
Lec 6: Data
Wrangling And
Working With

Strings

Key ideas: regular
expressions,

sed/awk/grep,
working with text

Lab 1 Due
Lab 2 Out

Your
data

You

Raw Data
Text

Images
Sounds

Sensor Readings
CSV

Log files
Web Forms

Structure Extraction
Image Segmentation

Signal Processing
Regularization
Re-Sampling

Cleaning
Outlier Removal

Transformation/Integration

Stored Data

Querying/Processing

Visualization/Presentation Modeling/Prediction

Tables

Tables

Tables

Tables

Data
Science
Pipeline

LAST TIME: INSTABASE
Platform to extract structure
from complex structured
documents

Based on deep learning

Today we will look at some of
low-level tools you may find
useful in doing data wrangling
yourself.

DATA WRANGLING

5

[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]

XML Template (2011) [10.8.2011–6:17pm] [1–18]
K:/IVI/IVI 415994.3d (IVI) [PREPRINTER stage]

years). At other times there is nothing he can do after
diagnosing a new problem (i.e. return to step 1). For
example, he finds out that survey question 24 did not
exist before 2000, and the most recent year of data from
Ohio has not been delivered yet, so he tries to pick the
best possible value (e.g. !1) to indicate missing values.
John detects other, more nuanced, problems; for exam-
ple, some cells have a blank space instead of being
empty. It took hours to notice that difference.

John tries to follow a systematic approach when
evaluating the data, but it is difficult to keep track of
what he has inspected and how he has modified the
data, especially because he discovers different issues
across different files. Even after all of this work, he is
not sure if he has examined all of the variables or over-
looked any outliers. After a while, the data file seems
good enough and he decides to move on.

It took a few days so it is with a great sense of
accomplishment that John finally loads the data for
the second time into the visualization tool he wants
to use (step 3 again). He constructs several views of
the data, including a geospatial representation of the
crimes and a scatterplot of age against crime.

As soon as he sees the visualized data he realizes that,
unfortunately, data quality issues still persist. Extreme
outliers appear in the visualization. Some outliers seem
to be valid data (e.g. data from the District of Columbia
are very different from data from every other state).
Others seem suspicious (criminals may vary in age
from teenagers to older adults, but apparently babies
are also committing crimes in certain states). John iter-
atively removes those outliers he believes to be dirty data
(e.g. criminals under 7 and over 120 years old). Time-
series visualizations indicate that, in 1995, some causes

Figure 1. The iterative process of wrangling and analysis. One or more initial data sets may be used and new versions
may come later. The wrangling and analysis phases overlap. While wrangling tools tend to be separated from the visual
analysis tools, the ideal system would provide integrated tools (light yellow). The purple line illustrates a typical iterative
process with multiple back and forth steps. Much wrangling may need to take place before the data can be loaded within
visualization and analysis tools, which typically immediately reveals new problems with the data. Wrangling might take
place at all the stages of analysis as users sort out interesting insights from dirty data, or new data become available or
needed. At the bottom we illustrate how the data evolves from raw data to usable data that leads to new insights.

Kandel et al. 3

THREE EXTREMELY POWERFUL TOOLS

6

1) grep – find text matching a regular expression
Basic syntax:

grep 'regexp' filename
or equivalently (using UNIX pipelining):

cat filename | grep 'regexp’

2) sed – stream editor

3) awk – general purpose text processing language

WHAT IS A REGULAR EXPRESSION?

A regular expression (regex) describes a set of
possible input strings.
Regular expressions descend from a
fundamental concept in Computer Science
called finite automata theory
Regular expressions are endemic to Unix
• vi, ed, sed, and emacs
• awk, tcl, perl and Python
• grep, egrep, fgrep
• compilers

REGULAR EXPRESSIONS
The simplest regular expressions are a string of
literal characters to match.
The string matches the regular expression if it
contains the substring.

Unix rocks.

match

UNIX sucks.

match

UNIX is okay.
no match

regular expression c k s

REGULAR EXPRESSIONS

A regular expression can match a string in more than one place.

Scrapple from the apple.

match 1 match 2

regular expression a p p l e

REGULAR EXPRESSIONS

The . regular expression can be used to match any character.

For me to open

match 1 match 2

regular expression o .

REPETITION
The * is used to define zero or more occurrences of
the single regular expression preceding it.

+ Matches one or more occurrences

I got mail, yaaaaaaaaaay!

match

regular expression y a * y

I sat on the stoop

match

regular expression o a * o

REPETITION RANGES
Ranges can also be specified
•{ } notation can specify a range of repetitions for

the immediately preceding regex
•{n} means exactly n occurrences
•{n,} means at least n occurrences
•{n,m} means at least n occurrences but no more

than m occurrences
Example:
•.{0,} same as .*
•a{2,} same as aaa*

OR

a|b* denotes {ε, "a", "b", "bb", "bbb", ...}

(a|b)* denotes the set of all strings with no symbols
other than "a" and "b", including the empty string: {ε, "a",
"b", "aa", "ab", "ba", "bb", "aaa", ...}

ab*(c) denotes the set of strings starting with "a", then
zero or more "b"s and finally optionally a "c": {"a", "ac",
"ab", "abc", "abb", "abbc", ...}

CHARACTER CLASSES – OR SHORTHAND

Character classes [] can be used to match
any specific set of characters.

beat a brat on a boat

match 1 match 2

regular expression b [eor] a t

match 3

NEGATED CHARACTER CLASSES

Character classes can be negated with the
[^] syntax.

beat a brat on a boat

match

regular expression b [^eo] a t

MORE ABOUT CHARACTER CLASSES
• [aeiou] will match any of the characters a, e, i, o, or u
• [kK]orn will match korn or Korn

Ranges can also be specified in character classes
• [1-9] is the same as [123456789]
• [abcde] is equivalent to [a-e]
• You can also combine multiple ranges

• [abcde123456789] is equivalent to [a-e1-9]
• Note that the - character has a special meaning in a

character class but only if it is used within a range,
[-123] would match the characters -, 1, 2, or 3

NAMED CHARACTER CLASSES
Commonly used character classes can be referred
to by name (alpha, lower, upper, alnum, digit,
punct, cntrl)
Syntax [:name:]
• [a-zA-Z] [[:alpha:]]
• [a-zA-Z0-9] [[:alnum:]]
• [45a-z] [45[:lower:]]

Important for portability across languages

ANCHORS

Anchors are used to match at the
beginning or end of a line (or both).
^ means beginning of the line
$ means end of the line

beat a brat on a boat

match

regular expression ^ b [eor] a t

regular expression b [eor] a t $

beat a brat on a boat

match

^word

MATCH LENGTH

Scrapple from the apple.

no yes

regular expression a . * e

By default, a match will be the longest string that satisfies the regular
expression.

no

MATCH LENGTH

Scrapple from the apple.

yes no

regular expression a . * ? e

no

Append a ? to match the shortest string possible:

PRACTICAL REGEX EXAMPLES

Dollar amount with optional cents

•\$[0-9]+(\.[0-9][0-9])?
Time of day

•(1[012]|[1-9]):[0-5][0-9] (am|pm)

HTML headers <h1> <H1> <h2> …
•<[hH][1-4]>

GREP
• grep comes from the ed (Unix text editor)

search command “global regular expression
print” or g/re/p

• This was such a useful command that it was
written as a standalone utility

• There are two other variants, egrep and fgrep
that comprise the grep family

• grep is the answer to the moments where you
know you want the file that contains a specific
phrase but you can’t remember its name

FAMILY DIFFERENCES
grep - uses regular expressions for pattern
matching
fgrep - file grep, does not use regular
expressions, only matches fixed strings but
can get search strings from a file
egrep - extended grep, uses a more
powerful set of regular expressions but does
not support backreferencing, generally the
fastest member of the grep family
agrep – approximate grep; not standard

GREP DEMO
grep '\"text\": ".*location.*"' twitter.json

"text": "RT @TwitterMktg: Starting today, businesses can request and share
locations when engaging with people in Direct Messages.
https://t.co/rpYn…",

"text": "Starting today, businesses can request and share locations when
engaging with people in Direct Messages. https://t.co/rpYndqWfQw",

BACKREFERENCES

Sometimes it is handy to be able to refer to a match
that was made earlier in a regex

This is done using backreferences
•\n is the backreference specifier, where n is a number

Looks for nth subexpression

For example, to find if the first word of a line is the
same as the last:
• ^([[:alpha:]]+) .* \1$

• Here, ([[:alpha:]]+) matches 1 or more letters

FORMALLY

Regular expressions are “regular” because they can only express
languages accepted by finite automata. Backreferences allow you
to do *much* more.

See: https://link.springer.com/article/10.1007%2Fs00224-012-9389-0

BACKREFERENCE TRICKS
Can you find a regex to match L=ww ; w in {a,b}*

e.g., aa, bb, abab, or abbabb

([ab]*)\1

BACKREFERENCE TRICKS
def f(n):

s = "x" * n

return re.match("^x?$|^(xx+?)\\1+$", s)

Generates a string of length n, to test if n is prime

^x?$ – base case: 0 and 1 are not prime

(? matches preceding character 0 or 1 times)

| or

two or more xs

^(xx+?)\1+$ repeated on or more times, followed by $

A prime is a number that cannot be factored. If we find a sequence
of N xs that repeats two or more times without any xs left over, we
know N is a factor, and the number is not prime.

Example: xxxxxxx
xxxxxxxxx

Doesn’t match, can’t consume all xs with repeated pattern,
==> Prime
Matches, we consume all xs with 3x repeated pattern,
==> Not Prime

CLICKER QUESTION

Select the string for which the regular expression
‘..\.19..’ would find a match:

a) “12.1000”
b) “123.1900”
c) “12.2000”
d) the regular expression does not

match any of the strings above

https://clicker.csail.mit.edu/6.s079/

CLICKER QUESTION
Choose the pattern that finds all filenames in which
1. the first letters of the filename are chap,
2. followed by two digits,
3. followed by some additional text,
4. and ending with a file extension of .doc
For example : chap23Production.doc

a) chap[0-9]*.doc
b) chap*[0-9]doc
c) chap[0-9][0-9].*\.doc
d) chap*doc

https://clicker.csail.mit.edu/6.s079/

THREE EXTREMELY POWERFUL TOOLS

34

1) grep
Basic syntax:

grep 'regexp' filename
or equivalently (using UNIX pipelining):

cat filename | grep 'regexp'

2) sed – stream editor
Basic syntax

sed 's/regexp/replacement/g' filename

For each line in the intput, the portion of the line that matches regexp (if any)
is replaced with replacement.
Sed is quite powerful within the limits of operating on single line at a time.
You can use \(\) to refer to parts of the pattern match.

SED EXAMPLE
File = Trump is the president. His job is to tweet.

sed 's/Trump/Biden/g' file

sed 's/\(His job is to\).*/\1 run the country./g' file

Biden is the president. His job is to tweet.
Trump is the president. His job is to run the country.

COMBINING TOOLS

grep \"screen_name\": twitter.json |
sed 's/[]*\"screen_name\": \"\(.*\)\",/\1/g'

Suppose we want to extract all the “screen_name” fields from
twitter data

[
{
"created_at": "Thu Apr 06 15:28:43 +0000 2017",
"id": 850007368138018817,
"id_str": "850007368138018817",
"text": "RT @TwitterDev: 1/ Today we’re sharing our vision for the

future of the Twitter API platform!nhttps://t.co/XweGngmxlP",
"truncated": false,

…

EXAMPLE 2: LOG PARSING
192.168.2.20 - - [28/Jul/2006:10:27:10 -0300] "GET /cgi-bin/try/ HTTP/1.0" 200 3395

127.0.0.1 - - [28/Jul/2006:10:22:04 -0300] "GET / HTTP/1.0" 200 2216

sed -E 's/^([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)[^\"]*\"([^\"]*)\".*/\1,\2/g' apache.txt

IP Address Stuff
up to quote

URL

192.168.2.20,GET /cgi-bin/try/ HTTP/1.0
127.0.0.1,GET / HTTP/1.0

THREE EXTREMELY POWERFUL TOOLS

38

Awk
Finally, awk is a powerful scripting language (not unlike perl). The basic syntax of
awk is:

awk -F',' 'BEGIN{commands}

/regexp1/ {command1} /regexp2/ {command2}
END{commands}'

• For each line, the regular expressions are matched in order, and if there is a
match, the corresponding command is executed (multiple commands may be
executed for the same line).

• BEGIN and END are both optional.
• The -F',' specifies that the lines should be split into fields using the separator ",",

and those fields are available to the regular expressions and the commands as
$1, $2, etc.

• See the manual (man awk) or online resources for further details.

AWK COMMANDS

{ print $1 } – Match any line, print the 1st field

$1=="Obama"{print $2}’
If the first field is “Obama”, print the 2nd field

'$0 ~ /Obama/ {t = gensub("Obama","Trump","g", $0); print t}'
If the line contains Obama, globally replace “Trump” for ”Obama” and assign

the result to the variable “txt”. Then print it.

Awk commands:

https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html

WRANGLING IN AWK

Reported crime in Alabama,
,
2004,4029.3
2005,3900
2006,3937
2007,3974.9
2008,4081.9
,
Reported crime in Alaska,
,
2004,3370.9
2005,3615
2006,3582
2007,3373.9
2008,2928.3
,
Reported crime in Arizona,
,
2004,5073.3
2005,4827
2006,4741.6

Input data

2004,Alabama,4029.3
2005,Alabama,3900
2006,Alabama,3937
2007,Alabama,3974.9
2008,Alabama,4081.9
2004,Alaska,3370.9
2005,Alaska,3615
2006,Alaska,3582
2007,Alaska,3373.9
2008,Alaska,2928.3
2004,Arizona,5073.3
2005,Arizona,4827
2006,Arizona,4741.6
2007,Arizona,4502.6
2008,Arizona,4087.3
2004,Arkansas,4033.1
2005,Arkansas,4068

Desired Output:

AWK EXAMPLE

BEGIN {FS="[,]"}
$1=="Reported" {
state = $4" "$5;
gsub(/[\t]+$/, "", state)
}
$1 ~ 20 {print $1","state","$2}

Reported crime in Alabama,
,
2004,4029.3
2005,3900
2006,3937
2007,3974.9
2008,4081.9

DATA WRANGLER / TRIFACTA

43

http://vis.stanford.edu/wrangler/app/

DATA WRANGLING

44

[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]

XML Template (2011) [10.8.2011–6:17pm] [1–18]
K:/IVI/IVI 415994.3d (IVI) [PREPRINTER stage]

years). At other times there is nothing he can do after
diagnosing a new problem (i.e. return to step 1). For
example, he finds out that survey question 24 did not
exist before 2000, and the most recent year of data from
Ohio has not been delivered yet, so he tries to pick the
best possible value (e.g. !1) to indicate missing values.
John detects other, more nuanced, problems; for exam-
ple, some cells have a blank space instead of being
empty. It took hours to notice that difference.

John tries to follow a systematic approach when
evaluating the data, but it is difficult to keep track of
what he has inspected and how he has modified the
data, especially because he discovers different issues
across different files. Even after all of this work, he is
not sure if he has examined all of the variables or over-
looked any outliers. After a while, the data file seems
good enough and he decides to move on.

It took a few days so it is with a great sense of
accomplishment that John finally loads the data for
the second time into the visualization tool he wants
to use (step 3 again). He constructs several views of
the data, including a geospatial representation of the
crimes and a scatterplot of age against crime.

As soon as he sees the visualized data he realizes that,
unfortunately, data quality issues still persist. Extreme
outliers appear in the visualization. Some outliers seem
to be valid data (e.g. data from the District of Columbia
are very different from data from every other state).
Others seem suspicious (criminals may vary in age
from teenagers to older adults, but apparently babies
are also committing crimes in certain states). John iter-
atively removes those outliers he believes to be dirty data
(e.g. criminals under 7 and over 120 years old). Time-
series visualizations indicate that, in 1995, some causes

Figure 1. The iterative process of wrangling and analysis. One or more initial data sets may be used and new versions
may come later. The wrangling and analysis phases overlap. While wrangling tools tend to be separated from the visual
analysis tools, the ideal system would provide integrated tools (light yellow). The purple line illustrates a typical iterative
process with multiple back and forth steps. Much wrangling may need to take place before the data can be loaded within
visualization and analysis tools, which typically immediately reveals new problems with the data. Wrangling might take
place at all the stages of analysis as users sort out interesting insights from dirty data, or new data become available or
needed. At the bottom we illustrate how the data evolves from raw data to usable data that leads to new insights.

Kandel et al. 3

BREAK

WORKING WITH
TEXT

TEXT AS DATA
What might we want to do?

Find similar documents
E.g., for document clustering

Find similarity between a document and a string
E.g., for document search

Answer questions from documents
Assess document sentiment
Extract information from documents

Focus today:
Given two
pieces of
text, how do
we measure
similarity?

TOKENIZATION
Input: “Friends, Romans and Countrymen”
Output: Tokens
• Friends
• Romans
• and
• Countrymen

A token is an instance of a sequence of characters
What are valid tokens?

Typically just words, but can be complicated

Sec. 2.2.1

E.g., how many tokens is
Lebensversicherungsgesellschaftsangestellter,meaning‘life
insurance company employee’in German?

WHY TOKENIZE?

Often useful to think of text as a bag of words, or as a table
of words and their frequencies
Need a standard way to define a word, and correct for
differences in formatting, etc.

Very common in information retrieval (IR) / keyword search
Typical goal: find similar documents based on their words or
n-grams (length n word groups)

DOCUMENT SIMILARITY EXAMPLE

sen = [
"Tim loves the band Korn.",
"Tim adores the rock group Korn.",
"Tim loves eating corn.",
"Tim used to love Korn, but now he hates them.",
"Tim absolutely loves Korn.",
"Tim completely detests the performers named Korn",
"Tim has a deep passion for the outfit the goes by the name of Korn",
"Tim loves listening to the band Korn while eating corn."

]

Suppose we have the following strings, and want to measure their
similarity?

BAG-OF-WORDS MODEL
Treat documents as sets
Measure similarity of sets

Standard set similarity metric: Jaccard Similarity

sim({tim,loves,korn}, {tim, loves, eating, corn}) = 2 / 5
sim({tim,absolutely,adores,the,band,korn}, {tim, loves, korn}) = 2 / 7

𝑠𝑖𝑚 𝑠1, 𝑠2 =
𝑠1 ∩ 𝑠2
𝑠2 ∪ 𝑠2

Problems:
All words weighted equally
Same word with different suffix treated differently (e.g., love & loves)
Semantic significance ignored (e.g., adores & loves are the same)
Duplicates are ignored (“Tim really, really loves Korn”)

EXAMPLE

STOP WORDS
With a stop list, you exclude from the dictionary entirely the
commonest words. Intuition:
• They have little semantic content: the, a, and, to, be
• There are a lot of them: ~30% of postings for top 30 words

Sometimes you want to include them, as they affect meaning
• Phrase queries: “King of Denmark”
• Various song titles, etc.: “Let it be”, “To be or not to be”
• “Relational” queries: “flights to London”

Sec. 2.2.2

STOP WORDS IN PYTHON

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've",
"you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his',
'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them',
'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll",
'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has',
'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or',
'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against',
'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to',
'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then',
'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each',
'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same',
'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should',
"should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn',
"couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't",
'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't",
'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't",
'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]

STEMMING
Reduce terms to their “roots” before indexing
“Stemming” performs crude affix chopping
• language dependent
• e.g., automate(s), automatic, automation all

reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

Sec. 2.2.4

for exampl compress and
compress ar both accept
as equival to compress

Most common algorithm for stemming English
• Other options exist, e.g., snowball

Conventions + 5 phases of reductions
• phases applied sequentially
• each phase consists of a set of commands
• sample convention: Of the rules in a compound

command, select the one that applies to the longest
suffix.

Sec. 2.2.4

PORTER’S ALGORITHM

sses → ss
ies → i
ational → ate
tional → tion

Weight of word sensitive rules
(m>1) EMENT →
• replacement→ replac
• cement → cement

Sec. 2.2.4

TYPICAL RULES IN PORTER

STEMMING IN PYTHON

tim
love
the
band
korn

STEP WORDS + STEMMING

tim love band korn
tim ador rock group korn
tim love eat corn
tim use love korn hate
tim absolut love korn
tim complet detest perform name korn
tim deep passion outfit goe korn
tim love listen band korn eat corn

sen = [
"Tim loves the band Korn.",
"Tim adores the rock group Korn.",
"Tim loves eating corn.",
"Tim used to love Korn, but now he hates them.",
"Tim absolutely loves Korn.",
"Tim completely detests the performers named Korn",
"Tim has a deep passion for the outfit the goes by the name of Korn",
"Tim loves listening to the band Korn while eating corn."

]

COSINE SIMILARITY

Given two vectors, a standard way to measure how similar they are

Cos(v1, v2) = closeness of two vectors (smaller is closer)

(2,1)

(1,2)

Θ

Cos(Θ) = V1 • V2 / ||V1|| x ||V2||

Cos(Θ) = [1 2] • [2 1] / (sqrt(5)) ^ 2
Acos(4 / 5) = 36.8°

(2,.3)

(.2,2)

Θ

||V1|| = 2.01, ||V2|| = 2.02
Cos(Θ) = [.2 2] • [2 .3] / 2.015

= 1/2.015
Acos(1/2.015) = 60.2°

COSINE SIMILARITY OF WORD VECTORS
Cos(Θ) = V1 • V2 / ||V1|| x ||V2||

1 2 3
S1 = Tim loves Korn

4 5 6
S2 = Tim loves eating corn

V1 = 1 1 1 0 0 0
V2 = 1 0 0 1 1 1

V1 • V2 = 1
||V1|| = sqrt(3)
||V2|| = sqrt(4)

1 / sqrt(3) * sqrt(4) = .29

1 2 3
S1 = Tim loves Korn

4 5 6 7 8
S2 = Tim absolutey adores the band Korn

V1 = 1 1 1 0 0 0 0 0
V2 = 1 0 1 1 1 1 1 1

V1 • V2 = 2
||V1|| = sqrt(3)
||V2|| = sqrt(7)

2 / sqrt(3) * sqrt(7) = .43

Typically, when using cosine similarity, we don’t take
the acos of the values (since acos is expensive)

JACCARD VS COSINE

S1 = Tim loves Korn
S2 = Tim loves eating corn

CosSim(S1,S2) = .29
Jaccard(S1,S2) = .4

S3 = Tim absolutely adores the band Korn
CosSim(S1,S3) = .43
Jaccard(S1,S3) = .28

Jaccard more sensitive to different document lengths than CosSim

CosSim can incorporate repeated words (by using non-binary vectors)

CLICKER
Consider two setences:

Sam loves limp bizkit
Sam eats limp biscuits

What is their Jaccard similarity?
A. 4/6
B. 2/8
C. 2/6
D. Something else

What is their Cosine similarity?
A. 1/4
B. 2/4
C. 4/6
D. Something else

S1: 1 1 1 1 0 0
S2: 1 0 1 0 1 1
S1 • S2 = 2
||S1|| = ||S2|| = sqrt(4)

{Sam, limp}

{Sam, loves, limp, bizkit, eats, biscuits}

https://clicker.csail.mit.edu/6.s079/

IMPLEMENTING COSINE SIMILARITY

[[0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0]
[0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0]
[0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1]
[1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0]
[0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0]
[0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0]
[0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0]]

['absolut', 'ador', 'band', 'complet', 'corn', 'deep',
'detest', 'eat', 'goe', 'group', 'hate', 'korn',
'listen', 'love', 'name', 'outfit', 'passion', 'perform',
'rock', 'tim', 'use']

band korn timlove

IMPLEMENTING COSINE SIMILARITY

[[1. 0.45 0.5 0.67 0.75 0.41 0.41 0.76]
[0.45 1. 0.22 0.4 0.45 0.37 0.37 0.34]
[0.5 0.22 1. 0.45 0.5 0.2 0.2 0.76]
[0.67 0.4 0.45 1. 0.67 0.37 0.37 0.51]
[0.75 0.45 0.5 0.67 1. 0.41 0.41 0.57]
[0.41 0.37 0.2 0.37 0.41 1. 0.33 0.31]
[0.41 0.37 0.2 0.37 0.41 0.33 1. 0.31]
[0.76 0.34 0.76 0.51 0.57 0.31 0.31 1.]]

Tim loves the band Korn
Tim adores the rock group Korn

Tim loves eating corn
Tim used to love Korn,

but now he hates them

COSINE SIMILARITY PLOT
Includes
stemming

WHICH WORDS MATTER: TF-IDF
Problem: neither Jaccard nor Cosine Similarity have a way to
understand which words are important

TF-IDF tries to estimate the importance of words based on
1) Their Term Frequency (TF) in a document
2) Their Inter-document Frequency (IDF), across all documents

Assumptions: If a term appears frequently in a document, it’s more
important in that document

If a term appears frequently in all documents, its less important

TF-IDF EQUATIONS

t = t
d = document
ft,d = frequency of t in d

For each term t in d, tf(t,d) is the fraction of words in d that are t

𝑡𝑓 𝑡, 𝑑 =
𝑓!,#

∑!!∈# 𝑓!!,#

𝑖𝑑𝑓 𝑡, 𝐷 = 𝑙𝑜𝑔
𝑁

{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑

N = number of documents
D = set of all documents
{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑 |= # documents which use term t

For each term t in all D, idf(t,D) is inversely proportional to the number of
documents that use t

TF-IDF EQUATIONS

t = t
d = document
ft,d = frequency of t in d

𝑡𝑓 𝑡, 𝑑 =
𝑓!,#

∑!!∈# 𝑓!!,#
𝑖𝑑𝑓 𝑡, 𝐷 = 𝑙𝑜𝑔

𝑁
{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑

N = number of documents
D = set of all documents
{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑 |= # documents which use term t

𝑡𝑓– 𝑖𝑑𝑓 𝑡, 𝑑, 𝐹 = 𝑡𝑓 𝑡, 𝑑 • 𝑖𝑑𝑓 𝑡, 𝐷

TF-IDF EXAMPLE
S1 = Tim loves Korn
S2 = Tim loves eating corn

Terms = Tim, loves, Korn, eating Korn

tf-idf(Tim,s1) = tf(Tim,s1) x idf(Tim) = 1/3 x log (2/2) = 0
tf-idf(loves,s1) = tf(loves,s1) x idf(loves) = 1/3 x log (2/2) = 0
tf-idf(Korn,s1) = tf(Korn,s1) x idf(Korn) = 1/3 x log (2/1) = 1/3 x .69 = 0.23

tf-idf(eating,s2) = tf(eating,s2) x idf(eating) = 1/4 x log(2/1) = 0.17
tf-idf(corn,s2) = tf(corn,s2) x idf(corn) = 1/4 x log(2/1) = 0.17

𝑡𝑓 𝑡, 𝑑 =
𝑓!,#

∑!!∈# 𝑓!!,#

𝑖𝑑𝑓 𝑡, 𝐷 = 𝑙𝑜𝑔
𝑁

{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑

Words in all documents aren’t helpful if we’re trying to rank documents
according to their similarity or do keyword search

S1 = [0, 0, .23]
S2 = [0, 0, .17, .17]

TF-IDF IN PYTHON
These parameters make it match

equations on previous slide

[[1. 0.13 0.26 0.29 0.37 0.11 0.11 0.57]
[0.13 1. 0.05 0.09 0.11 0.06 0.06 0.07]
[0.26 0.05 1. 0.17 0.22 0.04 0.04 0.68]
[0.29 0.09 0.17 1. 0.25 0.07 0.07 0.16]
[0.37 0.11 0.22 0.25 1. 0.1 0.1 0.21]
[0.11 0.06 0.04 0.07 0.1 1. 0.06 0.06]
[0.11 0.06 0.04 0.07 0.1 0.06 1. 0.06]
[0.57 0.07 0.68 0.16 0.21 0.06 0.06 1.]]

Tim loves the band Korn
Tim adores the rock group Korn

Tim loves eating corn
Tim used to love Korn,

but now he hates them

TF-IDF not a great choice for these sentences, because it downweights
frequent words (Korn and loves)

MODERN ML TECHNIQUES
Modern deep learning has completely transformed text processing tasks like this

NLP models, e.g., BERT and GPT-3 trained to understand documents

Models are trained to predict missing words:
Tim loves the ____ Korn
Tim loves eating ____

Using billions of documents on the Web (training takes years of GPU time!!!)

Models take a window of text (e.g., 512 words) and produce an output vector
(e.g., 768 floats) for each word

Vector represents the “meaning” of that word in the context of the natural
language in which it appears

This vector can be used to predict the next word, or to measure the similarity of
meaning of two words

We’re going to try
BERT, which is a
slightly older model
than GPT-3

BERT ARCHITECTURE

https://towardsdatascience.com/bert-for-
measuring-text-similarity-eec91c6bf9e1

Each word in
input assigned a
768 element
output vector

110M params
(GPT3 is 175B!)

USING BERT VECTORS
Each word is represented by a set of 768-element outputs
Convert to a single element 768-vector for each sentence by averaging
words in document
Compute similarity between vectors (e.g., using Cosine Similarity)

Python sentence-transformers package makes this trivial

A popular BERT-
like model known
to perform well

Does averaging
across documents

Contains a 768-
element vector
for each
document

USING BERT VECTORS

[[1. 0.97 0.49 0.83 0.92 0.81 0.93 0.78]
[0.97 1. 0.46 0.82 0.91 0.81 0.93 0.77]
[0.49 0.46 1. 0.42 0.52 0.41 0.43 0.81]
[0.83 0.82 0.42 1. 0.83 0.86 0.8 0.67]
[0.92 0.91 0.52 0.83 1. 0.79 0.87 0.76]
[0.81 0.81 0.41 0.86 0.79 1. 0.8 0.66]
[0.93 0.93 0.43 0.8 0.87 0.8 1. 0.71]
[0.78 0.77 0.81 0.67 0.76 0.66 0.71 1.]]

Tim loves the band Korn
Tim adores the rock group Korn

Tim loves eating corn
Tim used to love Korn,

but now he hates them

Captures meaning of sentences much better than other
metrics

HEAT MAP

SUMMARY
Saw three classes of tools – grep, sed, and awk, based on regular
expressions to transform data

Saw how tools like Instabase and Wrangler try to automate this

Looked at text processing techniques
Jaccard and Cosine similarity
Tokenization, stemming, stop lists
TF-IDF
Embeddings using BERT

We will return to embeddings in a few weeks

