
6.S079
Lecture 2

Sam Madden

Key ideas:
Tabular data & relational model
Relational algebra & SQL

Piazza signup:
http://piazza.com/mit/spring2022/6s079

http://dsg.csail.mit.edu/6.S079/

Raw Data
Text

Images
Sounds

Sensor Readings
CSV

Log files
Web Forms

Structure Extraction
Image Segmentation

Signal Processing
Regularization
Re-Sampling

Cleaning
Outlier Removal

Transformation/Integration

Stored Data

Querying/Processing

Visualization/Presentation Modeling/Prediction

Tables

Tables

Tables

Tables

Data
Science
Pipeline

Tables Are Everywhere

• Most data is published in tabular form
• E.g., Excel spreadsheets, CSV files, databases

• Going to spend next few lectures talking about working with tabular
data

• Focus on “relational model” used by databases and common
programming abstractions like Pandas in Python.

Getting Tables Right is Subtle

• What makes a table or set of tables “good”?

• Consistent
• E.g., values in each column are the same type

• Compact
• Information is not repeated

• Easy-to-use
• In a format that programming tools can ingest

• Well-documented
• E.g., column names make sense, documentation tells you what each value means

Spreadsheets
è Bad Data
Hygiene

Using properly structured
relations & databases encourage
a consistent, standardized way to
publish & work with data

Tabular Representation

ID Name Birthday Address Email

1 Sam 1/1/2000 32 Vassar St srmadden

2 Tim 1/2/1980 46 Pumpkin St timk

Members

Named, typed columns

Unique records

bandfan.com

Schema: the names and types of the fields in a table
Tuple: a single record

Unique identifier for a row is a key
A minimal unique non-null identifier is a primary key

Primary key

“Relations”

Tabular Representation

ID Name Birthday Address Email

1 Sam 1/1/2000 32 Vassar St srmadden

2 Tim 1/2/1980 46 Pumpkin St timk

Members

ID Name Genre

1 Nickelback Terrible

2 Creed Terrible

3 Limp Bizkit Terrible

Bands

How to capture relationship between
bandfan members and the bands?

Primary key

Primary key

bandfan.com

Types of Relationships

• One to one: each band has a genre
• One to many: bands play shows, one band per show *
• Many to many: members are fans of multiple bands

* Of course, shows might only multiple bands – this is a design decision

Tim the Superfan
Chad Kroeger of Nickelback

Flashback to the 90s

Representing Fandom Relationship – Try 1

FanID Name Birthday Address Email BandID BandName Genre

2 Tim 1/2/1980 46 Pumpkin St timk 1 Nickelback Terrible

2 Tim 1/2/1980 46 Pumpkin St timk 2 Creed Terrible

2 Tim 1/2/1980 46 Pumpkin St timk 3 Limp Bizkit Terrible

What’s wrong with this representation?

Member-band-fans

Representing Fandom Relationship – Try 1

FanID Name Birthday Address Email BandID BandName Genre

2 Tim 1/2/1980 46 Pumpkin St timk 1 Nickelback Terrible

2 Tim 1/2/1980 46 Pumpkin St timk 2 Creed Terrible

2 Tim 1/2/1980 46 Pumpkin St timk 3 Limp Bizkit Terrible

1 Sam 1/1/2000 32 Vassar St srmadden NULL NULL NULL

Adding NULLs is messy because it again introduces the possibility of
missing data

Member-band-fans

FanID Name Birthday Address Email BandID BandName Genre

2 Tim 1/2/1980 46 Pumpkin St timk 1 Nickelback Terrible

2 Tim 1/2/1980 46 Pumpkin St timk 2 Creed Terrible

2 Tim 1/2/1980 46 Pumpkin St timk 3 Limp Bizkit Terrible

1 Sam 1/1/2000 32 Vassar St srmadden NULL NULL NULL

3 Markos 1/1/2005 77 Mass Ave markakis 2 Creed Terrible

Representing Fandom Relationship – Try 1

Duplicated data
Wastes space
Possibility of inconsistency

Member-band-fans

------------ Awful

Representing Fandom Relationship – Try 2

FanID Name Birthday Address Email BandID

2 Tim 1/2/1980 46 Pumpkin St timk 1

2 Tim 1/2/1980 46 Pumpkin St timk 2

2 Tim 1/2/1980 46 Pumpkin St timk 3

Bands
BandID Name Genre

1 Nickelback Terrible

2 Creed Terrible

3 Limp Bizkit Terrible

Member-band-fans
Columns that reference keys in other
tables are Foreign keys

Problem solved?
Still have redundancy

Representing Fandom Relationship – Try 3

FanID Name Birthday Address Email

2 Tim 1/2/1980 46 Pumpkin St timk

1 Sam 1/1/2000 32 Vassar St srmadden

Members

BandID Name Genre

1 Nickelback Terrible

2 Creed Terrible

3 Limp Bizkit Terrible

FanID BandID

2 1

2 2

2 3Bands

Member-Band-Fans

Relationship table

Some members can
be a fan of no bands

No duplicates

“Normalized”

One-to-Many Relationships

ID Name Genre

1 Nickelback Terrible

2 Creed Terrible

3 Limp Bizkit Terrible

ID Location Date

1 Gillette 4/5/2020

2 Fenway 5/1/2020

3 Agganis 6/1/2020

Bands

Shows

How to represent the
fact that each show is
played by one band?

One-to-Many Relationships

ID Name Genre

1 Nickelback Terrible

2 Creed Terrible

3 Limp Bizkit Terrible

ID Location Date BandId

1 Gillette 4/5/2020 1

2 Fenway 5/1/2020 1

3 Agganis 6/1/2020 2

Bands

Shows
Each band can play
multiple shows

Some bands can play no
shows

Add a band columns to
shows

General Approach

• For many-to-many relationships, create a relationship table to
eliminate redundancy
• For one-to-many relationships, add a reference column to the table

“one” table
• E.g., each show has one band, so add to the shows table

• Note that deciding which relationships are 1/1, 1/many, many/many
is up to the designer of the database
• E.g., could have shows with multiple bands!

Entity Relationship Diagrams

Bands Fans

Shows

Like

Play

n n

1

n

Name
Genre

Dates
Venues

Names
Emails
Addresses

Straightforward to read off relations from this

Shows (showid, date, venue)

Entity Relationship Diagrams

Bands Fans

Shows

Like

Play

n n

1

n

Name
Genre

Dates
Venues

Names
Emails
Addresses

Straightforward to read off relations from this

Shows (showid, date, venue)
Bands(bandid, name, genre)

Entity Relationship Diagrams

Bands Fans

Shows

Like

Play

n n

1

n

Name
Genre

Dates
Venues

Names
Emails
Addresses

Straightforward to read off relations from this

Shows (showid, date, venue, bandid)
Bands(bandid, name, genre)

Entity Relationship Diagrams

Bands Fans

Shows

Like

Play

n n

1

n

Name
Genre

Dates
Venues

Names
Emails
Addresses

Straightforward to read off relations from this

Shows (showid, date, venue, bandid)
Bands(bandid, name, genre
Fans(fanid, name, email, address)

)

Entity Relationship Diagrams

Bands Fans

Shows

Like

Play

n n

1

n

Name
Genre

Dates
Venues

Names
Emails
Addresses

Straightforward to read off relations from this

Shows (showid, date, venue, bandid)
Bands(bandid, name, genre
Fans(fanid, name, email, address)
BandFans(fandid, bandid)

)

Following this process results in a set of tables that are
redundancy free (usually) è “3rd normal form”

Now you know 90% of what you need to
know about database design

Study Break
• Patient database
• Want to represent patients at hospitals with doctors
• Patients have names, birthdates
• Doctors have names, specialties
• Hospitals have names, addresses
• One doctor can treat multiple patients, each patient has one doctor
• Each patient in one hospital, hospitals have many patients
• Each doctor can work at many hospitals

Write out schema that captures these relationships, including primary keys and
foreign keys

1-to-many

many-to-many

Sol’n

• Patients (pid, name, bday, did references doctors.did, hid references
hospitals.hid)
• Doctors (did, name, specialty)
• Hospital (hid, name, addr)
• DoctorHospitals(did,hid)

1-to-many

many-to-many

Underline indicates key

Operations on Relations
• Can write programs that iterate over and operate on relations
• But there are a very standard set of common operations we might want to perform

• Filter out rows by conditions (“select”)
• Connect rows in different tables (“join”)
• Select subsets of columns (“project”)
• Compute basic statistics (“aggregate”)

• Relational algebra is a formalization of such operations
• Relations are unordered tables without duplicates (sets)
• Algebra è operations are closed, i.e., all operations take relations as input and produce

relations as output
• Like arithmetic over ℝ

• A “database” is a set of relations

Relational Algebra

• Projection (π(T,c1, …, cn)) – select a subset of columns c1 .. cn
• Selection (σ(T, pred)) – select a subset of rows that satisfy pred
• Cross Product (T1 x T2) – combine two tables
• Join (T1, T2, pred) = σ(T1 x T2, pred)

Plus set operations (Union, Difference, etc)

All ops are set oriented (tables in, tables out)

⨝ (T1, T2, pred)

Join as Cross Product

bandid name

1 Nickelback

2 Creed

3 Limp Bizkit

showid … bandid

1 1

2 1

3 2

4 3

Bandid bandid Band …

1 1 Nickelback

2 1 Creed

3 1 Limp Bizkit

1 2 Nickelback

2 2 Creed

3 2 Limp Bizkit

1 3 Nickelback

2 3 Creed

3 3 Limp Bizkit

1 4 Nickelback

2 4 Creed

3 4 Limp Bizkit

Find shows by Creed

Bands Shows

Real implementations do not ever materialize
the cross product

σ (
⨝(

bands,
shows,
bands.bandid=shows.bandid

),
name=‘Creed’

)

bandid name

1 Nickelback

2 Creed

3 Limp Bizkit

showid … bandid

1 1

2 1

3 2

4 3

Bandid bandid Band

1 1 Nickelback

2 1 Creed

3 1 Limp Bizkit

1 2 Nickelback

2 2 Creed

3 2 Limp Bizkit

1 3 Nickelback

2 3 Creed

3 3 Limp Bizkit

1 4 Nickelback

2 4 Creed

3 4 Limp Bizkit

Find shows by Creed

Bands Shows

1. bandid=bandid
σ (
⨝(

bands,
shows,
bands.bandid=shows.bandid

),
name=‘Creed’

)

Join as Cross Product

bandid name

1 Nickelback

2 Creed

3 Limp Bizkit

showid … bandid

1 1

2 1

3 2

4 3

Bandid bandid Band

1 1 Nickelback

2 1 Creed

3 1 Limp Bizkit

1 2 Nickelback

2 2 Creed

3 2 Limp Bizkit

1 3 Nickelback

2 3 Creed

3 3 Limp Bizkit

1 4 Nickelback

2 4 Creed

3 4 Limp Bizkit

Find shows by Creed

Bands Shows

1. bandid=bandid
2. name = ‘Creed’σ (

⨝(
bands,
shows,
bands.bandid=shows.bandid

),
name=‘Creed’

)

Do you think this is
how databases
actually execute joins?

Join as Cross Product

Bands

Shows

Select
Name = ‘Creed’

Join
Shows.BandId =

Bands.Id

Project
Date

Imagine records flowing out of tables from left to right

BandId Record

1

Data Flow Graph Representation of Algebra

Check
for
match

Bands

Shows

Select
Name = ‘Creed’

Join
Shows.BandId =

Bands.Id

Project
Date

Suppose we have an index on shows: e.g., we store it sorted by band id

BandId Record

Many possible implementations

Check
for
match

Index on
shows.bandid

Bands

Shows

Select
Name = ‘Creed’

Join
Shows.BandId =

Bands.Id

Project
Date

All bands and shows

Equivalent Representation

Which is better? Why?

Study Break
• Write relational algebra for “Find the bands Tim likes”, using projection,

selection, and join

• Projection (π(T,c1, …, cn)) -- select a subset of columns c1 .. cn
• Selection (sel(T, pred)) -- select a subset of rows that satisfy pred
• Cross Product (T1 x T2) -- combine two tables
• Join (T1, T2, pred) = sel(T1 x T2, pred)

FanID Name Birthday Address Email

Members

BandID Name Genre FanID BandID
Bands Member-Band-Fans

Find the bands Tim likes

Fans

Member-
band-fans

Select
Name = ‘Tim’

Join
mbf.fanid =

fans.id

Project
Bands.name

Bands

Join
mbf.bandid =

bands.id

Project(⨝(
⨝(σ (fans, name=’Tim’), member-band-fans),
Bands

),
Bands.name))

Multiple Joins

• Note that with multiple joins there are an exponential number of
orderings, all of which are equivalent

• E.g., (member-band-fans ⨝ bands) ⨝ fans
(member-band-fans ⨝ fans) ⨝ bands
(fans ⨝ bands) ⨝member-band-fans

• With n tables, n!/2 orderings (assuming a ⨝ b is same as b ⨝ a)
Cross product

Relational Identities

• Join reordering
• (a ⨝ b) ⨝ c = (a ⨝ c) ⨝ b

• Selection pushdown
• σ (a ⨝ b) = σ(a) ⨝ σ(b)

• These are important when executing SQL queries

SQL

High level programming language based on relational model

Declarative: ”Say what I want, not how to do it”
Let’s look at some examples and come back to this

E.g., programmers doesn’t need to know what operations the database
executes to find a particular record

Band Schema in SQL

CREATE TABLE bands (id int PRIMARY KEY, name varchar, genre varchar);

CREATE TABLE fans (id int PRIMARY KEY, name varchar, address varchar);

CREATE TABLE band_likes(fanid int REFERENCES fans(id),
bandid int REFERENCES bands(id));

REFERENCEs is a
foreign key

Varchar is a type, meaning a variable length string

SQL

• Find the genre of Justin Bieber

SELECT genre
FROM bands
WHERE name = 'Justin Bieber'

Find the Beliebers
SELECT fans.name
FROM bands
JOIN band_likes bl ON bl.bandid = bands.id
JOIN fans ON fans.id = bl.fanid
WHERE bands.name = 'Justin Bieber'

Connect band_likes to bands

Connect fans to band_likes

Bands
Select

Name = ‘Bieber’

Band_likes

Join
bandid =
bands.id

Project
fans.name

Fans

Join
fans.id =
bl.fanid

The fact that the bands –
bands_likes join comes
first does not imply it will
be executed first!

“Declarative” in the sense
that the programmer
doesn’t need to worry
about this, or the specifics
of how the join will be
executed

Find how many fans each band has

SELECT bands.name,
count(*)

FROM bands
JOIN band_likes bl ON bl.bandid = bands.id
JOIN fans ON fans.id = bl.fanid
GROUP BY bands.name;

Partition the table by fan name

Get the number of bands each fan likes A

B

C

B

C

B

Count 1

Joined bands
/ fans table

Count 2
Count 3

Find the fan of the most bands

SELECT fans.name,
count(*)

FROM bands
JOIN band_likes bl ON bl.bandid = bands.id
JOIN fans ON fans.id = bl.fanid
GROUP BY fans.name
ORDER BY count(*) DESC LIMIT 1;

Sort from highest to lowest and output the top fan

A

B

C

B

C

B

Count 1

Joined bands
/ fans table

Count 3

Count 2

B 3

C 2

A 1

SQL Properties
• Declarative – many possible implementations, we don’t have to pick
• E.g., even for a simple selection, may be:

• 1) Iterating over the rows
• 2) Keeping table sorted by primary key and do binary search
• 3) Keep the data in some kind of a tree (index) structure and do logarithmic search

• Many more options for joins
• Not the topic of this course!

• Physical data independence
• As a programmer, you don’t need to understand how data is physically stored
• E.g., sorted, indexed, unordered, etc

• Keeps programs simple, but leads to performance complexity

SQL can get complex
with one_phone_tags as (

select tag_mac_address
from mapmatch_history
where uploadtime > '9/1/2021'::date and uploadtime < '9/10/2021'::date
and json_extract_path_text(device_config,'manufacturer') = 'Apple’
group by 1
having count(distinct device_config_hint) = 1

),
ios15_tags as (
select json_extract_path_text(device_config,'version_release') os_version,

json_extract_path_text(device_config,'model') model_number,
tag_mac_address

from mapmatch_history
where uploadtime >= '10/11/2021'::date
and json_extract_path_text(device_config,'manufacturer') = 'Apple'
and tag_mac_address in (select tag_mac_address from one_phone_tags)
and substring(os_version, 1, 2) = '15'
group by 1,2,3

),
ios14_tags as (
select json_extract_path_text(device_config,'version_release') os_version,

json_extract_path_text(device_config,'model') model_number,
tag_mac_address

from mapmatch_history
where uploadtime >= '9/15/2021'::date and uploadtime <= '9/20/2021'::date
and json_extract_path_text(device_config,'manufacturer') = 'Apple'
and tag_mac_address in (select tag_mac_address from one_phone_tags)
and substring(os_version, 1, 2) = '14'
group by 1,2,3),

ios15_trip_stats as (
select tag_mac_address, count(*) ios15_num_trips,
sum(case when mmh_display_distance_km isnull then 1 else 0 end)

ios15_num_trips_no_phone,
sum(case when mmh_display_distance_km isnull then 1 else 0 end) /

count(*)::float ios15_frac_none,
from triplog_trips join ios15_tags using(tag_mac_address)
where created_date >= '10/11/2021'::date
and trip_start_ts >= '10/09/2021'::date
and substring(model_number, 1, 8) = 'iPhone13'
group by tag_mac_address
having count(*) > 0

),
ios14_trip_stats as (

select tag_mac_address, count(*) ios14_num_trips,
sum(case when mmh_display_distance_km isnull then 1 else 0 end)

ios14_num_trips_no_phone,
sum(case when mmh_display_distance_km isnull then 1 else 0 end) /

count(*)::float ios14_frac_none,
from triplog_trips join ios14_tags using(tag_mac_address)
where created_date >= '9/15/2021'::date and created_date <= '9/20/2021'::date
and trip_start_ts >= '9/13/2021'::date and trip_start_ts <= '9/20/2021'::date
and substring(model_number, 1, 8) = 'iPhone13'
group by tag_mac_address
having count(*) > 0

)
select
tag_mac_address,ios14_num_trips,ios14_num_trips_no_phone,ios14_frac_none,

ios15_num_trips,ios15_num_trips_no_phone,ios15_frac_none
from ios15_trip_stats join ios14_trip_stats using(tag_mac_address)

Tuning Example: Beliebers

• Find fans of Justin Bieber

SELECT fans.name
FROM bands
JOIN band_likes bl ON bl.bandid = bands.id
JOIN fans ON fans.id = bl.fanid
WHERE bands.name = 'Justin Bieber'

How might we make this query faster?

create index band_names_index on bands(name);

Next Time

• Fancier SQL
• Performance Tuning

• Relational algebra in pandas / python

