Piazza signup: http://dsg.csail.mit.edu/6.5079/
http://piazza.com/mit/spring2022/6s079

6.S079 S
Lecture 4 ==k

Sam Madden

Key ideas:

Pandas Lab 1 Next Weds
Parquet

FARS Example

Recap: Last Two Lectures

* Relational Model
e SQL
e Database Tuning with Indexes

 Bands schema

* Bands: bandid, name, genre
* Shows: showid, show_bandid REFERENCES bands.bid, date, venue

* Fans: fanid, name, birthday
* BandFans: bf bandid REFERENCES bands.bandid, bf fanid REFERENCES fans.fanid

Bandfans Database Tuning Example

* Created a larger fake version of bandfans
* 1M likes
* 800 fans
* 100K bands

Understanding Database Plans

* Most database systems provide an “explain” _
. This query takes 80ms to execute
command that shows how it executes a query not siow, but this isn’t a large DB, and

EXPLAIN SELECT cou nt(*) could be painful if we have to run many
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)
Hash Cond: (bandfans.bf bandid = bands.bandid)
-> Seqg Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)
-> Seqg Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

Scan

* Most database systems provide an “explain” [EELEIELE

command that shows how it executes a query
EXPLAIN SELECT count(*)

FROM bandfans JOIN bands ON bf bandid = bandid

WHERE name = 'limp bizkit' Scan
Bands (name =
Example: POSTGRES imp bizkit)

Aggregate (cost=18210.82..18210.83 rows=1 width=8)

-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf bandid = bands.bandid)

-> Seqg Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seqg Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = '"limp bizkit'::text)

Parse tree
Read bottom up

How Can We Make This Faster?

 Goal: Reduce amount of data read

* What about just scanning bands rows that correspond to ‘limp bizkit’?
* Index on bands.name

* Could we just scan the bandfans rows that correspond to ‘limp bizkit’?
* Index on bandfans.bf_bandid

Creating An Index

 CREATE INDEX band_name ON bands(name);
 CREATE INDEX bf _index ON bandfans(bf bandid);

B-Tree Index Example (B=2)

THean File” 1] 2 3 4 s e 7 8
P korn limp slip justin k.d. lilnasx beatles mariah
Unordered records bizkit knot bieber lang carey

B-Tree Index Example (B=2)

<= > korn
korn
” o 1] 2| 3| 4 5| 6 7| 8
Heap File korn limp slip justin k.d. lilnas x beatles mariah
Unordered records bizkit ~ knot bieber lang carey

"Heap File”
Unordered records

B-Tree Index Example (B=2)

<= > korn
korn
</ \>

<= >
justin justin
bieber bieber

1] 2| 3| 4]
korn limp slip justin
bizkit knot bieber

<= > limp

limp bizkit

bizkit
5] 6] 7] 8|
k.d. lil nas x beatles mariah

lang carey

B-Tree Index Example (B=2)

<=
korn
<= >
justin justin
bieber bieber
— ~
beatles justin k.d. korn
bieber lang
"Heap File” Ll 2.' 3! .4| .
korn limp slip justin
Unordered records bizkit knot bieber

> korn

T

<= > limp

limp bizkit

bizkit

¥ T
lilnas limp mariah slip
X bizkit carey knot
5] 6] 7| 8|
k.d. lilnas x beatles mariah
lang carey

B-Tree Index Example (B=2)

Can lookup a particular record in

<= >
Korn it log(N) access instead of scanning
/ \ whole heap file

<=) >) <= >.Iint\p N=# of records; base of log is B
justin justin limp bizkit

bieber bieber bizkit

beatles justin k.d. korn lilnas limp mariah slip
bieber lang X bizkit carey knot
” 4 1] 2| 3| 4 5] 6] 7| 8|
Heap File korn limp slip justin k.d. lilnasx beatles mariah

Unordered records bizkit ~ knot bieber lang carey

B-Tree Index Example (B=2)

Find “slipknot” Can lookup a particular record in

<= >
Korn it log(N) access instead of scanning
/ \.\) whole heap file

<=) >) <= >.Iint\p N=# of records; base of log is B
justin justin limp bizkit

bieber bieber bizkit

— ~ ¥
beatles justin k.d. korn lilnas limp mariah slip
bieber lang X bizkit carey knot
” 4 1] 2| 3| 4 5] 6] 7| 8|
Heap File korn limp slip justin k.d. lilnasx beatles mariah

Unordered records bizkit kn‘ bieber lang carey

Index-Only Scans

Count # records > ‘lil nas x’

Don’t need to go to
heap file if we just

<= > korn want the artist names
<= > <= > limp
justin justin limp bizkit
bieber bieber bizkit
— O e
beatles justin k.d. korn lilnas limp maria slip .
) T Next block pointers
bieber lang X bizkit carey knot
” 4 1] 2| 3| 4 5| 6] 7] 8|
Heap File korn limp slip justin k.d. lilnas x beatles mariah
Unordered records bizkit knot bieber lang carey

Why Does an Index on
Bandfans.bf_bandid Help?

Vpcf(ﬁ)
bandfans
bands bf bandid bandid

Nname

Given the bandid of limp bizkit (determined via a scan or index lookup), we can
directly look up records in bandfans that match

Since there is only 1 record in bands for ‘limp bizkit’, this is a single index lookup
instead of building a hash table on bandfans

Postgres

create index bf_index on bandfans(bf_bandid);

EXPLAIN SELECT count(*)

FROM bandfans JOIN bands ON bf bandid = bandid
WHERE name = 'limp bizkit’

Aggregate (cost=2162.44..2162.45 rows=1 width=8)

. . ki
-> Nested Loop (cost=0.42..2162.36 rows=30 width=0) Iﬁndlnnplw kﬁ.
record by scanning

bands

-> Seqg Scan on bands (cost=0.00..1918.84 rows=3 width=4)

Filter: ((name)::text = 'limp bizkit'::text)

-> 1Index Only Scan using bf index on bandfans (cost=0.42..56.17 rows=2500 width=4)
Index Cond: (bf bandid = bands.bandid)

Postgres

create index bf_index on bandfans(bf_bandid); Estimated cost 2000 vs 12000
Actual 8ms vs 80ms

EXPLAIN SELECT count(*)

FROM bandfans JOIN bands ON bf bandid = bandid
WHERE name = 'limp bizkit’

Aggregate (cost=2162.44..2162.45 rows=1 width=8) For each limp bizkit

-> | Nested Loop (cost=0.42..2162.36 rows=30 width=0) record (3 estimated)
-> Seqg Scan on bands (cost=0.00..1918.84 rows=3 width=4)

Filter: ((name)::text = 'limp bizkit'::text)

-> 1Index Only Scan using bf index on bandfans (cost=0.42..56.17 rows=2500 width=4)

Index Cond: (bf bandid = bands.bandid)

Do an index only scan to count the number of fans
Can do an index only scan because we just need the count of records — don’t need any other fields from bandfans

Postgres

create index bf index on bandfans(bf_bandid);
create index band_name on bands(name);

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf bandid = bandid
WHERE name = 'limp bizkit’

Aggregate

—->

(cost=259.94..259.95 rows=1 width=8)

Nested Loop (cost=0.72..259.87 rows=30 width=0)

->

->

Estimated cost 260 vs 2000 vs 12000
Actual .5 ms vs 8 ms vs 80 ms

160x speedup!

Use index to directly
lookup ‘limp bizket’

Index Scan using band name on bands (cost=0.29..16.34 rows=3 width=4)

Index Cond: ((name)::text = 'limp bizkit'::text)

Index Only Scan using bf 1index on bandfans (cost=0.42..56.17 rows=2500 width=4)

Index Cond: (bf bandid = bands.bandid)

Monday’s Reading

* Critique of SQL

* Some specific complaints about, e.g.,
* json and windowing support
* Verbose join syntax
* Pitfalls around, e.g., subqueries

Against SQL

Published 2021-07-09

* More generally:

 Lack of standards for extensions, e.g., new types or procedural support

* New features, e.g., json and windows, are added via new syntax, rather than
libraries as in most languages
* Massive spec, very complex to support, huge burden on developers

Recap: Some Common Data Access
Themes

* SQL provides a powerful set-oriented way to get the data you want
* Joins are the crux of data access and primary performance concern

* To speed up queries, “read what you need”
* Indexing & Index-only Scans
* Predicate pushdown
* E.g., using an index to find ‘limp bizkit’ records
* Column-orientation

* More on this later — we can physically organize data to avoid reading parts of records we
don’t need

Onto Pandas

* Pandas is a python library for working with tabular data
* Set-oriented thinking in Python

* Provides relation-algebra like ability to filter, join, and transform data

¢ 3 9 s
T % ’
))
\ |
-| Z,
Res \
3 .
{
7 {

"——.-——-»_‘-'-d\""'

YOULIKE!

| 2
A
4 =

Z

Loading a Data Set

pandas pd

Pandas tables are called “data frames”

df = pd.read_csv("bands.csv")
print(df)

As in SQL, columns are named and typed

All dataframes have an “index” — by default, a Unlike SQL, they are also ordered (i.e., can access records

monotonically increasing number A/‘/ by their position, and the notion of “next record” is well
\\ bandid bandname genredﬁmaﬁ
0 1 limp bizkit rock
1 2 korn rock
2 3 creed rock
3 £ nickelback rock

Accessing Columns

print(df.bandname)
. C Dots and brackets are equivalent
0 Ll Losto2L G Can’t use dots if field names are reserved

1 korn Jield names af
2 creed keywords (e.g., “type”, “class”)
3 nickelback

print(df[”QEHEe“])
Name: bandname, dtype: object

0 rock
1 rock
2 rock
3 rock

Name: genre, dtype: object

Accessing Rows

#limp bizkit rows

df_1lb = df[df.bandname == 'limp bizkit']

print(df_1b)

bandid bandname genre
0 1 1limp bizkit rock

#get the record at position 1
print(df.iloc[1])

bandid 2
bandname korn
genre rock

Name: 1, dtype: object

Array of Booleans with
len(df) values in it

Indexing into a dataframe
with a list of bools returns
records where value in list

is true
bandid bandname
0 1 1limp bizkit
1 2 korn
2 3 creed
3 4 nickelback

genre
rock
rock
rock
rock

iloc vs loc

print(df.loc[1," re])

* loc uses the dataframe index
rock
column to access rows and
Index : column names to access data
column Dandid bandname genre
9 1 limp bizkit rock
1 2 korn rock * iloc uses the position in the
2 3 creed rock dataframe and index into list of
3 4 nickelback rock columns to access data
df.loc[1,’bandid’] * By default index column and

df.iloc[1,0] position are the same

Changing the Index

df _new = df.set_index("bandname")
print(df_new)

bandid genre

bandname

limp bizkit 1 rock
korn 2 rock
creed 3 rock
nickelback 4 rock

print(df_new.loc["creed"])

bandid 3
genre rock
Name: creed, dtype: object

e Given dataframe with bandname as index

Clicker

bandname
limp bizkit
korn

creed
nickelback

bandid genre

1 rock
2 rock
3 rock
4 rock

* What is does this statement output?
print(df.iloc[1l,1],df.loc[‘korn’, 'bandid’])

0N wz>r

rock 2
22
2 rock
12

https://clicker.mit.edu/6.5079/

Transforming Data

df["is_rock"] = df.genre == "rock"
print(df) bandid bandname genre is_rock
() 1 1limp bizkit rock True
1 2 korn rock True
2 3 creed rock True
3 4 nickelback rock True
df.loc[df.bandname == 'limp bizkit', 'genre'] = 'terrible'
; bandid bandname genre
print(df) 0 1 limp bizkit terrible
ik 2 korn rock
2 3 creed rock
3 4 nickelback rock

Must Use iloc/loc to Change Data

This works:

df. loc[df.bandname ' b '] = ° ‘

This does not (even though it is a legal way to read data):
df [df.bandname ' 1 '] = '

/Users/madden/6.s079/lec4-code/code.py:14: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

Grouping
Apply “count” to all non-grouping columns

/

df_grouped = df.groupby('genre").count()
print(df_grouped) ‘\\\\\

bandid bandname

Creates a “GroupByObject” which supports a variety of
aggregation functions

genre
rock 3 8
terrible 1 1

T

Resulting data frame is
indexed by the grouping
column

Multiple Aggregates

df_grouped = df.groupby("genre").agg(=("bandid","max"),
=("bandname","count")) I
print(df_grouped)
Name of column in output data frame
Note funky syntax

max_band num_bands
genre
rock 4 3
terrible 1 1

Joining (Merge)

df_bandfans = pd.read_csv("bandfans.csv")

df_merged = df.merge(df_bandfans, ="bandid", ="bf_bandid")
print(df_merged) N

Join attributes
”left” data frame is the one we are calling merge on
“right” data frame is the one we pass in

bandid bandname genre bf_bandid bf_fanid
9 1 Ulimp bizkit terrible 1 1
1 1 Ulimp bizkit terrible 1 2
2 2 korn rock 2 1
3 3 creed rock 3 1

Bands that don’t join are missing

Left/Right/Outer Join

df_merged = df.merge(df_bandfans, ="bandid", ="bf_bandid" ="left"

print(df_merged)

| bandid bandname genre bf_bandid bf_fanid
0 1 Ulimp bizkit terrible 1.0 1.0
1 1 1limp bizkit terrible 1.0 2.0
2 2 korn rock 2.0 1.0
3 3 creed rock 3.0 1.0
4 4 nickelback rock NaN NaN

Chained Expressions

 All Pandas operations make a copy of their input and return it (unless
you specify inplace=True)

* This makes long chained expressions common
* Inefficient, but syntactically compact

df_merged = df.merge(df_bandfans, ; "\
groupby (" "I\
agg ((" "))
print(df_merged)
num_fans
bandname
creed 1
korn 1

limp bizkit 2

Break

Example: Driving Fatalities in the US

* Motor vehicle crashes are the leading cause of death for people ages 1-54
» 38,000 people die each year
* ~30% of fatal crashes involve alcohol

* The National Highway Traffic Safety Administration publishes detailed
data about every fatal crash (FARS)

Efficient Data Loading: Parquet

* Parquet is a file format that is MUCH more efficient
than CSV for storing tabular data

* Data is stored in binary representation

* Uses less space

* Doesn’t require conversion from strings to internal
types

* Doesn’t require parsing or error detection

* Column-oriented, making access to subsets of
columns much faster

Parquet Format

* Data is partitioned sets of rows, called “row groups”
* Within each row group, data from different columns is stored separately

Row
Group 1

Row
Group 2

Row
Group N

Header: Offset of start of each row / column group, and ranges of
records in each row group

Col 1 Block 1 Col 2 Block 1 Col 3 Block 1
Col 1 Block 2 Col 2 Block 2 Col 3 Block 2
Col 1 Block 3 Col 2 Block 3

Col 1 Block 4 Col 2 Block 4 Col 3 Block 3
Col 1 Block 5 Col 2 Block 5 Col 3 Block 4
Col 1 Block 6

Col 1 Block i Col 2 Block j Col 3 Block k
Col 1 Block i+1 Col 2 Block j+1 Col 3 Block k+1

Col 1 Block i+1

Using header, can
efficiently read any
subset of columns or
rows without
scanning whole file
(unlike CSV)

Within a row group,
data for each column
is stored together

Predicate Pushdown w/ Parquet & Pandas

pd.read parquet(‘file.pq’, columns=[‘Col 1’, ‘Col 2'])
* Only reads coll and col2 from disk

* For a wide dataset (e.g., our vehicle dataset w/ 93 columns), saves a
ton of I/O

Header: Offset of start of each row / column group, and ranges of
records in each row group

— ' Col1flock1 | Col 3 Block 1
Group 1 Col 1 Block 2 Col 3 Block 2
Row Col 3 Block 3
Group 2 Col 3 Block 4

Col 3 Block k
Row ! |)
Group N Col 1 Block i+1 Col 2 Block j+1 Col 3 Block k+1

Col 1 Block i+1

Performance Measurement

* Compare reading CSV to parquet to just columns we need

t = time.perf_counter()
df = pd.read_csv("FARS2019NationalCSV/Person.CSV", = "IS0-8859-1")

print(f'"csv elapsed = {time.perf_counter() - t:.3} seconds")

t = time.perf_counter()
df = pd.read_parquet("2019.pq")
print(f"parquet elapsed = {time.perf_counter() - t:.3} seconds")

t = time.perf_counter()
df = pd.read_parquet("2019.pq", = ['STATE', 'ST_CASE', 'DRINKING', 'PER_TYP'])

print(f"parquet subset elapsed = {time.perf_counter() - t:.3} seconds")

csv elapsed = 1.18 seconds
parquet elapsed = 0.338 seconds 47x speedup
parquet subset elapsed = 0.025 seconds

When to Use Parquet?

* Will always be more efficient than CSV

* Converting from Parquet to CSV takes time, so only makes sense to do
so if working repeatedly with a file

* Parquet requires a library to access/read it, whereas many tools can
work with CSV

* Because CSV is text, it can have mixed types in columns, or other

inconsistencies

* May be useful sometimes, but also very annoying!
* Parquet does not support mixed types in a column

Back to FARS Example

* Let’s look at how drunk driving has changed over the years

Pandas vs SQL

* Could we have done this analysis in SQL?
* Probably...

* But not the plotting, or data cleaning, or data downloads
* So would need Python to clean up data, reload into SQL, run queries
* Declaring schemas, importing data, etc all somewhat painful in SQL

* So usual workflow is to use SQL to get to the data in the database,
and then python for merging, cleaning and plotting

* Generally, databases will be faster for things SQL does well, and they
can handle data that is much larger than RAM, unlike Python

Next Time

* Guest Lecture
* Anant Bharwaj
* Former Ph.D. student in our group

* Founded Instabase, a platform
transforming unstructured (e.g.,
text & images) to structured (e.g.,
tabular) data

EINEBENEISLOTHIEL

