Lec 6: Data
Wrangling And
Working With
Strings

Key ideas: regular Lab 1 Due

expressions, Lab 2 Out
sed/awk/grep, j ’

working with text

Data
Science
Pipeline

Visualization/Presentation

-

Modeling/Prediction

)

)

Querying/Processing

T Tables

Stored Data

¢ Tables

Transformation/Integration

T Tables

Structure Extraction
Image Segmentation
Signal Processing
Regularization
Re-Sampling
Cleaning
Outlier Removal

Raw Data
Text
Images
Sounds

Sensor Readings
Csv

Log files
Web Forms

LAST TIME: INSTABASE

Platform to extract structure
from complex structured
documents

Based on deep learning

Today we will look at some of
low-level tools you may find
useful in doing data wrangling
yourself.

=» INSTABASE Use Cases Platform Customers Resources

Automate your

unstructured data.

Unlock the value of unstructured data and transform your critical
business processes with the Instabase Platform.

Company

DATA WRANGLING

Analysis \

Wrangling

A typical
Trajectory - Cleanse - Evaluate - Visualize
—QQ_. - Merge Usability - Analyze
- Adapt of data
Visual (or not) Ideal Tool'combining wrangling and analysis

Wrangling Tools : y
Visual Analytics Tools

3. 1st load in

Original
Data Sets A :
analysis application

Analytics

Processes
4, Start of ana

5. Repeat with
new data

6. Document .

Updated Data Sets ' /

raw data usabidata usable data + findings
A Trail of data I Trail of analysis =

transformations Insight Provenance

LN

[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]

THREE EXTREMELY POWERFUL TOOLS

1) grep - find text matching a regular expression
Basic syntax:

grep regexp' filename
or equivalently (using UNIX pipelining):

cat filename | grep regexp’

2) sed - stream editor

3) awk - general purpose text processing language

WHAT IS A REGULAR EXPRESSION?

A regular expression (regex) describes a set of
possible input strings.

Regular expressions descend from a
fundamental concept in Computer Science
called finite automata theory

Regular expressions are endemic to Unix

* vi, ed, sed, and emacs
* awk, tcl, perl and Python

* grep, egrep, fgrep
- compilers

REGULAR EXPRESSIONS

The simplest regular expressions are a string of
literal characters to match.

The string matches the regular expression if it
contains the substring.

regular expression ——» ‘\

Unix rocks

UNIX sucks

UNIX 1is okay.

no match

REGULAR EXPRESSIONS

A regular expression can match a string in more than one place.

regular expression ———» EEEE

REGULAR EXPRESSIONS

The . regular expression can be used to match any character.

regular expression ——» a..

oF me o o :

match 1 match 2

REPETITION

The * 1s used to define zero or more occurrences of
the single regular expression preceding it.

+ Matches one or more occurrences

I got mail, iyaaaaaaaaaay!

yasaasnasasy

REPETITION RANGES

Ranges can also be specified
* { } notation can specify a range of repetitions for
the immediately preceding regex
* {n} means exactly n occurrences
* {n, } means at least n occurrences

 {n,m} means at least n occurrences but no more
than m occurrences

Example:

. {0,} sameas .*
a{2,} same as aaa

OR

a|b™ denotes {g, "a", "b", "bb", "bbb", ...}

(a\b)* denotes the set of all strings with no symbols
other than "a" and "b", mcludlng the empty string: {¢, "a"

Ilbll, Ilaall, 1 bll, Ilball, Ilbbll, I , ...}
ab*() denotes the set of strings starting with "a" then
zero or more "b"s and finally optionally a "c": {"a", "a

Ilabll, "abC", Ilabbll, IlabbCII, ...}

CHARACTER CLASSES - OR SHORTHAND

Character classes [] can be used to match
any specific set of characters.

regular expression ——» E [eor] \

beat a brat on a boat

Beas @ brati on afbo =

match 1 match 2 match 3

NEGATED CHARACTER CLASSES

Character classes can be negated with the
[©] syntax.

regular expression —» eO a.

MORE ABOUT CHARACTER CLASSES

* [aeiou] will match any of the characters a, e, i, o, oru
* [kK] orn will match korn or Korn

Ranges can also be specified in character classes
° [1-9] 1sthe same as [123456789]

* [abcde] 1s equivalent to [a-e]
* You can also combine multiple ranges
* [abcdel23456789] is equivalent to [a-el-9]

* Note that the - character has a special meaning in a

character class but only 1if 1t 1s used within a range,
[-123] would match the characters -, 1, 2, or 3

NAMED CHARACTER CLASSES

Commonly used character classes can be referred
to by name (alpha, lower, upper, alnum, digit,
punct, cntrl)

Syntax [:name:]

* [a-zA-Z] [[:alpha:]]

* [a-zA-Z0-9] [[:alnum:]]
* [45a-7] [45]:lower:]]

Important for portability across languages

ANCHORS

Anchors are used to match at the
beginning or end of a line (or both).

N means beginning of the line
$ means end of the line

‘word$S S

MATCH LENGTH

By default, a match will be the longest string that satisfies the regular

expression.
regular expression —» E.E

MATCH LENGTH

Append a ? to match the shortest string possible:

PRACTICAL REGEX EXAMPLES

Dollar amount with optional cents

*\$[0-9]+(\.[0-9][0-9])>
Time of day

* (1[012][[1-9]):[0-5]1[0-9] (am|pm)
HTML headers <h1> <H1> <h2> ...

*<[hH] [1-4]>

GREP

grep comes from the ed (Unix text editor)
search command “global regular expression
print” or g/re/p

This was such a useful command that it was
written as a standalone utility

There are two other variants, egrep and fgrep
that comprise the grep family

grep is the answer to the moments where you
know you want the file that contains a specific
phrase but you can’t remember its name

FAMILY DIFFERENCES

grep - uses regular expressions for pattern
matching

fgrep - file grep, does not use regular
expressions, only matches fixed strings but
can get search strings from a file

egrep - extended grep, uses a more
powerful set of regular expressions but does
not support backreferencing, generally the
fastest member of the grep family

agrep — approximate grep; not standard

GREP DEMO

grep '\"text\": ".*location.*"' twitter.json

"text": "RT @TwitterMktg: Starting today, businesses can request and share
locations when engaging with people in Direct Messages.
https://t.co/rp¥n...",

"text": "Starting today, businesses can request and share locations when
engaging with people in Direct Messages. https://t.co/rpYndgWiQw",

BACKREFERENCES

Sometimes it 1s handy to be able to refer to a match
that was made earlier 1n a regex

This 1s done using backreferences

* \ 7 is the backreference specifier, where n is a number

Looks for nth subexpression

For example, to find if the first word of a line 1s the
same as the last:

~“([[:alpha:]]+) . \1$

* Here, ([[:alpha:]]+) matches 1 or more letters

FORMALLY

Regular expressions are “regular” because they can only express
languages accepted by finite automata. Backreferences allow you
to do *much* more.

{a"b": n>0)
Non-regular languages
{ww . wela,b}*)}

b \

/ Regular Ianguages \

| b*c+a

b+c(a+b)*

\\ etc... //

See: https://link.springer.com/article/10.1007 %2Fs00224-012-9389-0

BACKREFERENCE TRICKS

Can you find a regex to match L=ww ; win {a,b}*

e.g., aa, bb, abab, or abbabb

([ab]*)\1

BACKREFERENCE TRICKS

def f(n):

s = "x" * n

return re.match(""x?2$|" (xx+?2)\\1+$", s)
Generates a string of length n, to test if n is prime
Ax?$ — base case: 0 and 1 are not prime

(? matches preceding character O or 1 times)

| or
t_vv\oor more Xs
AMxx+?)\1+9$ repeated on or more times, followed by $
X Y

A prime is a number that cannot be factored. If we find a sequence
of N xs that repeats two or more times without any xs left over, we
know N is a factor, and the number is not prime.

| | Doesn’t match, can’t consume all xs with repeated pattern,

XX ==> lilrime 1 2 4
XXXIXXXIXXXI Matches, we consume all xs with 3x repeated pattern,

==> Not Prime

Example:

https://clicker.csail.mit.edu/6.s079/
CLICKER QUESTION

Select the string for which the regular expression
*\.19." would find a match:

a)"12.1000”"
b)“123.1900"
c) “12.2000"

)

d) the regular expression does not
match any of the strings above

https://clicker.csail.mit.edu/6.s079/
CLICKER QUESTION

Choose the pattern that finds all filenames in which
1. the first letters of the filename are chap,
2. followed by two digits,

3. followed by some additional text,
4. and ending with a file extension of .doc

For example : chap23Production.doc
a) chap[0-9]*.doc
b) chap*[0-9]doc
) chap[0-9][0-9].*\.doc
d) chap*doc

THREE EXTREMELY POWERFUL TOOLS

1) grep
Basic syntax:

grep 'regexp' filename
or equivalently (using UNIX pipelining):

cat filename | grep 'regexp'

2) sed - stream editor

Basic syntax
sed 's/regexp/replacement/g' filename

For each line in the intput, the portion of the line that matches regexp (if any)

is replaced with replacement.
Sed is quite powerful within the limits of operating on single line at a time.

You can use \(\) to refer to parts of the pattern match.

SED EXAMPLE

File = Trump is the president. His job is to tweet.
sed 's/Trump/Biden/d' file

sed 's/\(His job is to\).*/\1 run the country./g' file

Biden is the president. His job is to tweet.
Trump is the president. His job is to run the country.

COMBINING TOOLS

Suppose we want to extract all the “screen_name” fields from
twitter data

[

{
"created _at": "Thu Apr 06 15:28:43 +0000 2017/7",

"id": 850007368138018817,

"id_str":. "850007368138018817",

"text": "RT @TwitterDev: 1/ Today we’re sharing our vision for the
future of the Twitter API platform!nhttps://t.co/XweGngmx1lP",

"truncated": false,

grep \"screen name\": twitter.json |
sed 's/[1*\"screen name\": \"\(.*\)\",/\1/¢g’

EXAMPLE 2: LOG PARSING

192.168.2.20 - - [28/Jul/2006:10:27:10 -0300] "GET /cgi-bin/try/ HTTP/1.0" 200 3395
127.0.0.1 - - [28/Jul/2006:10:22:04 -0300] "GET / HTTP/1.0" 200 2216

sed -E 's/"([0-9]+\.[0=-9]+\.[0=9]+\.[0=91+)["\"1*\"(["\"1*)\".*/\1,\2/g' apache.txt

IP Address Stuff URL
up to quote

192.168.2.20,GET /cgi-bin/try/ HTTP/1.0
127.0.0.1,GET / HTTP/1.0

THREE EXTREMELY POWERFUL TOOLS

Awk

Finally, awk is a powerful scripting language (not unlike perl). The basic syntax of
awk is:
awk -F',' 'BEGIN{commands}
/regexpl/ {commandl} /regexp2/ {command2}
END{commands}'

» For each line, the regular expressions are matched in order, and if there is a
match, the corresponding command is executed (multiple commands may be
executed for the same line).

« BEGIN and END are both optional.

« The -F',' specifies that the lines should be split into fields using the separator ",",
and those fields are available to the regular expressions and the commands as
$1, $2, etc.

e See the manual (man awk) or online resources for further details.

38

AWK COMMANDS

{ print $1 } - Match any line, print the 1% field

S1=="Obama" {print S$2}'
If the first field is “Obama”, print the 2" field

'S0 ~ /Obama/ {t = gensub("Obama","Trump","g", $0); print t}'

If the line contains Obama, globally replace “Trump” for ”"Obama” and assign
the result to the variable “txt”. Then print it.

Awk commands:

https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html

WRANGLING IN AWK

Input data Desired Output:

Reported crime in Alabama,
2004 ,Alabama,4029.3

2004,4029.3 2005,Alabama, 3900
2005,3900 2006,Alabama, 3937
2006,3937 2007 ,Alabama,3974.9
2007,3974.9 2008,Alabama,4081.9
2008,4081.9 2004 ,Alaska,3370.9
, 2005,Alaska, 3615
Reported crime in Alaska, 2006,Alaska, 3582

: 2007 ,Alaska,3373.9
2004,3370.9 2008,Alaska,2928.3
2005,3615 2004 ,Arizona,5073.3
2006,3582 2005,Arizona,4827
2007,3373.9 2006,Arizona,4741.6
2008,2928.3 2007 ,Arizona,4502.6
: 2008,Arizona,4087.3
Reported crime in Arizona, 2004 ,Arkansas,4033.1

: 2005,Arkansas , 4068
2004 ,5073.3
2005 .4827

AWK EXAMPLE Reported crime in Alabama,

2004,4029.3

2005,3900

2006,3937
2007,3974.9
2008,4081.9

BEGIN {FS="[, 1"}

$1=="Reported" {

state = %$4" "$5;

gsub (/[\tl+%$/, "", state)

}
$1 ~ 20 {print $1","state","$2}

DATA WRANGLER / TRIFACTA

http://vis.stanford.edu/wrangler/app/

O v AWN

Ol -~

1
11
1
1
1
1
1
17
18
19
20
21
22
23
24
25
26

(5]

olu ~WN

MObiIe Campaign PrOJeCt MobileTracking.csv

abc Event_ID x@ User_Email ® Access_Date @ column3 abc Screen_Detail abc Device_Manufacturer abc Device_OS_Versi
Hﬂ H MH HH MH MMMHMU OO BU T DT Ll]]tﬁj alalsinanaiinnnnalnnnsic HEEE | EESRIEREPEES 0
2594 Categories 2593 Categories Sep 12 Dec 12 00:00 23:00 4 Categories 8 Categories 17 Categories
DCA1000048004 luctus.vulputate.nisi@felisN 2012-09-13 17:37:34 samsung Android 4.3
DCA1000048005 velit@Nuncpulvinar.edu 2012-10-17 02:43:32 adtam_name=-utargetl&adtam_so samsung Windows Phone 7.5
DCA1000048006 nunc.risus.varius@nullavulpu 2012-11-28 10:43:16 adtam_name=holidaypromo2&adt samsung Android 4.0.2
DCA1000048007 fermentum.vel@turpisnecmauri 2012-10-15 05:44:38 adtam_name=holidaypromol&adt samsung DROID 4.1.x
DCA1000048008 volutpat.ornare@aliquetnecim 2012-10-14 16:32:41 adtam_name=holidaypromol&adt samsung Windows Phone 7.3
DCA1000048009 Duis.elementum@Mauriseu.net 2012-11-03 08:22:33 adtam_name=utargetl&adtam_so Nokia Windows Mobile 6.
DCA1000048010 non.arcu.Vivamus@Proinnisl.c 2012-10-23 14:56:07 SamSung Android 3.1
DCA1000048011 nec@dictum.ca 2012-11-18 17:16:43 adtam_name=holidaypromol&adt Nokia i0S 6.1.3
DCA1000048012 Aenean@Vivamusnisi.com 2012-09-27 02:24:50 samsung Android 4.1.1
DCA1000048013 in.hendrerit.consectetuer@eu 2012-10-17 16:36:26 Nokia Windows Mobile 6.
DCA1000048014 urna.Nunc@ac.com 2012-10-22 12:49:53 adtam_name=holidaypromo2&adt null Windows Mobile 6.
DCA1000048015 faucibus.lectus@porttitorero 2012-11-12 04:09:55 adtam_name=holidaypromo2&adt null i0S 6.1.3
DCA1000048016 Donec@amet.org 2012-12-19 12:55:48 null Android 4.0.2
DCA1000048017 lobortis@Sed.ca 2012-10-12 10:16:56 adtam_name=-utargetl&adtam_so Nokia Android 4.2
DCA1000048018 amet.risus.Donec@lntegertinc 2012-12-16 18:28:18 samsung 10S7.1 Beta 2
DCA1000048019 mollis@turpisNulla.ca 2012-10-16 04:17:49 adtam_name=holidaypromo2&adt samsung Windows Phone 8.1
DCA1000048020 orci.adipiscing.non@massa.co 2012-11-83 11:47:35 motorola Windows Phone 7.3
DCA1000048021 blandit@PhasellusornarefFusce 2012-89-14 02:24:31 adtam_name=holidaypromol&adt motorola Windows Phone 7.3
DCA1000048022 tincidunt.adipiscing.Mauris@ 2012-10-13 13:46:24 adtam_name=holidaypromol&adt apple

DCA1000048023 vel@lobortisquispede.net 2012-11-11 05:06:07 adtam_name=holidaypromol&adt HTC Android 4.0.2
DCA1000048024 Nulla.eu.neque®necmollis.ca 2012-11-28 20:50:25 adtam_name=holidaypromo2&adt samsung Windows Phone 7.3
DCA1000048025 fringilla@eunullaat.org 2012-10-08 14:15:43 samsung Android 3.1
DCA1000048026 faucibus.lectus@auctornuncnu 2012-11-14 21:51:54 adtam_name=holidaypromo2&adt SamSung Android 4.1.1
DCA1000048027 nisi.Cum@Donecestmauris.com 2012-10-16 14:38:37 adtam_name=holidaypromol&adt HTC

DCA1000048028 parturient.montes.nascetur@p 2012-10-23 04:06:42 adtam_name=holidaypromol&adt motorola Android 4.1.0
DCA1000048029 nisl.Quisque.fringilla@®conse 2012-10-31 03:01:30 adtam_name=utargetl&adtam_so samsung Windows Mobile 6.

TRANSFORM EDITOR

[highlight row: (date(2012, 11, 7) <= Access_Date) &% (Access_Date < date(2012, 12, 27))

SUGGESTED TRANSFORMS
highlight row: (date(2012, 11, 7) <= Access_Date) && (Access_Date < date(2012, 12, 27))
delete row: (date(2012, 11, 7) <= Access_Date) && (Access_Date < date(2012, 12, 27))
keep row: (date(2012, 11, 7) <= Access_Date) && (Access_Date < date(2012, 12, 27))

SCRIPT %

n splitrows col: columni on: "\r\n'

split col: columni on: ', limit: 12

header

split col: Access_Time at: 10,11

rename col: column2 to: 'Access_Date'

« 9

DATA WRANGLING

Wrangling

Analysis \

A typical
Trajectory - Cleanse - Evaluate - Visualize
—QQ_. - Merge Usability - Analyze
- Adapt of data
Visual (or not) Ideal Tool'combining wrangling and analysis

Wrangling Tools 2 A
Visual Analytics Tools

3. 1st load in
analysis application

Original
Data Sets ‘

)

Analytics
Processes

5. Repeat with
new data

Updated Data Sets ' /

raw data usabi data usable data + findings
A Trail of data I Trail of analysis =

transformations Insight Provenance

¢
¢

[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]

BREAK

WORKING WITH
TEXT

TEXT AS DATA

What might we want to do?

Find similar documents
E.g., for document clustering
Find similarity between a document and a string

E.g., for document search

Answer questions from documents

Assess document sentiment

Extract information from documents

Focus today:
Given two
pieces of
text, how do
we measure
similarity?

TOKENIZATION

Input: “Friends, Romans and Countrymen”

Output: Tokens

 Friends
* Romans
* and
» Countrymen
A token is an instance of a sequence of characters

What are valid tokens?

Typically just words, but can be complicated

E.qg., how many tokens is
Lebensversicherungsgesellschaftsangestellter, meaning ‘life
insurance company employee’ in German?

WHY TOKENIZE?

Often useful to think of text as a bag of words, or as a table
of words and their frequencies

Need a standard way to define a word, and correct for
differences in formatting, etc.

Very common in information retrieval (IR) / keyword search

Typical goal: find similar documents based on their words or
n-grams (length n word groups)

DOCUMENT SIMILARITY EXAMPLE

Suppose we have the following strings, and want to measure their
similarity?

sen = [
"Tim loves the band Korn.",
"Tim adores the rock group Korn.",
"Tim loves eating corn.",
"Tim used to love Korn, but now he hates them.",
"Tim absolutely loves Korn.",
"Tim completely detests the performers named Korn",
"Tim has a deep passion for the outfit the goes by the name of Korn",
"Tim loves listening to the band Korn while eating corn."

BAG-OF-WORDS MODEL

Treat documents as sets

Measure similarity of sets

Standard set similarity metric: Jaccard Similarity

s1Ns2
s2 U s2

sim(sl,s2) =

sim({tim,loves, korn}, {tim, loves, eating, corn})=2/5

sim({tim,absolutely,adores,the,band,korn}, {tim, loves, korn})=2/7

Problems:
All words weighted equally
Same word with different suffix treated differently (e.g., love & loves)
Semantic significance ignored (e.g., adores & loves are the same)
Duplicates are ignored (“Tim really, really loves Korn”)

EXAMPLE

Tim has a deej
Tim loves listel

- w - -

= o
2 £ 5 &
=] w w 8
g ! g E
2] 2 &
o] K= S
E E £ E
F = = E

L Tim absolutely
L Tim completel

1.00

Tim loves the band Korn. 0.95
0.90
0.85
Tim adores the rock group Korn.
0.80
- 0.75
Tim loves eating corn. L 0.70
- 0.60
Tim used to love Korn, but now he hates them.
- 0.50
Tim absolutely loves Korn. A
- 0.40
Tim completely detests the performers named Korn -

0.30

Tim has a deep passion for the outfit the goes by the name of Korn (S s

0.20

Tim loves listening to the band Korn while eating corn.
0.10

STOP WORDS

With a stop list, you exclude from the dictionary entirely the
commonest words. Intuition:

* They have little semantic content: the, a, and, to, be
* There are a lot of them: ~30% of postings for top 30 words

Sometimes you want to include them, as they affect meaning

* Phrase queries: “King of Denmark”
- Various song titles, etc.: “Let it be”, “To be or not to be
+ “Relational” queries: “flights to London”

STOP WORDS IN PYTHON

nltk.corpus stopwords
orint(stopwords.words ())

rn nnmn

['1, ' me', 'my', myself, 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've",
"you'll", "you'd", 'your', 'yours', 'yourself, 'yourselves', 'he', 'him/, 'his',
'himself', 'she’, "she's", 'her', 'hers', 'herself, 'it', "it's", 'its', 'itself, 'they’', 'them',
'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll",
'these’, 'those', 'am/, 'is', 'are’, 'was', 'were', 'be', 'been’, 'being’, 'have', 'has',
'had', 'having', 'do', 'does', 'did, 'doing’, 'a’, 'an’, 'the’, 'and’, 'but', 'if, 'or',
'because’, 'as’, 'until', 'while', 'of, 'at', 'by’', 'for', 'with', 'about', 'against’,
'between!, 'into', 'through', 'during’, 'before’, 'after', 'above', 'lbelow’, 'to’,
'from’, 'up', 'down', 'in', 'out’, 'on/, 'off , 'over', 'under', 'again’, 'further', 'then/,
'once’, here', 'there', 'when', 'where', 'why', 'how', 'all', 'any’, 'both', 'each’,
'few’, 'more’, 'most', 'other', 'some’, 'such’, 'no', 'nor', 'not', 'only', 'own', 'same’,
'so', 'than/, 'too’, 'very', 's', 't', 'can’, 'will', 'just’, 'don’, "don't", 'should’,
"should've", mow','d",'ll','m/', '0’, 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn’,
"couldn't", 'didn/', "didn't", 'doesn’, "doesn't", 'hadn', "hadn't", 'hasn', "hasn't",
'haven', "haven't", 'isn’, "isn't", 'ma’, 'mightn’, "mightn't", 'mustn’, "mustn't",

rn

'needn', "needn't", 'shan’, "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't",

rn '.t" ! rn rn
]

'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]

STEMMING

Reduce terms to their “roots” before indexing

“Stemming” performs crude affix chopping

* language dependent

* e.g., automate(s), automatic, automation all
reduced to automat.

for example compressed

: f
and compression are both ‘ or exampl compress and

: compress ar both accept
accepted as equivalent to .
as equival to compress
compress.

PORTER’S ALGORITHM

Most common algorithm for stemming English

 Other options exist, e.g., snowball
Conventions + 5 phases of reductions

* phases applied sequentially
* each phase consists of a set of commands

* sample convention: Of the rules in a compound
command, select the one that applies to the longest
suffix.

TYPICAL RULES IN PORTER

sses — SsS
jes — |
ational — ate

tional — tion

Weight of word sensitive rules

(m>1) EMENT —

* replacement — replac
* cement — cement

STEMMING IN PYTHON

nltk.stem.porter

stemmer = nltk.stem.porter.PorterStemmer()
W sen[0].split(" "):
print(stemmer.stem(w))

tim
love
the
band

korn

STEP WORDS + STEMMING

sen = [
"Tim loves the band Korn.",
"Tim adores the rock group Korn.",
"Tim loves eating corn.",
"Tim used to love Korn, but now he hates them.",
"Tim absolutely loves Korn.",
"Tim completely detests the performers named Korn",
"Tim has a deep passion for the outfit the goes by the name of Korn",
"Tim loves listening to the band Korn while eating corn."

tim love band korn

tim ador rock group korn

tim love eat corn

tim use love korn hate

tim absolut love korn

tim complet detest perform name korn
tim deep passion outfit goe korn

tim love listen band korn eat corn

COSINE SIMILARITY

Given two vectors, a standard way to measure how similar they are

Cos(v1, v2) = closeness of two vectors (smaller is closer)

Cos(0) =V1+V2/||V1|| x ||V2]]

(1,2)
Cos(0) =[12] * [2 1] / (sqrt(5)) * 2
Acos(4 / 5) = 36.8°
(2,1)
-
122

||V1|| = 2.01, ||V2]]| =2.02

Cos(0) = [.2 2] * [2.3] / 2.015
=1/2.015

Acos(1/2.015) = 60.2°

o 2,.3)

/ >

COSINE SIMILARITY OF WORD VECTORS

Cos(©) = V1 V2 /|[V1|| x V2|

1 2 3
1 2 3 S1=Tim| K
S1 =Tim loves Korn = lim loves Rorn

4 5 6 4 5 6 7 8
- : S2 = Tim absolutey adores the band Korn
S2 =Tim loves eating corn

- V1=11100000
XEL 88??? V2=10111111
V1eV2 =1 V1ieV2=2
IV1]] = sqrt(3) V]| = sqrt(3)

IV2]| = sqrt(4) V2| = sqrt(7)
1/sqrt(3) * sqrt(4) = .29 2 /sqri(3) * sqrt(7) = .43

Typically, when using cosine similarity, we don’t take
the acos of the values (since acos is expensive)

JACCARD VS COSINE

S1 =Tim loves Korn
S2 = Tim loves eating corn

CosSim(S51,52) = .29
Jaccard(S51,52)= 4

S3 = Tim absolutely adores the band Korn
CosSim(S51,53) = .43
Jaccard(S1,S3) = .28

Jaccard more sensitive to different document lengths than CosSim

CosSim can incorporate repeated words (by using non-binary vectors)

CLICKER ttps://clicker.csail.mit.edu/6.s079/

Consider two setences:
Sam loves limp bizkit

Sam eats limp biscuits

What is their Jaccard similarity?

A.4/6 {Sam, limp}

B2/ e

C.2/6 {Sam, loves, limp, bizkit, eats, biscuits}

D. Something else

What is their Cosine similarity?

A 1/4 S1:111100
> S2:10101 1

B. 2/4 S1+S2=2

C.4/6 | |81 | = ||8S2]|| =sqrt(4)

D. Something else

IMPLEMENTING COSINE SIMILARITY

f = sklearn.feature_extraction.text.CountVectorizer()
X = f.fit_transform(sen)

print(X.toarray())
print(f.get_feature_names())

band korn love tim

[[0 01 000O0O0O0O0OO0O10100O0OO0OO0OT10O0]
[01 0000O0O0O010100O0O0OO0OO0O1T10]
[0 00O010010000O0O1O0O0O0LO0OO0T1DO0]
[0 00OO0O00O0O0O0OO0O11010O0O0O0OO0OT1NT1)]
[1 0000O0O0O0O0O0OO0O1I1O01O0O0O0OO0O0T1DO0]
[000100100001001O001O010]
[0 00O0010010010O0011O0O010]
[001 010010001110000O01O0]1]1

['absolut', 'ador', 'band', 'complet', 'corn', 'deep',
'detest', 'eat', 'goe', 'group', 'hate', 'korn',
'listen', 'love', 'name', 'outfit', 'passion', 'perform',
'rock', 'tim', 'use']

IMPLEMENTING COSINE SIMILARITY

f = sklearn.feature_extraction.text.CountVectorizer()
X = f.fit transform(sen)

print(X.toarray())
print(f.get_feature_names())

sklearn.metrics.pairwise cosine_similarity
CcOoSs_sim cosine_similarity(X)
print(cos_sim)

Tim loves the band Korn [[1. 0.45 0.5 0.67 0.75 0.41 0.41 0.76]

Tim adores the rock group Korn [0.45 1. 0.22 0.4 0.45 0.37 0.37 0.34]
Tim loves eating corn [0.5 0.22 1. 0.45 0.5 0.2 0.2 0.76]

Tim used to love Korn,[0.67 0.4 0.45 1. 0.67 0.37 0.37 0.51]

but now he hates them [0.75 0.45 0.5 0.67 1. 0.41 0.41 0.57]
[0.41 0.37 0.2 0.37 0.41 1. 0.33 0.31]

[0.41 0.37 0.2 0.37 0.41 0.33 1. 0.31]

[0.76 0.34 0.76 0.51 0.57 0.31 0.31 1. 1]

COSINE SIMILARITY PLOT

k=]
c
o
a
©
=
=
n
o
>
2
E
[

Includes
stemming

| Tim adores the rock
| Tim loves eating co
im used to love Ko

L Tim absolutely love
Tim completely det
Tim has a deep pas
Tim loves listening

Tim loves the band Korn.

Tim adores the rock group Korn.

Tim loves eating corn.

Tim used to love Korn, but now he hates them.

Tim absolutely loves Korn.

Tim completely detests the performers named Korn

Tim has a deep passion for the outfit the goes by the name of Korn

Tim loves listening to the band Korn while eating corn.

F0.75

F0.70

- 0.60

- 0.50

WHICH WORDS MATTER: TF-IDF

Problem: neither Jaccard nor Cosine Similarity have a way to
understand which words are important

TF-IDF tries to estimate the importance of words based on
1) Their Term Frequency (TF) in a document

2) Their Inter-document Frequency (IDF), across all documents

Assumptions: If a term appears frequently in a document, it's more
important in that document

If a term appears frequently in all documents, its less important

TF-IDF EQUATIONS

fra

ged =g
t'e)

t=t
d = document

f.q = frequency of tin d

For each term tin d, tf(t,d) is the fraction of words in d that are t

N
{deD:ted|

idf (t,D) = log

N = number of documents
D = set of all documents
l{d € D:t € d}|= # documents which use term t

For each term tin all D, idf(t,D) is inversely proportional to the number of
documents that use t

TF-IDF EQUATIONS

ftd
Zt’Ed ft’,d

tf(t,d) =

df(t,D) = log {d € D:t € d|

tf-idf(t,d,F) =tf(t,d) eidf(t,D)

t=t
d = document

f.4 = frequency of tin d

N = number of documents
D = set of all documents

|{d € D:t € d}|= # documents which use term t

fta

TF-IDF EXAMPLE oD = eafea

N
{deD:ted|

idf(t,D) = log

S1 =Tim loves Korn

S2 = Tim loves eating corn

S1 =[0,0,.23]
S2=[0,0,.17,.17]

Terms =Tim, loves, Korn, eating Korn

tf-idf(Tim,s1) = tf(Tim,s1) x idf(Tim) = 1/3 x log (2/2) = 0
tf-idf(loves,s1) = tf(loves,s1) x idf(loves) = 1/3 x log (2/2) = 0
tf-idf(Korn,s1) = tf(Korn,s1) x idf(Korn) = 1/3 x log (2/1) = 1/3 x .69 = 0.23

tf-idf(eating,s2) = tf(eating,s2) x idf(eating) = 1/4 x log(2/1) = 0.17
tf-idf(corn,s2) = tf(corn,s2) x idf(corn) = 1/4 x log(2/1) = 0.17

Words in all documents aren’t helpful if we’re trying to rank documents
according to their similarity or do keyword search

TF-IDF IN PYTHON

These parameters make it match
equations on previous slide

f = sklearn.feature_extraction.text.TfidfVectorizer(=False, =411")
X = f.fit_transform(sen)

print(X.toarray())

cos_sim = cosine_similarity(X)

print(cos_sim)

Tim loves the band Korn [[1. 0.13 0.26 0.29 0.37 0.11 0.11 0.57]
Tim adores the rock group Korn [0.13 1. 0.05 0.09 0.11 0.06 0.06 0.07]
Tim loves eatingcorn [0.26 0.05 1. 0.17 0.22 0.04 0.04 0.68]

Tim used to love Korn, [0.29 0.09 0.17 1. 0.25 0.07 0.07 0.16]

but now he hates them [0.37 0.11 0.22 0.25 1. 0.1 0.1 0.21]
[0.11 0.06 0.04 0.07 0.1 1. 0.06 0.06]

[0.11 0.06 0.04 0.07 0.1 0.06 1. 0.06]

[0.57 0.07 0.68 0.16 0.21 0.06 0.06 1. 1]

TF-IDF not a great choice for these sentences, because it downweights
frequent words (Korn and loves)

MODERN ML TECHNIQUES

Modern deep learning has completely transformed text processing tasks like this

NLP models, e.g., BERT and GPT-3 trained to understand documents
We’re going to try

Models are trained to predict missing words: BERT, which is a
Tim loves the Korn slightly older model
than GPT-3

Tim loves eating
Using billions of documents on the Web (training takes years of GPU time!!!)

Models take a window of text (e.g., 512 words) and produce an output vector
(e.g., 768 floats) for each word

Vector represents the “meaning” of that word in the context of the natural
language in which it appears

This vector can be used to predict the next word, or to measure the similarity of
meaning of two words

12

BERT ARCHITECTURE

L Each word in
E last_hidden_state tensor E 7%8 input assig ned a
MR 7168 element
R e _ i output vector
ENEEE DEDEE GDEEE SEEEE s
A A A A
[- —
S e—T68—>
B (hidden_size)
Encoder]
| | | | A
NEEEE EEEES EEEEN EEEES EEEEE-
[Encoder] 110M params
' . (GPT3 is 175B!)
1 [CLS] 2 He 3 found 4 a 512 [PAD]

ik A A A

A

[Tokenizer

¢

"He found a leprechaun in his walnut shell."

https://towardsdatascience.com/bert-for-
measuring-text-similarity-eec91c6bidel

USING BERT VECTORS

Each word is represented by a set of 768-element outputs

Convert to a single element 768-vector for each sentence by averaging
words in document

Compute similarity between vectors (e.g., using Cosine Similarity)

Python sentence-transformers package makes this trivial

A popular BERT-
like model known

sentence_transformers SentenceTransformer to perform well

model SentenceTransformer("'

)
sen_embeddings = model.encode(sen) T Does averaging
across documents
cos_sim = cosine_similarity(sen_embeddings)

print(cos_sim)
Contains a 768-
element vector
for each
document

USING BERT VECTORS

sentence_transformers SentenceTransformer

model SentenceTransformer("')
sen_embeddings = model.encode(sen)

cos_sim = cosine_similarity(sen_embeddings)

print(cos_sim)

Tim loves the band Korn [[1. 0.97 0.49 0.83 0.92 0.81 0.93 0.78]
TimadorestherockgroupKorn [0.97 1. 0.46 0.82 0.91 0.81 0.93 0.77]
Timloveseatingcgrn [0.49 0.46 1. 0.42 0.52 0.41 0.43 0.81]

Tim used to love Korn, [0.83 0.82 0.42 1. 0.83 0.86 0.8 0.67]

but now he hates them [0.92 0.91 0.52 0.83 1. 0.79 0.87 0.76]
[0.81 0.81 0.41 0.86 0.79 1. 0.8 0.66]

[0.93 0.93 0.43 0.8 0.87 0.8 1. 0.71]

[0.78 0.77 0.81 0.67 0.76 0.66 0.71 1 1]

Captures meaning of sentences much better than other
metrics

HEAT MAP

Tim loves eating comn

Tim absolutely loves

Tim loves the band Ki
Tim used to love Korr

w
-}
1]
o
k]
3
3
o
E
<
g
E
5

Tim adores the rock ¢

Tim loves the band Korn.

Tim adores the rock group Korn.

Tim loves eating corn.

Tim used to love Korn, but now he hates them.

Tim absolutely loves Korn.

Tim completely detests the performers named Korn

Tim has a deep passion for the outfit the goes by the name of Korn

Tim loves listening to the band Korn while eating corn.

Tim has a deep passi

Tim loves listening to

100

0.95

0.90

- 0.85

I 0.80

F0.75

F0.70

- 0.60

SUMMARY

Saw three classes of tools - grep, sed, and awk, based on regular
expressions to transform data

Saw how tools like Instabase and Wrangler try to automate this

Looked at text processing techniques

Jaccard and Cosine similarity

Tokenization, stemming, stop lists
TF-IDF

Embeddings using BERT BERT DOES NOT APPROVE

We will return to embeddings in a few weeks

