
6.S079
Lecture 3

Sam Madden

Key ideas:
More SQL
Indexes and performance tuning

Piazza signup:
http://piazza.com/mit/spring2022/6s079

http://dsg.csail.mit.edu/6.S079/

Lab 0 Due
Lab 1 Next Week

Recap: SQL Syntax and Joins

• Bands schema
• Bands: bandid, name, genre
• Shows: showid, show_bandid REFERENCES bands.bid, date, venue
• Fans: fanid, name, birthday
• BandFans: bf_bandid REFERENCES bands.bandid, bf_fanid REFERENCES fans.fanid

Dates of ‘slipknot’ shows

SELECT date
FROM shows JOIN bands ON show_bandid = bandid
WHERE name = ‘slipknot’

Alternately

SELECT date
FROM shows, bands
WHERE show_bandid = bandid
AND name = ‘slipknot’

Bands: bandid, name, genre
Shows: showid, show_bandid, date, venue
Fans: fanid, name, birthday
BandFans: bf_bandid, bf_fanid

Aliases and Ambiguity

• Fans who like ‘slipknot’

SELECT name
FROM fans JOIN bandfans ON bf_fanid = fanid
JOIN bands on bf_bandid = bandid
WHERE name = ‘slipknot’

This doesn’t work. Why?

Unclear which “name” we are
referring to

Bands: bandid, name, genre
Shows: showid, show_bandid, date, venue
Fans: fanid, name, birthday
BandFans: bf_bandid, bf_fanid

3 table join
(fans ⨝ bandfans) ⨝ bands

Fans

BandFans

⨝
⨝

Bands

Aliases and Ambiguity

• Fans who like ‘slipknot’
• Solution: disambiguate which table we are referring to

SELECT name f.name
FROM fans f JOIN bandfans ON bf_fanid = fanid
JOIN bands b on bf_bandid = bandid
WHERE name b.name = ‘slipknot’

Declare ‘f’ and ‘b’ as aliases for
fans and bands

Bands: bandid, name, genre
Shows: showid, show_bandid, date, venue
Fans: fanid, name, birthday
BandFans: bf_bandid, bf_fanid

Clicker / SQL Comprehension

• Fill in the blank to complete this query to “find shows by slipknot
after Jan 1 2022”? (Assume syntax for dates is correct)

SELECT date, venue FROM ____________ WHERE name = ‘slipknot’
AND date > ‘1/1/2022’

1. show, bands
2. shows JOIN bands ON showid = show_bandid
3. shows JOIN bands ON bandid = show_bandid
4. shows JOIN bands ON bandid = showid

Bands: bandid, name, genre
Shows: showid, show_bandid, date, venue
Fans: fanid, name, birthday
BandFans: bf_bandid, bf_fanid

Aggregation

• Find the number of fans of each band

SELECT bands.name,count(*)
FROM bands JOIN bandfans ON bandid=bf_bandid
GROUP BY bands.name

• What about bands with 0 fans?

Left Join?
• T1 LEFT JOIN T2 ON pred produces all rows in T1 x T2 that satisfy pred, plus all

rows in T1 that don’t join with any row in T2
• For those rows, fields of T2 are NULL

Example:
SELECT bands.name, MAX(bf_fanid)
FROM bands LEFT JOIN bandfans
ON bandid=bf_bandid
GROUP BY bands.name

What about COUNT?

name bandid

slipknot 1

limp bizkit 2

mariah carey 3

bf_bandid bf_fanid

1 1

2 2

2 3

name MAX

slipknot 1

limp bizkit 3

mariah carey NULL

Can also use “RIGHT JOIN” and “OUTER
JOIN” to get all rows of T2 or all rows of
both T1 and T2

Left Join?

• T1 LEFT JOIN T2 ON pred produces all rows in T1 x T2 that satisfy
pred, plus all rows in T1 that don’t satisfy pred
• For those rows, fields of T2 are NULL

Example:
SELECT bands.name, COUNT(*)
FROM bands LEFT JOIN bandfans
ON bandid=bf_bandid
GROUP BY bands.name

name bandid

slipknot 1

limp bizkit 2

mariah carey 3

bf_bandid bf_fanid

1 1

2 2

2 3

name COUNT

slipknot 1

limp bizkit 2

mariah carey 1 Not what we wanted!

Left Join?

• T1 LEFT JOIN T2 ON pred produces all rows in T1 x T2 that satisfy
pred, plus all rows in T1 that don’t satisfy pred
• For those rows, fields of T2 are NULL

Example:
SELECT bands.name, COUNT(bf_bandid)
FROM bands LEFT JOIN bandfans
ON bandid=bf_bandid
GROUP BY bands.name

name bandid

slipknot 1

limp bizkit 2

mariah carey 3

bf_bandid bf_fanid

1 1

2 2

2 3

name COUNT

slipknot 1

limp bizkit 2

mariah carey 0
COUNT(*) counts all rows including NULLs, COUNT(col) only
counts rows with non-null values in col

Self Joins
• Fans who like ‘slipknot’ and ‘limp bizkit’

SELECT f.name
FROM fans f JOIN bandfans ON bf_fanid = fanid
JOIN bands b on bf_bandid = bandid
WHERE b.name = 'slipknot' AND b.name = 'limp bizkit'

Doesn’t work!

OR b.name = ‘limp bizkit’?

Also doesn’t work!

Self Joins
• Fans who like ‘slipknot’ and ‘limp bizkit’
• Need to build two tables, one of ‘slipknot’ fans and

one of ‘limp bizkit’ fans, and intersect them

SELECT f1.name
FROM fans f1 JOIN bandfans bf1 ON bf_fanid = fanid
JOIN bands b1 on bf_bandid = bandid
JOIN fans f2 ON f1.fanid = f2.fanid
JOIN bandfans bf2 ON bf2.bf_fanid = f2.fanid
JOIN bands b2 ON b2.bandid = bf2.bf_bandid
WHERE b1.name = 'slipknot' AND b2.name = 'limp bizkit'

Fans f1

BandFans
bf1

⨝
⨝

Bands b1

Fans f2 ⨝
f1.fanid =
f2.fanid

BandFans
bf2

⨝
⨝Bands b2

Nested Queries
SELECT fans1.name
FROM (

SELECT fanid, f.name
FROM fans f JOIN bandfans ON bf_fanid = fanid
JOIN bands b ON bf_bandid = bandid
WHERE b.name = 'slipknot’) AS fans1,

JOIN (
SELECT fanid, f.name
FROM fans f JOIN bandfans ON bf_fanid = fanid
JOIN bands b ON bf_bandid = bandid
WHERE b.name = 'limp bizkit’) AS fans2

ON fans1.fanid = fans2.fanid

Every query is a relation
(table)

Generally anywhere you can
use a table, you can use a
query!

Simplify with Common Table Expressions
(CTEs)

WITH fans1 AS
(SELECT fanid, f.name
FROM fans f JOIN bandfans ON bf_fanid = fanid
JOIN bands b ON bf_bandid = bandid
WHERE b.name = 'slipknot'),

fans2 AS
(SELECT fanid, f.name
FROM fans f JOIN bandfans ON bf_fanid = fanid
JOIN bands b ON bf_bandid = bandid
WHERE b.name = 'limp bizkit')

SELECT fans1.name
FROM fans1 JOIN fans2 ON fans1.fanid = fans2.fanid

CTEs work better than nested
expressions when the CTE
needs to be referenced in
multiple places

Study Break

• Write a SQL query to find all the bands who have fans who are fans of
‘limp bizkit’
• I.e.:

• Mary is a fan of limp bizkit and korn
• Tim is a fan of creed and justin Bieber
• Sam is a fan of limp bizkit and nickelback
• Janelle is a fan of nickelback and slipknot

Should return korn and nickelback

Bands: bandid, name, genre
Shows: showid, show_bandid, date, venue
Fans: fanid, name, birthday
BandFans: bf_bandid, bf_fanid

WITH lb_fans AS
(SELECT bf_fanid fanid

FROM bandfans
JOIN bands ON bandid = bf_bandid
WHERE bands.name = 'limp bizkit'

)
SELECT bands.name
FROM bandfans
JOIN lb_fans ON bf_fanid = fanid
JOIN bands ON bf_bandid = bandid

fanid name

1 mary

2 tim

3 sam

4 janelle

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

bandid name

1 slipknot

2 limp bizkit

3 korn

4 nickelback

5 creed

6 Justin bieber

fanid

1

3

lb_fans

bands

limp bizkit

korn

limp bizkit

nickelback

Need to eliminate duplicates
Filter out limp bizkit

Solution

WITH lb_fans AS
(SELECT bf_fanid fanid

FROM bandfans
JOIN bands ON bandid = bf_bandid
WHERE bands.name = 'limp bizkit'

)
SELECT DISTINCT bands.name
FROM bandfans
JOIN lb_fans ON bf_fanid = fanid
JOIN bands ON bf_bandid = bandid
WHERE bands.name != 'limp bizkit'

Recursive Queries
• Suppose we want to find all bands connected to a fan who likes ‘limp

bizkit’?

limp
bizkit

korn

Justin
biebernickel

back

creed

Slip
knot

tim

sam

janelle

mary

A: korn, nickelback, slipknot

Challenge: each successive join follows
one set of edges. Size of graph is
unbounded!

Recursive Queries
• Recursive WITH clause can join with itself
• Example: define a table t with one column n, iteratively join with with itself

WITH RECURSIVE t(n) AS
(VALUES (1)
UNION
SELECT n+1
FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

n

1

n

1

2

n

1

2

3

n

1

2

3

4

n

1

2

3

4

5

Recursive Queries
• Suppose we want to find all bands connected to a fan who likes ‘limp

bizkit’?
WITH recursive lb_fan_bands as (

SELECT bf_fanid, bf_bandid
FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'

UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid)
)
SELECT distinct name FROM lb_fan_bands
JOIN bands ON bf_bandid = bandid
WHERE name != 'limp bizkit'

Tricky – add new fans of
bands we already found
and new bands liked by
fans we already found

Recursion Example

• Limp bizkit is band 2

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

WITH recursive lb_fan_bands as (
SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid))

bf_bandid bf_fanid

2 1

2 3

Base case

Recursion Example

• Limp bizkit is band 2

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

WITH recursive lb_fan_bands as (
SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid))

bf_bandid bf_fanid

2 1

2 3

Base case
bf_bandid bf_fanid

2 1

2 3

Iter 1

Recursion Example

• Limp bizkit is band 2

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

WITH recursive lb_fan_bands as (
SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid))

bf_bandid bf_fanid

2 1

2 3

Base case
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

Iter 1

Recursion Example

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

WITH recursive lb_fan_bands as (
SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid))

bf_bandid bf_fanid

2 1

2 3

Base case
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

Iter 1

Base case
already got
these rows

• Limp bizkit is band 2

Recursion Example

• Limp bizkit is band 2

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

WITH recursive lb_fan_bands as (
SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid))

bf_bandid bf_fanid

2 1

2 3

Base case
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

Iter 1
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

Iter 2

Iter 1 already
got these fans

Recursion Example

• Limp bizkit is band 2

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

WITH recursive lb_fan_bands as (
SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid))

bf_bandid bf_fanid

2 1

2 3

Base case
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

Iter 1
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

Iter 2

One new fan found

Recursion Example

• Limp bizkit is band 2

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

WITH recursive lb_fan_bands as (
SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid))

bf_bandid bf_fanid

2 1

2 3

Base case
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

Iter 1
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

4 4

Iter 2

Recursion Example

• Limp bizkit is band 2

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

WITH recursive lb_fan_bands as (
SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid))

bf_bandid bf_fanid

2 1

2 3

Base case
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

4 4

Iter 2
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

4 4

Iter 3

One new band found

Recursion Example

• Limp bizkit is band 2

bf_bandid bf_fanid

2 1

3 1

5 2

6 2

2 3

4 3

1 4

4 4

WITH recursive lb_fan_bands as (
SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf_fanid, bandfans.bf_bandid
FROM bandfans JOIN lb_fan_bands
ON (lb_fan_bands.bf_fanid = bandfans.bf_fanid

OR lb_fan_bands.bf_bandid = bandfans.bf_bandid))

bf_bandid bf_fanid

2 1

2 3

Base case
bf_bandid bf_fanid

2 1

2 3

3 1

4 3

4 4

Iter 2 bf_bandid bf_fanid

2 1

2 3

3 1

4 3

4 4

1 4

Iter 3

At this point all bands
have been found!
Recursion stops when no
new records found.

Take a Break

Database Tuning Primer

• Sometimes queries don’t run as fast as you would like
• Need to “tune” the database to run faster

• Unlike SQL, most tuning is very specific to the database you are using
• Many different databases out there, e.g., MySQL, Postgres, Oracle, SQLite,

SQLServer (aka AzureDB), Redshift, Snowflake, etc

• Before we explore some of the most common ways to tune, let’s
understand why a query may be slow

If you want to understand this in more detail, take 6.814/6.830!

Analytics vs Transactions
• Analytics is more typical of data science

• E.g., dashboards or ad-hoc queries looking at trends and aggregates
• Queries often read a significant amount of data (> 1% of DB?)
• Updates are infrequent / batch
• Focus is on minimizing the amount of data we need to read, and ensuring sufficient

memory/resources for expensive operations like sorts & joins

• Transactions are common in websites, other online applications
• Create, Read, Update, Delete (CRUD) workload
• Less complex queries (often “key/value” is sufficient)
• Requires mechanisms to prevent concurrent updates to same data
• Focus is on eliminating contention in these mechanisms, ensuring queries are indexed

Focus in
this class

Where Does Time Go?

• In analytics applications, CPU + I/O dominate
• CPU: instructions to compute results
• Most typically the time to join tables

• I/O: transferring data from disk
• Most typically reading data from tables or moving data to / from memory

when results don’t fit into RAM

Example

• Joining a 1 GB table T to a 100 MB table R
• 10 Bytes / record (so T = 100M records, R = 10M records)
• System can process 100M records / sec
• Disk can read 100 MB/sec
• 200 MB of memory

• Executing join:
• Load R into a hash table (1 sec I/O + 0.1 sec to process 10M records)
• Scan through T, looking up each record in hash table (10 sec I/O, + 1 sec to process

100M records)
• Total time 12.1 sec

Scan T
Hash
Join

Scan R
Hash Table on R

join attr

Tuning Goal

• Reduce the number of and size of records read and processed

• Ensure that we have sufficient memory for joins and other operations
• If neither join result can fit into memory system falls back on much slower

implementations that shuffle data to / from disk
• Surprisingly, database systems still answer queries when tables are larger

than memory!
• Fall back on “external” implementations

Bandfans example

• Created a larger fake version of bandfans
• 1M likes
• 800 fans
• 100K bands

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf_bandid = bands.bandid)
-> Seq Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain”
command that shows how it executes a query

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES

Parse tree
Read bottom up

This query takes 80ms to execute
Not slow, but this isn’t a large DB, and
could be painful if we have to run many
times

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf_bandid = bands.bandid)
-> Seq Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain”
command that shows how it executes a query

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES
Scan

Bands (name =
‘limp bizkit’)

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf_bandid = bands.bandid)
-> Seq Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain”
command that shows how it executes a query

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES
Scan

Bands (name =
‘limp bizkit’)

Estimated time and number of rows
Time units are arbitrary
Two numbers: time to produce 1st record
.. time to produce last record

Here time is a combination of CPU + I/O

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf_bandid = bands.bandid)
-> Seq Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain”
command that shows how it executes a query

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES
Scan

Bands (name =
‘limp bizkit’)

Most expensive steps

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf_bandid = bands.bandid)
-> Seq Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain”
command that shows how it executes a query

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES

Hash
Table

Scan
Bands (name =

‘limp bizkit’)

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf_bandid = bands.bandid)
-> Seq Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain”
command that shows how it executes a query

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES

Hash
Table

Scan
bandfans

Scan
Bands (name =

‘limp bizkit’)

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf_bandid = bands.bandid)
-> Seq Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain”
command that shows how it executes a query

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES

Hash
Table

Scan
bandfans

Scan
Bands (name =

‘limp bizkit’)

Hash
Join

How Can We Make This Faster?

• Goal: Reduce amount of data read
• What about just scanning bands rows that correspond to ‘limp bizkit’?
• Index on bands.name

• Could we just scan the bandfans rows that correspond to ‘limp bizkit’?
• Index on bandfans.bandid

Creating An Index

• CREATE INDEX band_name ON bands(name);
• CREATE INDEX bf_index ON bandfans(bf_bandid);

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

<=
limp
bizkit

> limp
bizkit

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

Can lookup a particular record in
log(N) access instead of scanning
whole heap file

N=# of records; base of log is B

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

Can lookup a particular record in
log(N) access instead of scanning
whole heap file

N=# of records; base of log is B

Find “slipknot”

Pros and Cons of Indexing

• Pros:
• Reduces time to lookup specific records

• Cons:
• Uses space
• Increases insert time
• If heap file isn’t ordered on index, may not speed up I/O

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

Find name > ‘lil nas x’ “Random” I/O – jumping around on disk
Is 10-100x slower than reading in order

“Clustering” a B-Tree
• Records are in order of index
• Alternately called a “primary index”
• Can only have one such index <=

korn
> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

7 |
beatles

4 |
justin
bieber

5 |
k.d.
lang

1 |
korn

6 |
lil nas x

2 |
limp
bizkit

8 |
mariah
carey

3 |
slip knot

How this is done is DB specific.

Find name > ‘lil nas x’

Index-Only Scans

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

Find name > ‘lil nas x’
Don’t need to go to
heap file if we just
want the artist names

Next block pointers

Postgres

create index bf_index on bandfans(bf_bandid);

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit’

Aggregate (cost=2162.44..2162.45 rows=1 width=8)

-> Nested Loop (cost=0.42..2162.36 rows=30 width=0)

-> Seq Scan on bands (cost=0.00..1918.84 rows=3 width=4)

Filter: ((name)::text = 'limp bizkit'::text)

-> Index Only Scan using bf_index on bandfans (cost=0.42..56.17 rows=2500 width=4)

Index Cond: (bf_bandid = bands.bandid)

Find limp bizkit
record by scanning
bands

Postgres

create index bf_index on bandfans(bf_bandid);

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit’

Aggregate (cost=2162.44..2162.45 rows=1 width=8)

-> Nested Loop (cost=0.42..2162.36 rows=30 width=0)

-> Seq Scan on bands (cost=0.00..1918.84 rows=3 width=4)

Filter: ((name)::text = 'limp bizkit'::text)

-> Index Only Scan using bf_index on bandfans (cost=0.42..56.17 rows=2500 width=4)

Index Cond: (bf_bandid = bands.bandid)

For each limp bizkit
record (3 estimated)

Do an index only scan to count
the number of fans

Estimated cost 2000 vs 12000
Actual 8ms vs 80ms

Postgres

create index bf_index on bandfans(bf_bandid);
create index band_name on bands(name);

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit’

Aggregate (cost=259.94..259.95 rows=1 width=8)

-> Nested Loop (cost=0.72..259.87 rows=30 width=0)

-> Index Scan using band_name on bands (cost=0.29..16.34 rows=3 width=4)

Index Cond: ((name)::text = 'limp bizkit'::text)

-> Index Only Scan using bf_index on bandfans (cost=0.42..56.17 rows=2500 width=4)

Index Cond: (bf_bandid = bands.bandid)

Use index to directly
lookup ‘limp bizket’

Estimated cost 260 vs 2000 vs 12000
Actual .5 ms vs 8 ms vs 80 ms

160x speedup!

Today’s Reading

• Critique of SQL
• Some specific complaints about, e.g.,
• json and windowing support
• Verbose join syntax
• Pitfalls around, e.g., subqueries

• More generally:
• Lack of standards for extensions, e.g., new types or procedural support
• New features, e.g., json and windows, are added via new syntax, rather than

libraries as in most languages
• Massive spec, very complex to support, huge burden on developers

Recap: Some Common Data Access
Themes

• SQL provides a powerful set-oriented way to get the data you want
• Joins are the crux of data access and primary performance concern
• To speed up queries, “read what you need”
• Indexing & Index-only Scans
• Predicate pushdown

• E.g., using an index to find ‘limp bizkit’ records
• Column-orientation

• More on this later – we can physically organize data to avoid reading parts of records we
don’t need

Next Time

• Pandas / Python
• When to use SQL vs Python

