue	Profit
	Google	1600 Amphitheatre Pa Mountain View, CA, 94	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA		\$89B	null
	Apple	1 Infinite Loop; Cupert USA	ino, CA 95014,	66	\$21 <i>5</i> B	\$45B
	IBM	1 New Orchard Rd; No 10504, USA	ew York	380k	\$80B	\$12B
	International Business Machine	10504; 1 New Orchar	rd Rd	380k	\$-999B	\$12B
	Microsoft	Albuquerque, Mexico		120 k	\$8 <mark>53</mark>	\$85B
	Tableau	Seattle, Washington, U	nited States	-	\$0.9B	\$1B
	Tamr	United States				÷ ;;
D	uplicate Entities		Encoding	Error		
(Entity Pesolution)			(nb in thousands) Missing v			values
Ρ	attern Violation			Rule Violations	(known	unknowns)
	Outdated data / v	wrong data Spe	lling mistakes	s / abbreviations		

MORE?

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$21 <i>5</i> B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
International Business Machine	10504; 1 New Orchard Rd	380k	\$-999B	\$12B
Microsoft	Albuquerque, Mexico	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States	-	\$0.9B	\$1B
Tamr	64 Church St, Cmabridge, MA 02138, United States	20	null	\$-Y

Known Unknowns

CLICKER: <u>CLICKER.CSAIL.MIT.EDU/6.S080/</u>

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
International Business Machine	10504; 1 New Orchard Rd	380k	\$-999B	\$12B
Microsoft	Albuquerque, Mexico	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States	-	\$0.9B	\$1B
Tamr	64 Church St, Cmabridge, MA 02138, United States	20	null	\$-Y
Amazon	\$\$	śś	ŚŚ	ŚŚ
Facebook	ŚŚ	śś	śś	śś
çç	çç	çç	çç	çç
ŚŚ	ŚŚ	śś	śś	śś

Unknown Unknowns

Data Integration

- **Different schemas** → Schema matching
- Duplicates → Entity resolution
- Contradicting data → Data fusion

Data Cleaning

- Missing values → Value imputation
- Wrong data → Outlier detection
- Missing records → Species estimation

Data Integration

- Different schemas → Schema matching
- Duplicates → Entity resolution
- Contradicting data → data fusion

Data Cleaning

- Missing values → Value imputation
- Wrong data → Outlier detection
- Missing records → Species estimation

V	VHY I	S SCHEMA MATCHING HARD
SAP Com	munity Topic	s Groups Answers Blogs Events Programs Resources What's New
Home > Community > C Search Questions	Duestions a and Answers Former Member May 31, 2007 at 04:08 how many tal 3649 Views hi experts, pls tell no. of tables & t Total tables in SAP Add a Comment Ale	Former Member May 31, 2007 at 04:22 PM in 4.6C version 94,361 tables Add a Comment Alert Moderator Share Add a Comment Alert Moderator Share Image: May 31, 2007 at 04:12 PM May 31, 2007 at 04:12 PM ip>101.614 Image: May 31, 2007 at 04:12 PM May 31, 2007 at 04:12 PM ip>101.614 Image: May 31, 2007 at 04:12 PM May 31, 2007 at 04:12 PM ip>101.614 Image: May 31, 2007 at 04:12 PM May 31, 2007 at 04:12 PM ip>101.614 Image: May 31, 2007 at 04:12 PM May 31, 2007 at 04:12 PM ip>101.614 Image: May 31, 2007 at 04:12 PM May 31, 2007 at 04:12 PM ip>101.614 Image: May 31, 2007 at 04:12 PM ip>101.614
		Image: Pormer Member Image: Pormer Member May 31, 2007 at 04:14 PM Way 31, 2007 at 04:14 PM Very strange question In my system there're 105.382 tables DD02L and 60.263 transaction, but u can find out it by SE16 for table DD02L and TSTC. Every system'll have different number because there are different custom objects. Max Add a Comment Alert Moderator Share

SCHEMAS CAN BE REALLY COMPLICATED

Drupal 8

SCHEMA MATCHING

Goal is to match columns from two tables, to produce a single table with the same schema

Complicated because people use different names for columns

Typical approach: find columns with a similar name, the same data type, and high overlap in values

Measuring similarity and overlap are problems we will need to address in entity resolution as well ...

DATA OFTEN HAS MANY CONSTRAINTS TOO

Key, uniqueness, functional dependencies, foreign keys

What do these terms mean?

Students										
			→ ID	# Na	me	Phone	DOB			
			50	0 Ma	tt	555-4141	06/03/70			
			50	1 Jen	ny	867-5309	3/15/81			
			50	2 Sea	in	876-9123	10/31/82			
	_		L andon							
ID#	ClassID	Sem]							
500	1001	Fall02	C	lassID	Titl	e	ClassNum			
501	1002	Fall02	1	001	Intr	o to Informatics	I101			
501	1002	Spr03	1	002	Data	a Mining	I400			
502	1003	S203	1	003	Inte	met and Society	I400			
	Courses									

Churd amba

Takes_Course

DATA OFTEN HAS MANY CONSTRAINTS TOO

value range, format, etc.

Students								
			→ ID;	# Na	me Phone	DOB		
			500	Mat	t 555-4141	06/03/70		
			501	Jen	ny 867-5309	3/15/81		
			502	Sea	n 876-9123	10/31/82		
			Records of					
ID#	ClassID	Sem		1				
500	1001	Fall02	С	lassID	Title	ClassNum		
501	1002	Fall02	10	001	Intro to Informatics	5 I101		
501	1002	Spr03	10	002	Data Mining	I400		
502	1003	S203	10	003	Internet and Societ	y I400		
	-				Courses			

Takes_Course

فيرتبعا المراج المالية

HARMONY

EVERY COMPANY HAS TO DEAL WITH IT salesforce amazon REDSHIFT amazon snowflake Google Ads advertising CCIT2.com **Google** Big Query HubSpot Azure Synapse III Marketo Analytics okta stripe

DATA INTEGRATION OPEN-SOURCE/STARTUPS

Airbyte Kivetran

Data Integration

- **Different schemas** → Schema matching
- Duplicates → Entity resolution
- Contradicting data → data fusion

Data Cleaning

- Missing values → Value imputation
- Wrong data → Outlier detection
- Missing records → Species estimation

ENTITY RESOLUTION

"[The] problem of identifying and linking/grouping different manifestations of the same real world object."

Challenges

- Fundamental ambiguity
- Diversity in representations (format, truncation, ambiguity)
- Errors
- Missing data
- Records from different times
- Relationships in addition to equality

TEXT SIMILARITY

Customer

	Name	Street		State	P-Code	Age
1	J Smith	123 University Ave	Seattle	Washington	98106	42
2	Mary Jones	245 3rd St	Redmond	WA	98052-1234	30
3	Bob Wilson	345 Broadway	Seattle	Washington	98101	19
4	M Jones	245 Third Street	Redmond	NULL	98052	299
5	Robert Wilson	345 Broadway <mark>St</mark>	Seattle	WA	98101	19
6	James Smith	123 Univ Ave	Seatle	WA	NULL	41
7	JWidom	123 University Ave	Palo Alto	СА	94305	NULL

TEXTUAL SIMILARITY

String Similarity function:

• $Sim(string, string) \rightarrow numeric value$

A "good" similarity function:

- Strings representing the same concept \Rightarrow high similarity
- Strings representing different concepts \Rightarrow low similarity

EDIT DISTANCE

EditDistance(s1, s2):

Minimum number of edits to transform s1 to s2

Edit:

- Insert a character
- Delete a character
- Substitute a character

Note: EditDistance(s1, s2) = EditDstance(s2, s1)

EDIT DISTANCE

EditDistance ("Provdince", "Providence") = 2

Provdince ——> Providence ——> Providence

EditDistance("Seattle", "Redmond") = 6

Seattle Reattle Redttle

Redmtle Redmole Redmone

----> Redmond

EDIT DISTANCE PROBLEMS

```
115<sup>th</sup> Waterman St., Providence, RI
EditDistance = 1
110<sup>th</sup> Waterman St., Providence, RI
```

```
Waterman Street, Providence, RI

EditDistance = 4

Waterman St, Providence, RI
```

Character Level vs. Word Level Similarity?

EDIT DISTANCE PROBLEMS

I 48th Ave NE, Redmond, WA EditDist = 0 I 48th Ave NE, Redmond, WA

I48th Ave NE, Redmond, WA EditDist = 4 NE I48th Ave, Redmond, WA

Order sensitive Similarity?

- Statistical measure
- Originally defined over sets
- String = set of words

$$Jaccard(s1,s2) = \frac{|s1 \cap s2|}{|s1 \cup s2|}$$

Range of values = [0,1]

I48th Ave NE, Redmond, WA $\int Jaccard = \frac{5}{5} = 1.0$ NE I48th Ave, Redmond, WA

What is the Jaccard Similarity between:

iPad Two 16GB WiFi White

iPad 2nd generation 16GB Wifi White

(a) 3 / 8
(b) 4 / 11
(c) 4 / 7

CLICKER: WHICH JACCARD SIMILARITY IS WRONG

```
Microsoft Corporation
A)
                     Jaccard = 1/3
        Microsoft Corp
        Microsoft Corporation
                     Jaccard = 1/3
B)
        Oracle Corporation
        Waterman 115 St
```

Jaccard = 1/4 115 Waterman Street

C)

WHAT CAN WE DO ABOUT?

Microsoft Corporation Microsoft Corp

Microsoft Corporation Oracle Corporation

Weight Function = wt: Elements $\rightarrow \mathbb{R}^+$

$$WtJaccard(s1,s2) = \frac{wt(s1 \cap s2)}{wt(s1 \cup s2)}$$

$$wt(s) = \sum_{e \in s} wt(e)$$

wt("Microsoft") > wt("Corporation")
Wt("Oracle") > wt("Corporation")

IDF WEIGHTED

• IDF: Inverse Document Frequency

 $wt(word) = \log_e \left(\frac{size \ of \ corpus}{frequency(word)} \right)$

- frequency(word) = defined using some "corpus":
 - large table of records
 - Wikipedia?

IDF WEIGHTED JACCARD

Microsoft Corporation 1,000,000 WtJaccard = 12.21 / (12.21 + 4.21 + 4.38)log_e = 12.21/20.8 = 0.59**Microsoft Corp** Word **IDF** Freq **Microsoft Corporation** 2.21 **Microsoft** 5 WtJaccard = 4.21/26.57 = 0.1639 10.15 Oracle **Oracle** Corporation Corporation 14782 4.21 Corp 4.38 12496

Corpus size = IM records
OTHER SIMILARITY FUNCTIONS

- Affine edit distance
- Cosine similarity
- Hamming distance
- Generalized edit distance
- Jaro distance
- Monge-Elkan distance
- ≻ Q-gram
- Smith-Warerman distance
- Soundex distance
- ≻ TF/IDF
- …many more

- No universally good similarity function
- Choice of similarity function depends on domains of interest, data instances, etc.

RECORD MATCHING PROBLEMS

Customer

	Name			State	P-Code	Age
I.	J Smith	123 University Ave	Seattle	Washington	98106	42
2	Mary Jones	245 3rd St	Redmond	WA	98052-1234	30
3	Bob Wilson	345 Broadway	Seattle	Washington	98101	19
4	M Jones	245 Third Street	Redmond	NULL	98052	299
5	Robert Wilson	345 Broadway St	Seattle	WA	98101	19
6	James Smith	123 Univ Ave	Seatle	WA	NULL	41
7	JWidom	123 University Ave	Palo Alto	CA	94305	NULL
•••						•••
		ـــــــــــــــــــــــــــــــــــــ				

COMBINING SIMILARITY FUNCTIONS

Features

Binary Classification

LEARNING-BASED APPROACH

Bob Wilson	345 Broadway	Seattle	Washington	98101	19	Match
Robert Wilson	345 Broadway St	Seattle	WA	98101	19	
						-
B Wilson	123 Broadway	Boise	Idaho	83712	19	Non-Match
Robert Wilson	345 Broadway St	Seattle	WA	98101	19	
Mary Jones	245 3rd St	Redmond	WA	98052-1234	30	Match
M Jones	245 Third Street	Redmond	NULL	98052	299	
						-
Mary Jones	245 3rd St	Redmond	WA	98052-1234	30	Non-Match
Robert Wilson	345 Broadway St	Seattle	WA	98101	19	

LEARNING BASED APPROACH

LEARNING BASED APPROACH

Data Integration

- **Different schemas** → Schema matching
- **Duplicates** → Entity resolution
- Contradicting data → data fusion

Data Cleaning

- Missing values → Value imputation
- Wrong data → Outlier detection
- Missing records → Species estimation

Data fusion: voting + source quality + copy detection

• Resolves inconsistency across diversity of sources

Data fusion: voting + source quality + copy detection

Data fusion: voting + source quality + copy detection

• Supports difference of opinion

Voting		S1	S2	S3
	Jagadish	UM	ATT	UM
	Dewitt	MSR	MSR	UW
Source Quality	Bernstein	MSR	MSR	MSR
	Carey	UCI	ATT	BEA
	Franklin	UCB	UCB	UMD
Copy Detection				

Data fusion: voting + source quality + copy detection

Data fusion: voting + source quality + copy detection

• Gives more weight to knowledgeable sources

S5

UI

UW

MSR

BEA

UMD

Data fusion: voting + source quality + copy detection

Data fusion: voting + source quality + copy detection

• Reduces weight of copier sources

Data Integration

- **Different schemas** → Schema matching
- Duplicates → Entity resolution
- Contradicting data → data fusion

Data Cleaning

- Missing values → Value imputation
- Wrong data → Outlier detection
- Missing records → Species estimation

WHY ARE THE VALUES MISSING?

• Missing Completely at Random (MCAR)

- Includes missing by design. For example: Survey randomly selects questions to reduce load
- Missing at Random (MAR)
 - Better name: Missing Conditionally at Random
 - Systematic relationship between the propensity of missing values and the *observed* data, but *not* the missing data.

--> if we can control for this conditional variable, we can get a random subset.

• Missing Not at Random, MNAR

- Relationship between the propensity of a value to be missing and its values.
- Lowest education are missing on education or the sickest people are most likely to drop out of the study.
- MNAR is called "non-ignorable" because the missing data mechanism itself has to be modeled as you deal with the missing data.

Note: null values are often encoded in various ways. Be aware of it! Null, "null", n/a, "", 0, "empty", 99999, 200.

HOW DO YOU START ADDRESSING MISSING VALUES?

VISUALIZATIONS TO DETECT BIAS

A lot of tips here: https://github.com/ResidentMario/missingno

VISUALIZATIONS TO DETECT BIAS

https://github.com/ResidentMario/missingno

VISUALIZATIONS TO DETECT BIAS

Alternative: Frequent pattern mining

FACEBOOK SOCIAL GRAPH: VISUALIZATION THE NODE-LINK DIAGRAM

[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]

FACEBOOK SOCIAL GRAPH: VISUALIZATION THE NODE-LINK DIAGRAM

[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]

FACEBOOK SOCIAL GRAPH: SORTING BY RAW DATA

[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]

CLASS TASK: COME UP WITH AT LEAST 5 TECHNIQUES TO DEAL WITH MISSING VALUES

TECHNIQUES TO DEAL WITH MISSING VALUES (ONLY FOR MCAR / MAR)

- Pairwise (rarely used)
- Listwise deletion (better)
- Mean Substitution
- Dummy variable adjustment
- Maximum Likelihood Estimation
- Random sample from existing values/ reasonable distribution
- Multiple Imputation

Special cases:

- Last Observation
- Techniques for categorical values

PAIRWISE AND LISTWISE DELETION

SELECT SUM(revenue)/
SUM(employees) FROM
us_tech_companies

Pairwise Deletion

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico, USA	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States		\$5M	\$8M
Tamr	64 Church St, Cambridge, MA 02138, USA	20	\$-X	\$- ¥

PAIRWISE AND LISTWISE DELETION

SELECT SUM(revenue)/
SUM(employees) FROM
us_tech_companies

Pairwise Deletion

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico, USA	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States		\$5M	\$8M
Tamr	64 Church St, Cambridge, MA 02138, USA	20	\$-X	\$- ¥

Listwise Deletion

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico, USA	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States		\$5M	\$8M
Tamr	64 Church St, Cambridge, MA 02138, USA	20	\$-X	\$- ¥

PAIRWISE AND LISTWISE DELETION

Pairwise Deletion

- Only cases relating to each pair of variables with missing data involved in an analysis are deleted.
- Advantage: keeps as many cases as possible for each analysis, uses all information possible with each analysis
- Disadvantage: cannot compare analyses because sample is different each time, sample size vary for each parameter estimation, can obtain nonsense results

Listwise Deletion

- Only analyze cases with available data on each variable
- Advantage: simplicity and comparability across analyses
- Disadvantage: reduces statistical power (reduced sample size), not use all information, estimates may be biased if data not MCAR

FIRST INITIAL CLEANING

Look for fields with very high percentage of missing fields

• It may be necessary to exclude field and use an alternative

Look for records with a high percentage of missing fields

- Consider excluding the case
- For example, someone who has started inputting a survey and given up after two questions!

Document that you did delete them. Very risky to forget it

UNIVARIATE SINGLE IMPUTATION MEAN SUBSTITUTION

Mean Substitution

 Replace missing value with the sample mean or mode. Then, run analyses as if all complete cases

UNIVARIATE SINGLE IMPUTATION MEAN SUBSTITUTION

Mean Substitution (do not use)

- Replace missing value with the sample mean or mode. Then, run analyses as if all complete cases
- Advantage: We can use complete case analyses
- Disadvantage: Reduces variability, weakens the correlation estimates because it ignores the relationship between variables, it creates artificial band
- Unless the proportion of missing data is low, do not use this method.
- Inappropriate for categorical variables.

Dummy variable adjustment

• Create an indicator variable for missing value (1 for missing, 0 for observed), impute missing value to a constant (such as mean)

https://scikit-learn.org/stable/modules/impute.html

MULTIVARIATE SINGLE IMPUTATION

Regression imputation

• Replace missing values with predicted score from regression equation. Use complete cases to regress the variable with incomplete data on the other complete variables.

MULTIVARIATE IMPUTATION

Regression imputation

- Replace missing values with predicted score from regression equation. Use complete cases to regress the variable with incomplete data on the other complete variables.
- Advantage: Uses information from the observed data, gives better results than previous ones
- Disadvantage: over-estimates model fit and correlation estimates, weakens variance

Maximum Likelihood Estimation (MICE)

- Identifies the set of parameter values that produces the highest log-likelihood.
- AAL antimata. Valua that is mast likely to have resulted in the cheeryad data

https://scikit-learn.org/stable/modules/impute.html

EM ALGORITHM

EM IMPUTATION METHODS

According to the key result of Dempster, Laird and Rubin (1977), $\theta^{(t+1)}$ is better estimate than $\theta^{(t)}$, because the change from $\theta^{(t)}$ to $\theta^{(t+1)}$ in each iteration increases the log likelihood,

 $l(\theta^{(t+1)}|Y_{obs}) \ge l(\theta^{(t)}|Y_{obs}).$

Therefore, iteration of EM algorithm can be considered in two steps: **Expectation Step** and **Maximization Step**.

E-Step: In this step, the function $Q(\theta|\theta^{(t)})$ is calculated as the conditional expectation of complete data log likelihood over the conditional predictive distribution, $f(Y_{mis}|Y_{obs}, \theta^{(t)})$, of Y_{mis} given Y_{obs} and a current estimate of θ , say $\theta^{(t)}$.

M-Step: In this step, estimation of $\theta^{(t+1)}$ is carried out as if there were no missing data which is achieved by maximizing $Q(\theta|\theta^{(t)})$ from E-step.

In order to define convergency of iterations, differences of parameter estimations derived in the each iteration are considered. If the difference of consecutive estimates less than selected threshold value, then iterations are stopped. Estimations from the last iteration are used as parameter estimations.

We will cover this algorithm in more depth later

MULTIVARIATE SINGLE IMPUTATION

Nearest neighbors imputation

- KNN defines for each sample or individual a set of K-nearest neighbors and then replaces the missing data for a given variable by averaging (non-missing) values of its neighbors
- Advantage: Simple, uses information from the observed data, experimentally shows good performance
- Disadvantage: not statistically grounded, might over-estimates model fit and correlation

Fuzzy K-means Clustering

. . . .

Bayesian Principal Component Analysis

Deep Learning-based approaches

https://scikit-learn.org/stable/modules/impute.html
Random sample from existing values:

Randomly generate an integer from 1 to n-n_{missing}, then replace the missing value with the corresponding observation that you chose randomly

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	\$1OB
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66k	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico	1 20k	\$85B	\$85B
Tableau	Seattle, Washington, United States		\$5M	\$8M

Random sample from existing values:

 Randomly generate an integer from 1 to max(n_{missing}) then replace the missing value with the corresponding observation that you chose randomly

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	\$10B
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66k	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States	66k	\$5M	\$8M

• Randomly generate number between 1 and 4: Say 2 \rightarrow Replace $Y_{3,5}$ by $Y_{2,3}$ = 66k

Random sample from existing values:

Randomly generate an integer from 1 to n-n_{missing}, then replace the missing value with the corresponding observation that you chose randomly

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	\$1OB
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66k	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico	1 20k	\$85B	\$85B
Tableau	Seattle, Washington, United States	66k	\$5M	\$8M

- Randomly generate number between 1 and 4: Say 2 \rightarrow Replace $Y_{3,5}$ by $Y_{2,3}$ = 66k
- Disadvantage: It may change the distribution of data
- Hot-deck approach: draws are made from units with complete data that are 'similar' to the one with missing values (donors).

Random sample from existing values:

• Randomly generate an integer from 1 to n-n_{missing}, then replace the missing value with the corresponding observation that you chose randomly

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	\$1OB
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66k	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico	1 20k	\$85B	\$85B
Tableau	Seattle, Washington, United States	66k	\$5M	\$8M

- Randomly generate number between 1 and 4: Say $2 \rightarrow$ Replace $Y_{3,5}$ by $Y_{2,3}$ = 66k
- Disadvantage: It may change the distribution of data
- Hot-deck approach: draws are made from units with complete data that are 'similar' to the one with missing values (donors).

Randomly sample from a reasonable distribution

- Very similar, just based on samples from a distribution.
- For example, if gender is missing and you have the information that there re about the sample number of females and males in the population. Gender ~Ber(p=0.5) or estimate p from the observed sample
- Disadvantage: distributional assumption may not be reliable (or correct), even the assumption is correct, its representativeness is doubtful

MULTIPLE IMPUTATION (MI)

Multiple imputation (MI) one of the most attractive methods for generalpurpose handling of missing data in multivariate analysis.

- 1. Impute missing values using an appropriate model that incorporates random variation.
- 2. Do this M times producing M "complete" data sets.
- 3. Perform the desired analysis on each data set using standard completedata methods.
- 4. Average the values of the parameter estimates across the M samples to produce a single point estimate.
- 5. Calculate the standard errors by (a) averaging the squared standard errors of the M estimates (b) calculating the variance of the M parameter estimates across samples, and (c) combining the two quantities using a simple formula

LAST OBSERVATION CARRIED FORWARD

- This method is specific to time or longitudinal data problems.
- For each individual, NAs are replaced by the last observed value of that variable. Then, analyze data as if data were fully observed.
- Disadvantage: The covariance structure and distribution change seriously

Cases	1	2	3	4	5	6
1	3.8	3.1	2.0	2.0	2.0	2.0
2	4.1	3.5	2.8	2.4	2.8	3.0
3	2.7	2.4	2.9	3.5	3.5	3.5

CATEGORICAL VALUES

Extra category

- This is bad practice
- In many statistical analysis the impact of this strategy depends on how missing values are divided among the real categories, and how the probability of a value being missing depends on other variables;
- very dissimilar classes can be lumped into one group;
- severe bias can arise, in any direction, and when used to stratify for adjustment (or correct for confounding) the completed categorical variable will not do its job properly.

Better techniques:

- Maximum Likelihood Estimation
- KNN
- Stochastic variants

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA	50000	\$100000M	\$40000M
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	70000	\$200000M	\$50000M
IBM	1 New Orchard Rd; 10504	400000	\$100000M	null
Microsoft	Albuquerque, New Mexico	130000	\$125000M	\$40000M
Tableau	Seattle, Washington, United States	4000	\$1000M	null
Tamr	64 Church St, Cambridge, MA 02138, USA	30	\$10M	\$1M
Einblick Analytics	null	8	\$0.01M	\$0M
Determined AI	California	15	null	\$0.01M

Calculate the result for SELECT SUM(revenue)/SUM(employees) FROM s_tech_companies With listwise deletion, mean and linear regression substitution

For this example, which technique to deal with null values leads to the lowest revenue per employee value:

- a) Listwise deletion
- b) Mean substitution
- c) Regression imputation

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA	50000	\$100000M	\$40000M
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	70000	\$200000M	\$50000M
IBM	1 New Orchard Rd; 10504	400000	\$100000M	null
Microsoft	Albuquerque, New Mexico	130000	\$125000M	\$40000M
Tableau	Seattle, Washington, United States	4000	\$1000M	-null
Tamr	64 Church St, Cambridge, MA 02138, USA	30	\$10M	\$1M
Einblick Analytics	null	8	\$0.01M	\$0M
Determined Al	California	15	-null	\$0.01M

Calculate the result for SELECT SUM(revenue)/SUM(employees) FROM s_tech_companies with

- a) Listwise deletion: \$425B / \$250k = \$1.7M per employee
- b) Mean substitution:
- c) Regression imputation

Name	Address	#Employees	Revenue (M)	Profit (M)
Google	1600 Amphitheatre Parkway, Mountain View, CA	50000	\$100000M	\$40000M
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	70000	\$200000M	\$50000M
IBM	1 New Orchard Rd; 10504	400000	\$100000M	null
Microsoft	Albuquerque, New Mexico	130000	\$125000M	\$40000M
Tableau	Seattle, Washington, United States	4000	\$1000M	null
Tamr	64 Church St, Cambridge, MA 02138, USA	30	\$10M	\$1M
Einblick Analytics	null	8	\$0.01M	\$0M
Determined AI	California	15	\$75000M	\$0.01M

Calculate the result for SELECT SUM(revenue)/SUM(employees) FROM s_tech_companies with

- a) Listwise deletion: \$425B / \$250k = \$1.7M per employee
- b) Mean substitution: \$600B / 654k = \$0.92M per employee
- c) Regression imputation

Name	Address	#Employees	Revenue (M)	Profit (M)
Google	1600 Amphitheatre Parkway, Mountain View, CA	50000	\$100000M	\$40000M
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	70000	\$200000M	\$50000M
IBM	1 New Orchard Rd; 10504	400000	\$100000M	null
Microsoft	Albuquerque, New Mexico	130000	\$125000M	\$40000M
Tableau	Seattle, Washington, United States	4000	\$1000M	null
Tamr	64 Church St, Cambridge, MA 02138, USA	30	\$10M	\$1M
Einblick Analytics	null	8	\$0.01M	\$0M
Determined AI	California	15	\$55000M	\$0.01M

Calculate the result for SELECT SUM(revenue)/SUM(employees) FROM s_tech_companies with

- a) Listwise deletion: \$425B / \$250k = \$1.7M per employee
- b) Mean substitution: \$600B / 654k = \$0.92M per employee
- c) Regression imputation: \$580B/654k = \$0.89M per employee

```
Rev = 55346 + 0.212 * emp
```


Where would you enforce the plane?

UNKNOWN UNKOWNS

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$21 <i>5</i> B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
International Business Machine	1 New Orchard Rd; 10504	380k	\$-999B	\$12B
Microsoft	Albuquerque, Mexico	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States	-	\$0.9B	\$1B
Tamr	64 Church St, Cmabridge, MA 02138, United States	20	null	\$-Y
Amazon	\$\$	ŚŚ	ŚŚ	ŚŚ
Facebook	ŚŚ	śś	śś	śś
çç	çç	çç	çç	çç
ŚŚ	ŚŚ	śś	śś	śś

IF YOU CAN ESTIMATE THEM DEPENDS ON THE SAMPLING SCENARIO

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$21 <i>5</i> B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
International Business Machine	1 New Orchard Rd; 10504	380k	\$-999B	\$12B
Microsoft	Albuquerque, Mexico	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States	-	\$0.9B	\$1B
Tamr	64 Church St, Cmabridge, MA 02138, United States	20	null	\$-Y
Amazon	ŝŝ	śś	śś	ŚŚ
Facebook	śś	śś	śś	ŚŚ
ŚŚ	śś	śś	śś	śś
ŚŚ	śś	śś	śś	śś

THE IMPACT OF THE **UNKNOWN UNKNOWNS** ON QUERY RESULTS

Assumption: Enough data sources, Data sources are (semi-) independent

Sampling - Statistic

	Name	Address	#Employees	Revenue	Profit	Frequency
Google	Google	Address I	60k	\$89B	\$10B	5
É	Apple	Address II	66k	\$215B	\$45B	4
IBM	IBM	Address II	380k	\$80B	\$12B	4
Microsoft	Microsoft	Address	120k	\$85B	\$85B	5
‡‡‡ + ab eau	Tableau	Address	3.2k	\$500	\$8M	2
tamr	Tamr	Address	20	\$-X	\$-Y	1

 \sum

Fingerprint (i.e., f-statistic):

 $f_{1}: 1 \quad \texttt{from} \quad \texttt{Singletons} \text{ (items which were} \\ f_{2}: 1 \quad \texttt{from} \quad \texttt{exactly observed once} \text{ } \\ f_{4}: 2 \quad \texttt{IFM} \quad \texttt{f} \\ f_{5}: 2 \quad \texttt{Google} \quad \texttt{Microsoft} \text{ } \\ \end{cases}$

MANY WAYS TO ESTIMATE THE NUMBER OF MISSING ITEMS

- Good-Turing Estimate / Chao84
- Chao92
- Pattern Maximum Likelihood
- Linear programming-based solutions (see Valiant brothers)

ESTIMATING THE NUMBER OF DISTINCT BUTTERFLY SPECIES

17500 species known in the world

 $M = \widehat{N} - c$

Note, we usually prefer **Chao92**: A. Chao and S. Lee, **"Estimating the Number of Classes via Sample Coverage**," Journal of the American Statistical Association, vol. 87, no. 417, pp. 210–217, 1992 over **Chao84**: A. Chao, **"Nonparametric Estimation of the Number of Classes in a Population**," SJS, vol. 11, no. 4, 1984

A NAÏVE ESTIMATOR FOR THE IMPACT OF THE UNKNOWN UNKNOWNS

SELECT SUM(employees) FROM us_tech_companies

 \sum employees, Δ (employees, fingerprint)

$$\Delta_{Naive} =$$

Estimate of Unknown Unknowns Count

M

Average Value of Knowns (aka mean substitution)

A NAÏVE ESTIMATOR FOR THE IMPACT OF THE UNKNOWN UNKNOWNS

EXAMPLE

MIT Fan DB

										CSAIL DB		Depa	artment	. DE
anID	Name	Address	Ema	nil Far	nOf	Gen	ire							
2	Tim	46 Pumpkir	n timk	k Nic	kelback,	Terr	rible		ID	Name		ID	Name	
		St		Cre Biz	ed, Limp kit				10	Tim		10	Tim	
3	Matt	Vassar Str	Mat	to Nic	kelback	Terr	rible		14	Matt		14	Joana	
	matt		iiiac			. en								
										1				
			FanID	Name	Address		Email	FanOf		Genre	Frequency			
			2	Tim	46 Pumpk	in	timk	Nickelba	ick,	Terrible	3			
					St			Creed, Li Bizkit	imp					
			3	Matt	Vassar Str		Mattp	Nickelba	ick	Terrible	2			
			4	Joana							1			

#Missing =
$$\frac{c}{\left(1 - \frac{f_1}{n}\right)} = \frac{3}{\left(1 - \frac{1}{6}\right)} = 3.6$$

Note estimator shouldn't be used if sample coverage is below 80% (1 - f1/n) and such a small number of data sources (independent samples)

EXAMPLE

#Missing =
$$\frac{c}{\left(1 - \frac{f_1}{n}\right)} = \frac{3}{(1 - \frac{1}{6})} = 3.6$$

FanID	Name	Address	Email	FanOf	Genre	Frequency
2	Tim	46 Pumpkin St	timk	Nickelback, Creed, Limp Bizkit	Terrible	3
3	Matt	Vassar Str	Mattp	Nickelback	Terrible	2
4	Joana			Cold Play	ОК	1

EXAMPLE

#Missing =
$$\frac{c}{\left(1 - \frac{f_1}{n}\right)} = \frac{3}{(1 - \frac{1}{6})} = 3.6$$

FanID	Name	Address	Email	FanOf	Genre	Frequency
2	Tim	46 Pumpkin St	timk	Nickelback, Creed, Limp Bizkit	Terrible	3
3	Matt	Vassar Str	Mattp	Nickelback	Terrible	2
4	Joana			Cold Play	ОК	1
5	Sam	Christmas St	Samm	Celine Dion	As cheesy as deep-fried camembert ¹	

¹ https://www.telegraph.co.uk/music/concerts/cheesy-deepfried-camembert-celine-dion-o2-arena-review/

WRONG DATA: RULE-BASED APPROACHES

Name	Address	#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$21 <i>5</i> B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
International Business Machine	10504; 1 New Orchard Rd	380k	\$-999B	\$12B
Microsoft	Albuquerque, Mexico	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States	-	\$0.9В	\$1B
Tamr	United States	20		¢ Y
Outdated data /	Encoding (nb in tho wrong data Spelling mistake	Error usands) Rule Violations s / abbreviations		

TWO COMPONENTS

1. Detection

2. Repair

- Detection techniques can be used for repair
- Missing value techniques

ERROR DETECTION

FD: [country] -> [capital]

CFD: [country = China] -> [capital = Beijing]

emp

cap

	name	country	capital	city	salary	tax
r1	Nan	China	Beijing	Beijing	50000	1000
r2	Yin	China	Shanghai	Hongkong	40000	1200
r3	Si	Netherlands	Den Hagg	Utrecht	60000	1400
r4	Lei	Netherlands	Amsterdam	Amsterdam	35000	800

	country	capital
s1	China	Beijing
s2	Canada	Ottawa
s3		

CD:]t1, t2 (t1.salary > t2.salary and t1.tax < t2.tax)

MD: (emp[country] = cap[country]) -> (emp[capital] <=> cap[capital])

COMPUTING A CONSISTENT DATABASE

find a D' such that dist(D,D') is minimum

COMPUTING A CONSISTENT DATABASE

FD1: [nationality] -> [capital]

FD2: [areacode] -> [capital]

	name	nationality	capital	areacode	bornAt	salary	tax
r1	Nan	China	Beijing	10	Shenyang	50000	1000
r2	Yan	China	Shanghai Beijing	10	Hangzhou	40000	900
r3	Si	China	Beijing	10	Changsha	60000	1400
r4	Miura	China	Tokyo Beijing	3	Kyoto	35000	800

CONFIDENCE VALUES INTERACTION

FD: [nationality] -> [capital]

MD: ((nationality, country) -> (capital, capital))

	name	nationality	capital	bornAt		country	capital
r1	Nan (0.9)	China (1.0)	Beijing (1.0)	Shenyang (0.9)	s1	China (1.0)	Beijing (1.0)
r2	Yan (0.8)	China (1.0)	Beijing (0.5)	Hangzhou (0.9)	s2	Canada (1.0)	Ottawa (1.0)
r3	Si (0.9)	Canada (1.0)	Ottawa (1.0)	Changsha (0.8)	s3	Japan (1.0)	Tokyo (1.0)
r4	Miura (0.9)	Canada (0.9)	Vancuver (0.5)	Kyoto (1.0)			

NADEEF

NADEEF

Rule Editor	DOUL		×
Detect	8	@Override	
	9 - 10	<pre>public Collection<violation> detect(TuplePair tuplePair) { List<violation> result = new ArravList<>():</violation></violation></pre>	
Repair	11	<pre>Tuple left = tuplePair.getLeft();</pre>	_
Block	12 13	<pre>Tuple right = tuplePair.getRight();</pre>	
Iterator	14 15	<pre> if (Metrics.getEqual(loft_cot("pame"))1 @ % </pre>	=
	17	Metrics.getLevenshtein(
	18	Metrics.getEqual(
	20 21 -	<pre>left.get("gender"), right.get("gender")) == 1.0) {</pre>	
	22	<pre>Violation v = new Violation(getRuleName());</pre>	
	23 24	<pre>v.addTuple(left); v.addTuple(right);</pre>	
	25	result.add(v);	
	20	} return result;	
	28	}	
	30 * I		•

1

Close

Save changes

OUTLIER DETECTION

ANOMALY/OUTLIER DETECTION

What are anomalies/outliers?

• The set of data points that are considerably different than the remainder of the data

Variants of Anomaly/Outlier Detection Problems

- Given a database D, find all the data points $\mathbf{x} \in D$ with anomaly scores greater than some threshold t
- Given a database D, find all the data points x ∈ D having the top-n largest anomaly scores f(x)
- Given a database D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D

Applications:

• Credit card fraud detection, telecommunication fraud detection, network intrusion detection, fault detection

IMPORTANCE OF ANOMALY DETECTION

Ozone Depletion History

In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels

Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?

The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!

Sources:

http://exploringdata.cqu.edu.au/ozone.html http://www.epa.gov/ozone/science/hole/size.html

ANOMALY DETECTION

Challenges

- How many outliers are there in the data?
- Method is unsupervised
 - Validation can be quite challenging (just like for clustering)
- Finding needle in a haystack

Working assumption:

• There are considerably more "normal" observations than "abnormal" observations (outliers/anomalies) in the data
ANOMALY DETECTION SCHEMES

General Steps

- Build a profile of the "normal" behavior
 - Profile can be patterns or summary statistics for the overall population

 \bigcirc

 \bigcirc

- Use the "normal" profile to detect anomalies
 - Anomalies are observations whose characteristics differ significantly from the normal profile

Types of anomaly detection schemes

- Graphical
- Model-based
- Distance-based
- Clustering-based

GRAPHICAL APPROACHES

Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)

Limitations

- Time consuming
- Subjective

CONVEX HULL METHOD

Extreme points are assumed to be outliers

Use convex hull method to detect extreme values

STATISTICAL APPROACHES---MODEL-BASED

Assume a parametric model describing the distribution of the data (e.g., normal distribution)

Apply a statistical test that depends on

- Data distribution
- Parameter of distribution (e.g., mean, variance)
- Number of expected outliers (confidence limit)

GRUBBS' TEST

Detect outliers in univariate data

Assume data comes from normal distribution

Detects one outlier at a time, remove the outlier, and repeat

- H₀: There is no outlier in data
- H_A : There is at least one outlier

Grubbs' test statistic:

Reject H_o if:

STATISTICAL-BASED – LIKELIHOOD APPROACH

Assume the data set D contains samples from a mixture of two probability distributions:

- M (majority distribution)
- A (anomalous distribution)

General Approach:

- Initially, assume all the data points belong to M
- Let L_t(D) be the log likelihood of D at time t
- For each point x_t that belongs to M, move it to A
 - Let L_{t+1} (D) be the new log likelihood.
 - Compute the difference, $\Delta = L_t(D) L_{t+1}(D)$
 - If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

LIMITATIONS OF STATISTICAL APPROACHES

Most of the tests are for a single attribute

In many cases, data distribution/model may not be known

For high dimensional data, it may be difficult to estimate the true distribution

DISTANCE-BASED APPROACHES

Data is represented as a vector of features

Three major approaches

- Nearest-neighbor based
- Density based
- Clustering based

NEAREST-NEIGHBOR BASED APPROACH

Approach:

- Compute the distance between every pair of data points
- There are various ways to define outliers:
 - Data points for which there are fewer than *p* neighboring points within a distance *D*
 - The top n data points whose distance to the kth nearest neighbor is greatest
 - The top n data points whose average distance to the k nearest neighbors is greatest

DENSITY-BASED: LOF APPROACH

- For each point, compute the density of its local neighborhood; e.g. use DBSCAN's approach
- Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors
- Outliers are points with largest LOF value

In the NN approach, p_2 is not considered as outlier, while LOF approach find both p_1 and p_2 as outliers

Alternative approach: directly use density function; e.g. DENCLUE's density function

CLUSTERING-BASED

Idea: Use a clustering algorithm that has some notion of outliers!

Problem what parameters should I choose for the algorithm; e.g. DBSCAN?

Rule of Thumb: Less than x% of the data should be outliers (with x typically chosen between 0.1 and 10); x might be determined with other methods; e.g. statistical tests.

	FN	LN	St	city	СС	country	tel	gd
t_1 :	David	Jordan	12 Holywell Street	Oxford	44	UK	66700543	Male
t_2 :	Paul	Simon	5 Ratcliffe Terrace	Oxford	44	UK	44944631	Male
				C 1		1		

(a) D_1 : An instance of schema bank

	FN	LN	str	city	СС	country	phn	when	where
r_1 :	David	Jordan	12 Holywell Street	Oxford	44	UK	66700543	1 pm 6/05/2012	Netherlands
r_2 :	Paul	Simon	5 Ratcliffe Terrace	Oxford	44	UK	44944631	11am 2/12/2011	Netherlands
r_3 :	David	Jordan	12 Holywell Street	Oxford	44	Netherlands	66700541	6am 6/05/2012	US
r_4 :	Peter	Austin	7 Market Street	Amsterdam	31	UK	55384922	9am 6/02/2012	Netherlands

(b) Database D_2 : An instance of schema tran

r1: (on table tran) if a customer's CC is 31, but his/her country is neither Netherlands nor Holland, update the country to Netherlands;

r2: (on tables bank and tran) if the same person from different tables has different phones, the phone number from table bank is more reliable;

r3: (on table tran) a country code (CC) uniquely determines a country;

r4: (on table tran) if two purchases of the same person happened in the Netherlands and the US (East Coast) within 1 hour (assuming 6 hours' time difference between these two countries), these two purchases are either a fraud or were erroneously recorded.

```
Class Rule1 {
                                                                            /* for \varphi_1 *
   set(cell) vio(Tuple s_1) {
                                                                 /*s_1 in table tran */
     if (s_1[CC]=31 \land (s_1[country] \neq Netherlands \lor s_1[country] \neq Holland))
       return { s_1 [CC, country]; }
     return \emptyset;
   set(Expression) fix (set(cell) V) {
     return { Vs[country] \leftarrow Netherlands; }
   } /* end of class definition */
 Class Rule2 {
                                                                            /* for φ<sub>2</sub> */
                                                          /*s_1 in bank, s_2 in tran */
   set(cell) vio (Tuple s_1, Tuple s_2) {
    if (s_1[LN, St, city] = s_2[LN, str, city] \land s_1[FN] \approx s_2[FN] \land s_1[tel] \neq s_2[phn])
       return { s<sub>1</sub>[FN, LN, St, city, tel], s<sub>2</sub>[FN, LN, str, city, phn]; }
     return \emptyset;
   set(Expression) fix (set(cell) V)
     return { V.s_2[phn] \leftarrow V.s_1[tel]; }
  } /* end of class definition */
Class Rule3 {
                                                                           /* for \varphi_3 */
  set(cell) vio (Tuple s_1, Tuple t_2) {
                                                           /* s_1, s_2 in table tran */
    if (s_1[CC] = s_2[CC] \land s_1[country] \neq s_2[country])
      return { s_1 [CC, country], s_2 [CC, country]; }
    return \emptyset;
  set(Expression) fix (set(cell) V) {
    set(Expression) fixes;
    fixes.insert(V.s<sub>1</sub>[country] \leftarrow V.s<sub>2</sub>[country]);
    fixes.insert(V.s<sub>2</sub>[country] \leftarrow V.s_1[country]);
    return fixes;
  } /* end of class definition */
Class Rule4 {
                                                                            /* for \varphi_4 *
  set(cell) vio (Tuple s_1, Tuple s_2) {
                                                           /*s_1, s_2 in table tran *
    if (s_1[LN, city, CC, tel] = s_2[LN, city, CC, tel]
      \wedge s_1[where] = Netherlands \wedge s_2[where] = US \wedge s_1[FN] \approx s_2[FN]
      \wedge (s_1[\mathsf{when}] - s_2[\mathsf{when}] \ge 5) \wedge (s_1[\mathsf{when}] - s_2[\mathsf{when}] \le 7)
      return { s_1 [FN, LN, city, CC, tel, when, where],
        s<sub>2</sub>[FN, LN, city, CC, tel, when, where]; }
    return Ø:
  } /* end of class definition */
```

Figure 3: Sample rules

WHY IS FINDING VIOLATIONS EXPENSIVE?