Piazza signup:
http://piazza.com/mit/spring2022/6s079

6.S079
Lecture 2

Sam Madden

Key ideas:
Tabular data & relational model
Relational algebra & SQL

http://dsg.csail.mit.edu/6.5079/

An 3QL query walks into a bar and sees two tables.
He walks up to them and says "Can I join you?"

Data
Science
Pipeline

Visualization/Presentation €

Modeling/Prediction

)

)

Querying/Processing

T Tables

Stored Data

¢ Tables

Transformation/Integration

T Tables

Structure Extraction
Image Segmentation
Signal Processing
Regularization
Re-Sampling
Cleaning
Outlier Removal

T Tables

Raw Data
Text
Images
Sounds
Sensor Readings
Csv
Log files
Web Forms

Tables Are Everywhere

* Most data is published in tabular form
* E.g., Excel spreadsheets, CSV files, databases

* Going to spend next few lectures talking about working with tabular
data

* Focus on “relational model” used by databases and common
programming abstractions like Pandas in Python.

Getting Tables Right is Subtle

 What makes a table or set of tables “good”?

* Consistent
* E.g., values in each column are the same type

* Compact
* Information is not repeated
* Easy-to-use
* In a format that programming tools can ingest

* Well-documented
* E.g., column names make sense, documentation tells you what each value means

Spreadsheets
=» Bad Data
Hygiene

C_______________________________

Using properly structured
relations & databases encourage
a consistent, standardized way to
publish & work with data

Station

LRS- R RN R

]
D W00~ T e LD R

S

22 | Station

[
o0
D W00 T N LD P

3D
3 D

36 | Station

4
ra
D W 00~ O N L P

g
- @

4 4 » M

B c u] 3 & G H |
Lake Lanier Water Quality Trend Monitoring
Samples taken: October 7, 2007
Field Measurements
A Water Conduct. Cond @25C
Mame Time Temp'C Temp'C pH nicromhostem vicromhostem 0.0, mafl
Baluz Cr. r 1200 26 13 7.39 106 112 82
Flat Cr. r 1315 27 24 7.28 1244 1267 74
LimestoneCr. " 1130 25 20 716 123 138 85
Chatt. R. r 1100 24 21 1 42 50 7.5
Little R r 1040 24 13 T.22 &0 E7 71
Wahoo Cr. 0945 20 12 712 [:41] 70 70
Squirrel Cr. r 1005 23 20 T.08 73 82 85
Chestates R. " 0320 13 20 7.24 4 45 749
Si Mile Cr. r 1405 28 20 B.96 139 207 7.9
Buford Dam Splw”™ 1440 29 10 E42 36 43 45
Eolling Bridge 7 1345 27 24 7.27 47 47 74
Lab Measurements
Fecal BOD; TSS Hardness Alkalinity coD
Mame cfb100ml magfl mgfl Turb MTU mgll CaC0y magfl CaCo, magfl
Baluz Cr. 280 13 0Ee 22 44 43 34
Flat Cr. 80 19 0E 0.8 217 54 123
Limestone Cr. 100 20 12 33 54 54 79
Chatt. R. B0 21 4.8 125 14 15 69
Little R. 300 13 1.4 125 17 23 549
Wahoo Cr. 1270 13 4.2 16.0 20 26 24
Squirrel Cr. 870 20 1.2 5.8 27 33 74
Chestates R. 130 17 30 5.0 13 15 6.4
Sixt Mile Cr. 1400 1.7 18 27 47 13 20
Buford Dam Splw g 1.7 18 4.7 14 15 25
Bolling Bridge 1] 15 2.2 258 13 16 39
NOz+MO, MH, TotM TotF
Mame magfl magfl mafl mafl
Balus Cr. 06634 00033 11524 0.0041
Flat Cr. 170169 00222 239783 0.0263
Limestone Cr. 04382 00169 233754 0.0071
Chatt. R. 04082 00433 103025 00207
Little R 07740 00283 55963 0.0115
‘wahoo Cr. 02170 00423 148538 00489
Squirrel Cr. 025625 00642 652055 00717
Chestates R. 01765 00159 19598 00163
Six Mile Cr. 83309 00178 12.9063 0.0151
Buford Dam Splwt 0.2991 00829 59394 0.0017
Baolling Bridge 00147 00074 17477 00067
9-09-07 9-30-07 10-07-07 10-30-07 11-11-07 12-01-07

Comments
p. cloudy
p. cloudy
p. cloudy
p. cloudy
clear
clear
clear

p. cloudy
p. cloudy
p. cloudy
p. cloudy

12-10-07

bandfan.com Tabular Representation
“Relations”

Named, typed columns

Members '/

1/1/2000 32 Vassar St srmadden
2 Tim 1/2/1980 46 Pumpkin St timk

Unique records
Schema: the names and types of the fields in a table
Tuple: a single record

Unique identifier for a row is a key
A minimal unique non-null identifier is a primary key

bandfan.com Tabular Representation

Members
e B S R
1/1/2000 32 Vassar St srmadden
2 Tim 1/2/1980 46 Pumpkin St timk
Bands
mm How to capture relationship between
1 Nickelback Terrible bandfan members and the bands?
2 Creed Terrible
3 Limp Bizkit Terrible

Types of Relationships

* One to one: each band has a genre

* One to many: bands play shows, one band per show *

* Many to many: members are fans of multiple bands

* Of course, shows might only multiple bands — this is a design decision

Chad Kroeger of Nickelback

Tim the Superfan

NICKELBACK

AIZKIT

2. Nickelback

Politics

Who is holding the signs in lowa that
say led Cruz likes Nickelback?

By Katie Zezima & N

January 23, 2016

ANKENY, Iowa - Sen. Ted Cruz (R-Tex.) has been dogged on the

campaign trail here in Iowa by a curious protester: a young man

holding a sign that states, "Ted Cruz likes Nickelback."
|

It's no surprise that Creed won this poll. It wasn't even close. This is a band so hated that their own fans sued them after a famously

Representing Fandom Relationship - Try 1

Member-band-fans

Tim 1/2/1980 46 Pumpkin St timk Nickelback Terrible
2 Tim 1/2/1980 46 Pumpkin St timk 2 Creed Terrible
2 Tim 1/2/1980 46 Pumpkin St timk 3 Limp Bizkit ~ Terrible

What’s wrong with this representation?

Member-band-fans

Representing Fandom Relationship - Try 1

2
2
2
1

Tim
Tim

Sam

1/2/1980
1/2/1980
1/2/1980
1/1/2000

46 Pumpkin St
46 Pumpkin St
46 Pumpkin St
32 Vassar St

timk
timk
timk

srmadden

2
3
NULL

Adding NULLs is messy because it again introduces the possibility of

missing data

Nickelback
Creed
Limp Bizkit
NULL

Terrible
Terrible
Terrible
NULL

Representing Fandom Relationship - Try 1

Member-band-fans

w = N NN

1/2/1980
Tim 1/2/1980
Tim 1/2/1980
Sam 1/1/2000

Markos 1/1/2005

Duplicated data
Wastes space

46 Pumpkin St
46 Pumpkin St
46 Pumpkin St
32 Vassar St
77 Mass Ave

Possibility of inconsistency

timk
timk
timk
srmadden

markakis

2
3
NULL
2

Nickelback
Creed
Limp Bizkit
NULL
Creed

Terrible

Terrible

Terrible
NULL

Terrible- Awful

Representing Fandom Relationship - Try 2

Columns that reference keys in other
Member-band-fans tables are Foreign keys

mmm

1/2/1980 46 Pumpkin St timk /\\
2 Tim 1/2/1980 46 Pumpkin St timk 2 /\

2 Tim 1/2/1980 46 Pumpkin St timk 3

Problem solved?
Still have redundancy

1 Nickelback Terrible
2 Creed Terrible
3 Limp Bizkit Terrible

Representing Fandom Relationship - Try 3

“Normalized”

Members

mm Birthday | Address | Email __ Member-Band-Fans
Tim 1/2/1980 46 PumpkinSt timk [FaniD | BandID

1 Sam 1/1/2000 32 Vassar St srmadden 2 1
2 2
Bands 2 3
Relationship table
1 Nickelback Terrible

Some members can

2 Creed Terrible
be a fan of no bands

3 Limp Bizkit Terrible
No duplicates

One-to-Many Relationships

Bands

1 Nickelback Terrible

2 Creed Terrible

3 Limp Bizkit Terrible

Shows

o octon [ome
1 Gillette 4/5/2020

2 Fenway 5/1/2020

3 Agganis 6/1/2020

How to represent the
fact that each show is

played by one band?

One-to-Many Relationships

Bands
1 Nickelback Terrible
2 Creed Terrible Add a band columns to
3 Limp Bizkit Terrible shows
Shows
Gillette 4/5/2020 multiple shows
2 Fenway 5/1/2020 1 Some bands can play no

3 Agganis 6/1/2020 2 shows

General Approach

* For many-to-many relationships, create a relationship table to
eliminate redundancy

* For one-to-many relationships, add a reference column to the table
“one” table
* E.g., each show has one band, so add to the shows table

* Note that deciding which relationships are 1/1, 1/many, many/many
is up to the designer of the database
* E.g., could have shows with multiple bands!

Entity Relationship Diagrams

Fans
Genre
Names
Emails
Addresses
Straightforward to read off relations from this
Shows (showid, date, venue)
Dates

Venues

Entity Relationship Diagrams

Fans
Genre
Names
Emails
Addresses
Straightforward to read off relations from this
Shows (showid, date, venue)
Bands(bandid, name, genre)
Dates

Venues

Entity Relationship Diagrams

Name

Genre

Dates
Venues

Straightforward to read off relations from this

Shows (showid, date, venue, bandid)
Bands(bandid, name, genre)

Fans

Names
Emails
Addresses

Entity Relationship Diagrams

Fans

Names
Emails
Addresses

Name n n
Genre
Straightforward to read off relations from this
Shows (showid, date, venue, bandid)
Bands(bandid, name, genre)
Fans(fanid, name, email, address)
Dates

Venues

Entity Relationship Diagrams

Name n n
Fans
Genre
Names
Emails
Addresses
Straightforward to read off relations from this
Shows (showid, date, venue, bandid)
Bands(bandid, name, genre)
Fans(fanid, name, email, address)
Dates BandFans(fandid, bandid)
Venues

Following this process results in a set of tables that are
redundancy free (usually) = “3r normal form”

Now you know 90% of what you need to
know about database design

IFOTH NﬂIIMAl FORM KNOW

6. oA
snwin’%u ARE

1efator

Study Break

Patient database

Want to represent patients at hospitals with doctors

Patients have names, birthdates

Doctors have names, specialties

Hospitals have names, addresses 1-to-many
One doctor can treat multiple patients, each patient has one doctor

Each patient in one hospital, hospitals have many patients

Each doctor can work at many hospitals
many-to-many

Write out schema that captures these relationships, including primary keys and
foreign keys

)
Sol’n
Underline indicates key 1-to-many

 Patients (pid, name, bday, did references doctors.did, hid references
hospitals.hid)

* Doctors (did, name, specialty)
* Hospital (hid, name, addr)
* DoctorHospitals(did,hid) many-to-many

Operations on Relations

Can write programs that iterate over and operate on relations

But there are a very standard set of common operations we might want to perform
* Filter out rows by conditions (“select”)
* Connect rows in different tables (“join”)
» Select subsets of columns (“project”)
* Compute basic statistics (“aggregate”)

Relational algebra is a formalization of such operations
» Relations are unordered tables without duplicates (sets)

» Algebra =» operations are closed, i.e., all operations take relations as input and produce
relations as output

e Like arithmetic over R

A “database” is a set of relations

Relational Algebra

* Projection (rt(T,c1, ..., cn)) — select a subset of columns c1 .. cn
 Selection (o(T, pred)) — select a subset of rows that satisfy pred
e Cross Product (T1 x T2) — combine two tables

e Join (T1, T2, pred) =o(T1 x T2, pred) p<(T1, T2, pred)

Plus set operations (Union, Difference, etc)

All ops are set oriented (tables in, tables out)

Join as Cross Product

Bands

ECTEEITN T

Nickelback
2 Creed
3 Limp Bizkit

Find shows by Creed

o
D>(
bands,
shows,
bands.bandid=shows.bandid
),

name=‘Creed’

Shows

1
2
3
4

1
1
2
3

)

2
3

I

4
4

Nickelback
Creed

Limp Bizkit
Nickelback
Creed

Limp Bizkit
Nickelback
Creed

Limp Bizkit
Nickelback

Creed
Limp Bizkit

Real implementations do not ever materialize
the cross product

Join as Cross Product

Bands

Shows

ETTEENT XTI

Nickelback
2 Creed
3 Limp Bizkit

Find shows by Creed

o
D>(
bands,
shows,
bands.bandid=shows.bandid
),

name=‘Creed’

1
2
3
4

1
1
2
3

1. bandid=bandid

1 1 Nickelback

3 1 :.IIIIlJ BILkIt

2 2 Creed

3 2 Hrrp-Bizkdt

1 2 pNickelbaele——
2 2 Croad

3 3 Limp Bizkit

1 A § s A 4 L ———
> & Creed

(O))

a
=

L. Lo W 1 s
LITITP DIZRNIL

. Bandid bandid Band
Join as Cross Product n » w———

Bands Shows . . ekt
~J L I_IIII|J DIZNIL
BTN ETTIESETT
Nlckelback 1 1 <L - INICUNCINVNAUUIN
2 Creed 2 1 2 2 Creed
3 Limp Bizkit 3 2 3 2 Himp-Bizkit
4 3 1 2 R o
Find shows by Creed 2 S Creea
1. bandid=bandid 3 5 Hrp-Bizkit
o 2. name = ‘Creed’
D<(1 4————Nickelbaek——
bands,
shows 2 4 Creeu
’ . : Do you think this is
bands.bandid=shows.bandid how databases 3 % tirrpBizkit

),

actually execute joins?
name=‘Creed’ y J

Data Flow Graph Representation of Algebra

Select
Name = ‘Creed’

Join

Shows.Bandld =
Bands.Id

k
for 1 .

match

Imagine records flowing out of tables from left to right

Many possible implementations

Suppose we have an index on shows: e.g., we store it sorted by band id

Select
Name = ‘Creed’

Join
Shows.Bandld =
Bands.Id

B2 . | Recora

Index on
shows.bandid

Equivalent Representation

Join
Shows.Bandld =
Bands.Id

Select

Name = ‘Creed’

All bands and shows

Which is better? Why?

Study Break

* Write relational algebra for “Find the bands Tim likes”, using projection,
selection, and join

Members
FaniD | Name | Birthday | Address |Email
Bands Member-Band-Fans

oana>Iname JGemre [ran> | Bani>

* Projection (mt(T,c1, ..., cn)) -- select a subset of columns c1 .. cn
 Selection (sel(T, pred)) -- select a subset of rows that satisfy pred
* Cross Product (T1 x T2) -- combine two tables

* Join (T1, T2, pred) =sel(T1 x T2, pred)

Find the bands Tim likes

Select
Name = ‘Tim’

Join
mbf.fanid =
fans.id

Member- Join

band-fans mbf.bandid = A
. Bands.name
bands.id

Project(P<(

>(o (fans, name="Tim’), member-band-fans),
Bands

),

Bands.name))

Multiple Joins

* Note that with multiple joins there are an exponential number of
orderings, all of which are equivalent

* E.g., (member-band-fans P<i bands) P< fans
(member-band-fans D< fans) <1 bands
(fans D<I bands) < member-band-fans Cross product

* With n tables, n!/2 orderings (assuming a < b is same as b D a)

Relational Identities

* Join reordering
e (aldb)D<c=(alc)Xb

* Selection pushdown
* 0 (aDdb)=0(a) > o(b)

* These are important when executing SQL queries

SQL

High level programming language based on relational model

Declarative: “Say what | want, not how to do it”
Let’s look at some examples and come back to this

E.g., programmers doesn’t need to know what operations the database
executes to find a particular record

Band Schema in SQL

Varchar is a type, meaning a variable length string

CREATE TABLE bands (id int PRIMARY KEY, name varchar, genre varchar);
CREATE TABLE fans (id int PRIMARY KEY, name varchar, address varchar);

CREATE TABLE band_likes(fanid int REFERENCES fans(id), REFERENCES ic &
bandid int REFERENCES bands(id)); foreign key

SQL

* Find the genre of Justin Bieber

SELECT genre
FROM bands
WHERE name = 'Justin Bieber'

Find the Beliebers

SELECT fans.name
FROM bands

JOIN

band_likes bl ON bl.bandid = bands.id

JOIN fans ON|fans.id = bl.fanid
WHERE bands.name = 'Justin Bieber'

Band_likes

Select
Name = ‘Bieber’

Join
bandid =
bands.id

Join
fans.id =
bl.fanid

Connect band_likes to bands

Connect fans to band_likes

The fact that the bands —
bands_likes join comes
first does not imply it will
be executed first!

“Declarative” in the sense
that the programmer
doesn’t need to worry
about this, or the specifics
of how the join will be
executed

Project
fans.name

Find how many fans each band has

SELECT bands.name, BB Joined bands
COUﬂt(*) Get the number of bands each fan likes A / fans table
B
FROM bands
JOIN band_likes bl ON bl.bandid = bands.id
JOIN fans ON fans.id = bl.fanid
GROUP BY bands.name;
Partition the table by fan name --- --- ---
Count 1
Count 2

Count 3

Find the fan of the most bands IR oredeoe:

A
B
SELECT fans.name,
count(™*)
FROM bands

JOIN band_likes bl ON bl.bandid = bands.id]
JOIN fans ON fans.id = bl.fanid HEE N

GROUP BY fans.name Count 1
ORDER BY count(*) DESC LIMIT 1; Count 2

Count 3
Sort from highest to lowest and output the top fan

i

> O
=

SQL Properties

* Declarative — many possible implementations, we don’t have to pick

* E.g., even for a simple selection, may be:
* 1) Iterating over the rows
* 2) Keeping table sorted by primary key and do binary search
* 3) Keep the data in some kind of a tree (index) structure and do logarithmic search

* Many more options for joins
* Not the topic of this course!

* Physical data independence
* As a programmer, you don’t need to understand how data is physically stored
* E.g., sorted, indexed, unordered, etc

* Keeps programs simple, but leads to performance complexity

SQL can get complex

with one_phone_tags as (
select tag_mac_address
from mapmatch_history
where uploadtime >'9/1/2021"::date and uploadtime < '9/10/2021"::date
and json_extract_path_text(device_config,'manufacturer') = 'Apple’
group by 1
having count(distinct device_config_hint) =1
),
ios15_tags as (
select json_extract_path_text(device_config,'version_release') os_version,
json_extract_path_text(device_config,'model') model_number,
tag_mac_address
from mapmatch_history
where uploadtime >='10/11/2021"::date
and json_extract_path_text(device_config,'manufacturer') = 'Apple’
and tag_mac_address in (select tag_mac_address from one_phone_tags)
and substring(os_version, 1, 2) = '15'
group by 1,2,3
),
ios14_tags as (
select json_extract_path_text(device_config,'version_release') os_version,
json_extract_path_text(device_config,'model') model_number,
tag_mac_address
from mapmatch_history
where uploadtime >='9/15/2021"::date and uploadtime <='9/20/2021"::date
and json_extract_path_text(device_config,'manufacturer') = 'Apple'
and tag_mac_address in (select tag_mac_address from one_phone_tags)
and substring(os_version, 1, 2) = '14'
group by 1,2,3),

ios15_trip_stats as (

select tag_mac_address, count(*) ios15_num_trips,

sum(case when mmbh_display_distance_km isnull then 1 else 0 end)
ios15_num_trips_no_phone,

sum(case when mmh_display_distance_km isnull then 1 else 0 end) /
count(*)::float ios15_frac_none,

from triplog_trips join ios15_tags using(tag_mac_address)

where created_date >='10/11/2021"::date

and trip_start_ts >='10/09/2021"::date

and substring(model_number, 1, 8) = 'iPhonel3’

group by tag_mac_address

having count(*) >0
),
jos14 _trip_stats as (

select tag_mac_address, count(*) ios14_num_trips,

sum(case when mmbh_display_distance_km isnull then 1 else 0 end)
ios14_num_trips_no_phone,

sum(case when mmh_display_distance_km isnull then 1 else 0 end) /
count(*)::float ios14_frac_none,

from triplog_trips join ios14_tags using(tag_mac_address)

where created_date >='9/15/2021"::date and created_date <='9/20/2021"::date

and trip_start_ts >='9/13/2021"::date and trip_start_ts <='9/20/2021':.date

and substring(model_number, 1, 8) = 'iPhonel3’

group by tag_mac_address

having count(*) >0
)
select
tag_mac_address,ios14 _num_trips,ios1l4_num_trips_no_phone,iosl4_frac_none,

ios15_num_trips,ios15_num_trips_no_phone,iosl5 frac_none
from ios15_trip_stats join ios14_trip_stats using(tag_mac_address)

Tuning Example: Beliebers

* Find fans of Justin Bieber

SELECT fans.name

FROM bands

JOIN band_likes bl ON bl.bandid = bands.id
JOIN fans ON fans.id = bl.fanid

WHERE bands.name = 'Justin Bieber'

How might we make this query faster?

create index band_names_index on bands(name);

Next Time

* Fancier SQL
* Performance Tuning

* Relational algebra in pandas / python

™ T,

"
2

T ;~T‘Avv'1- .
+ = 2 ~ o
- R av e T
B - —- 3 e
.- g A o s
o s i ¥ N e T o -
—E o I s
B
- o 1 | |
o | i i e 34 | R
e | S
~ U) L g
U | . s | |
—JL_1 - N N 'L

