
6.5830 Lecture 7

Join Algorithms
September 25, 2024

emp dept

Administration

• Due today: lab1, group assignment
• PS2 out later today
• Information about project proposals will be out

tomorrow
• Bootcamp + Quiz prep on 10/4 at 4pm in 32-D463

Important date changes:
• New quiz date 10/9, lecture 10 moves to 10/7
• Project proposal 10/11
• PS2 due 10/7

Plan for Next Few Lectures
Admission Control

Connection Management

Query System

Storage System

Parser

Rewriter

Planner

Executor

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

Lec 8 - Optimizer

Lec 9 – Column Stores

Join Algorithms: Today!

Last Time: Access Methods

• Access method: way to access the records of
the database

• 3 main types:
– Heap file / heap scan
– Hash index / index lookup
– B+Tree index / index lookup / scan

• Many alternatives: e.g., R-trees

• Each has different performance tradeoffs

Indexes Recap

Heap File B+Tree Hash File

Insert O(1) O(logB n) O(1)
Delete O(P) O(logB n) O(1)
Scan O(P) O(logB n + R) -- / O(P)
Lookup O(P) O(logB n) O(1)

n : number of tuples
P : number of pages in file
B : branching factor of B-Tree
R : number of pages in range

B+Trees are Inappropriate For Multi-
dimensional Data

• Consider points of the form (x,y) that I want to
index

• Suppose I store tuples with key (x,y) in a
B+Tree

• Problem: can’t look up y’s in a particular range
without also reading x’s

• Two multidimension indexes: R-Tree &
QuadTree

Example Index with Key = X, Y

X Y

1 2
1 3

1 5

3 12

4 3

4 9

4 11

4 15

5 1

7 1

9 4

9 6

9 7

11 2

Index sorts data on X, then Y

Supports efficient range lookups on X
Allows further filtering on Y, but may be
inefficient

Doesn’t support lookups on Y

R-Trees / Spatial Indexes

x

y

R-Trees / Spatial Indexes

x

y

R-Trees / Spatial Indexes

x

y

Q

Allows lookups on
any sized region of X
or Y

Heap File

Quad-Tree

x

y

Quad-Tree

x

y

Quad-Tree

x

y

Quad-Tree
Intermediate
node – points
to 4 child
nodes

Leaf pages
– 1
pointer

Heap File

Typical Database Setup

Transactional database
Lots of writes/updates
Reads of individual records

Analytics / Reporting Database
“Warehouse”

Lots of reads of many records
Bulk updates

Typical query touches a few columns

“Extract, Transform, Load”

Plan questions

⨝
eno=eno

⨝
dno=dn

o

dept emp

kids

𝛔name=‘eecs’ 𝛔sal>50k

Πename,count

𝛂agg:count(*), group by ename

𝛔count > 7

Storage model &
access methods –
Last time

Implementation?
– This Lecture

Order?
Lecture 8

Join Algorithms
• Nested loops (NL)
• Blocked nested loops
• Index nested loops (INL)
• When tables fit in memory

– Hash (only 1 needs to fit)
– Sort merge (both must fit)

• When tables don’t fit into memory
– Blocked hash join
– External sort merge
– Simple hash
– Grace hash

Notation

Evaluating Join(S,R,predicate)
Assume R is always the smaller table

{S} – number of records in S
|S| – number of pages of S

Memory of size M pages

Nested Loops

for s in S:
 for r in R
 if pred(s,r):
 output s join r

Inner vs outer matters, if only one relation fits in
memory
{S} * {R} comparisons in either case

https://clicker.mit.edu/6.5830/

CPU Complexity I/O Complexity

(A) {R} x S log {S} |S| + |R|

(B) {R} x {S} |S| + |S| x |R|

(C) {R} x {S} |S| + {S} x |R|

(D) |S| x |R| |S| + |R|

(E) {R} x {S} |S| + |R|

(F) {R} x |S| |S| + |S| x |R|

Select all possible correct solutions

Basic Join Summary
CPU Complexity I/O Complexity Notes

Nested loops {R} x {S} |S| + {S}|R|
R doesn’t fit in memory
|S| + |R|
R fits in memory

Choice of inner / outer
matters when R fits in
memory and S doesn’t

Block Nested Loops
B = block size (< M)
while (not at end of R):
 R' = read B records from R
 for s in S:
 for r in R’:
 if pred(s,r):
 output s join r

Pass 1

Pass 2

Pass 3

…
Rec 1
Rec2
Rec3
Rec4

…

RecN

R S

Inner vs outer matters; {S} * {R}
comparisons, but {R}/B passes over S

https://clicker.mit.edu/6.5830/

CPU Complexity I/O Complexity

(A) {R/M} x {S}

(B) {R} x {S/M}

(C) {R} x {S}

(D) {R} x {S}

Basic Join Summary
CPU Complexity I/O Complexity Notes

Nested loops {R} x {S} |S| + {S}|R|
R doesn’t fit in memory
|S| + |R|
R fits in memory

Choice of inner / outer
matters when R fits in
memory and S doesn’t

Blocked nested
loops

{R} x {S} Better to partition R
(fewer passes)

Index Nested Loops

• Assume Index I on Join Attribute of R

for s in S:
for r in lookup s.joinAttr in I:
 output s join r

Index
on joinAttr

of R

Rec 1
Rec2
Rec3
Rec4

…

RecN

S

Inner vs outer matters; {S} lookups
Inner is always indexed attribute
Note that index lookups are random, unless S is ordered
on join attribute and index is clustered on join attribute

Basic Join Summary
CPU Complexity I/O Complexity Notes

Nested loops {R} x {S} |S| + {S}|R|
R doesn’t fit in memory
|S| + |R|
R fits in memory

Choice of inner / outer
matters when R fits in
memory and S doesn’t

Blocked nested
loops

{R} x {S} + |R| Better to partition R
(fewer passes)

Index nested
loops

{R} x D
D is tree depth, < ~5

{R} x D
I/O random unless R sorted
& index clustered on join
attr

Assuming index on S.

(In Memory) Hash Join

• Essentially the same as index nested loops,
with in-memory hash “index” built on the fly

• Build hash table T on join attribute of R

T = build hash table on joinAttr of R
for s in S:

for r in lookup s.joinAttr in T:
 output s join r Hash

Table
on joinAttr

of R

Rec 1
Rec2
Rec3
Rec4

…

RecN

S

Inner vs outer matters; {S}
lookups, requires memory to hold
hash table on R

https://clicker.mit.edu/6.5830/

CPU Complexity I/O Complexity

(A) {R} * {S} |R| + 2 *|S|

(B) {R} + {S} |R| * |S|

(C) {R} * {S} |R| + |S|

(D) {R} + {S} |R| + |S|

R is the inner table and fits into main memory

Basic Join Summary
CPU Complexity I/O Complexity Notes

Nested loops {R} x {S} |S| + {S}|R|
R doesn’t fit in memory
|S| + |R|
R fits in memory

Choice of inner / outer
matters when R fits in
memory and S doesn’t

Blocked nested
loops

{R} x {S} + |R| Better to partition R
(fewer passes)

Index nested
loops

{R} x D
D is tree depth, < ~5

{R} x D
I/O random unless R sorted
& index clustered on join
attr

Assuming index on S.

Hash join {R} + {S} |R| + |S| R must fit into memory

Blocked Hash

• Similar to block nested loops
• Iteratively:

– Build hash table on chunk of R so that hash table
fits in memory

– Probe (lookup in) with all of S
– Repeat with next chunk of R

Basic Join Summary
CPU Complexity I/O Complexity Notes

Nested loops {R} x {S} |S| + {S}|R|
R doesn’t fit in memory
|S| + |R|
R fits in memory

Choice of inner / outer
matters when R fits in
memory and S doesn’t

Blocked nested
loops

{R} x {S} + |R| Better to partition R
(fewer passes)

Index nested
loops

{R} x D
D is tree depth, < ~5

{R} x D
I/O random unless R sorted
& index clustered on join
attr

Assuming index on S.

Hash join {R} + {S} |R| + |S| Both tables must fit in
memory

Blocked hash join + |R|

Sort Merge Join

• Sort both S and R (or use index on each to
traverse in order)

• Merge (no shared duplicates)
while (i < {R} and j < {S}):
 if (R[i].joinAttr == S[j].joinAttr):
 output R[i] join S[j]
 if (R[i].joinAttr < S[j].joinAttr):
 i = i + 1
 else:
 j = j + 1

R

1

3

5

6

S

2

3

4

5

7

Output:

Sort Merge Join

• Sort both S and R (or use index on each to
traverse in order)

• Merge (no shared duplicates)
while (i < {R} and j < {S}):
 if (R[i].joinAttr == S[j].joinAttr):
 output R[i] join S[j]
 if (R[i].joinAttr < S[j].joinAttr):
 i = i + 1
 else:
 j = j + 1

R

1

3

5

6

S

2

3

4

5

7

Output:

Sort Merge Join

• Sort both S and R (or use index on each to
traverse in order)

• Merge (no shared duplicates)
while (i < {R} and j < {S}):
 if (R[i].joinAttr == S[j].joinAttr):
 output R[i] join S[j]
 if (R[i].joinAttr < S[j].joinAttr):
 i = i + 1
 else:
 j = j + 1

R

1

3

5

6

S

2

3

4

5

7

Output: 3

Sort Merge Join

• Sort both S and R (or use index on each to
traverse in order)

• Merge (no shared duplicates)
while (i < {R} and j < {S}):
 if (R[i].joinAttr == S[j].joinAttr):
 output R[i] join S[j]
 if (R[i].joinAttr < S[j].joinAttr):
 i = i + 1
 else:
 j = j + 1

R

1

3

5

6

S

2

3

4

5

7

Output: 3

Sort Merge Join

• Sort both S and R (or use index on each to
traverse in order)

• Merge (no shared duplicates)
while (i < {R} and j < {S}):
 if (R[i].joinAttr == S[j].joinAttr):
 output R[i] join S[j]
 if (R[i].joinAttr < S[j].joinAttr):
 i = i + 1
 else:
 j = j + 1

R

1

3

5

6

S

2

3

4

5

7

Output: 3

Sort Merge Join

• Sort both S and R (or use index on each to
traverse in order)

• Merge (no shared duplicates)
while (i < {R} and j < {S}):
 if (R[i].joinAttr == S[j].joinAttr):
 output R[i] join S[j]
 if (R[i].joinAttr < S[j].joinAttr):
 i = i + 1
 else:
 j = j + 1

R

1

3

5

6

S

2

3

4

5

7

Output: 3, 5

Sort Merge Join

• Sort both S and R (or use index on each to
traverse in order)

• Merge (no shared duplicates)
while (i < {R} and j < {S}):
 if (R[i].joinAttr == S[j].joinAttr):
 output R[i] join S[j]
 if (R[i].joinAttr < S[j].joinAttr):
 i = i + 1
 else:
 j = j + 1

R

1

3

5

6

S

2

3

4

5

7

Output: 3, 5

Sort Merge Join

• Sort both S and R (or use index on each to
traverse in order)

• Merge (no shared duplicates)
while (i < {R} and j < {S}):
 if (R[i].joinAttr == S[j].joinAttr):
 output R[i] join S[j]
 if (R[i].joinAttr < S[j].joinAttr):
 i = i + 1
 else:
 j = j + 1

R

1

3

5

6

S

2

3

4

5

7

Output: 3, 5

Sort Merge Join

• Sort both S and R (or use index on each to
traverse in order)

• Merge (no shared duplicates)
while (i < {R} and j < {S}):
 if (R[i].joinAttr == S[j].joinAttr):
 output R[i] join S[j]
 if (R[i].joinAttr < S[j].joinAttr):
 i = i + 1
 else:
 j = j + 1

R

1

3

5

6

S

2

3

4

5

7

Output: 3, 5

Note that output is sorted!

Handling Duplicates

• What is desired output?

 4 copies!
 (5,5),(5,5),(5,5),(5,5)

R

1

5

5

6

S

2

3

5

5

7

• Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

• What is desired output?

 4 copies!
 (5,5),(5,5),(5,5),(5,5)

R

1

5

5

6

S

2

3

5

5

7

• Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

• What is desired output?

 4 copies!
 (5,5),(5,5),(5,5),(5,5)

R

1

5

5

6

S

2

3

5

5

7

• Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

• What is desired output?

 4 copies!
 (5,5),(5,5),(5,5),(5,5)

R

1

5

5

6

S

2

3

5

5

7

• Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

• What is desired output?

 4 copies!
 (5,5),(5,5),(5,5),(5,5)

R

1

5

5

6

S

2

3

5

5

7

Output: 5

• Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

• What is desired output?

 4 copies!
 (5,5),(5,5),(5,5),(5,5)

R

1

5

5

6

S

2

3

5

5

7

Output: 5, 5

• Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

• What is desired output?

 4 copies!
 (5,5),(5,5),(5,5),(5,5)

R

1

5

5

6

S

2

3

5

5

7

Output: 5, 5

• Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

• What is desired output?

 4 copies!
 (5,5),(5,5),(5,5),(5,5)

R

1

5

5

6

S

2

3

5

5

7

• Solution: count run lengths in S and R, emit
cross product of repeated runs

Output: 5, 5, 5

Handling Duplicates

• What is desired output?

 4 copies!
 (5,5),(5,5),(5,5),(5,5)

R

1

5

5

6

S

2

3

5

5

7

• Solution: count run lengths in S and R,
emit cross product of repeated runs

Output: 5, 5, 5, 5

Psuedocode for Duplicates

def getRunLen(v,i):
 runLen = 1
 while (i < len(v)-1):
 i = i + 1
 if v[i] == v[i-1]:
 runLen = runLen + 1
 else:
 break
 return runLen

while (i < {R} and j < {S}):
 if R[i].joinAttr == S[j].joinAttr:
 rLen = getRunLen(R,i)
 sLen = getRunLen(S,j)

 emitRun(R,S,i,j,rLen,sLen)
 i = i + rLen
 j = j + sLen

elif R[i].joinAttr < S[j].joinAttr:
i = i + 1

else:
j = j + 1

def emitRun(R,S,r,s,rLen,sLen):
 for i in range(r,r+rLen):
 for j in range(s,s+sLen):

output R[i] join S[j]

Basic Join Summary
CPU Complexity I/O Complexity Notes

Nested loops {R} x {S} |S| + {S}|R|
R doesn’t fit in memory
|S| + |R|
R fits in memory

Choice of inner / outer
matters when R fits in
memory and S doesn’t

Blocked nested
loops

{R} x {S} + |R| Better to partition R
(fewer passes)

Index nested
loops

{R} x D
D is tree depth, < ~5

{R} x D
I/O random unless R sorted
& index clustered on join
attr

Assuming index on S.

Hash join {R} + {S} |R| + |S| Both tables must fit in
memory

Blocked hash join + |R|

Sort merge join {R}log{R} + {S}log{S} + {S}
+ {R}

|R| + |S| Assumes both tables fit
in memory;
If already sorted, can
avoid logn step

Study Break

• When would you prefer sort-merge over hash
join?

• When would you prefer index-nested-loops
join over hash join?

“External” Sort Merge Join

Equi-join of two tables S & R
|S| = Pages in S; {S} = Tuples in S
|S| ≥ |R|
M pages of memory; M > sqrt(|S|)

Algorithm:
– Partition S and R into memory sized sorted runs, write out to disk
– Merge all runs simultaneously

Total I/O cost: Read |R| and |S| twice, write once

3(|R| + |S|) I/Os

Example
R=1,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R1 = 1,3,4
S1 = 2,3,7 S2 = 8,9,12 S3 = 4,6,15

R1 R2 R3 S1 S2 S3

1 6 1 2 8 4

3 9 7 3 9 6

4 14 11 7 12 15

OUTPUT

Need enough memory to keep 1 page of each run in
memory at a time

R2 = 6,9,14 R3 = 1,7,11
If each run is M pages and M > sqrt(|S|), then there are at most

 |S|/sqrt(|S|) = sqrt(|S|)

runs of S

So if |R| = |S|, we actually need M to be 2 x sqrt(|S|)

[handwavy argument in paper for why it’s only sqrt(|S|)]

Example
R=1,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R1 = 1,3,4 R2 = 6,9,14 R3 = 1,7,11
S1 = 2,3,7 S2 = 8,9,12 S3 = 4,6,15

R1 R2 R3 S1 S2 S3

1 6 1 2 8 4

3 9 7 3 9 6

4 14 11 7 12 15

OUTPUT

Example
R=1,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R1 = 1,3,4 R2 = 6,9,14 R3 = 1,7,11
S1 = 2,3,7 S2 = 8,9,12 S3 = 4,6,15

R1 R2 R3 S1 S2 S3

1 6 1 2 8 4

3 9 7 3 9 6

4 14 11 7 12 15

OUTPUT

Example
R=1,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R1 = 1,3,4 R2 = 6,9,14 R3 = 1,7,11
S1 = 2,3,7 S2 = 8,9,12 S3 = 4,6,15

R1 R2 R3 S1 S2 S3

1 6 1 2 8 4

3 9 7 3 9 6

4 14 11 7 12 15

OUTPUT

(3,3)

Example
R=1,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R1 = 1,3,4 R2 = 6,9,14 R3 = 1,7,11
S1 = 2,3,7 S2 = 8,9,12 S3 = 4,6,15

R1 R2 R3 S1 S2 S3

1 6 1 2 8 4

3 9 7 3 9 6

4 14 11 7 12 15

OUTPUT

(3,3)

(4,4)

Example
R=1,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R1 = 1,3,4 R2 = 6,9,14 R3 = 1,7,11
S1 = 2,3,7 S2 = 8,9,12 S3 = 4,6,15

R1 R2 R3 S1 S2 S3

1 6 1 2 8 4

3 9 7 3 9 6

4 14 11 7 12 15

OUTPUT

(3,3)

(4,4)

Example
R=1,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R1 = 1,3,4 R2 = 6,9,14 R3 = 1,7,11
S1 = 2,3,7 S2 = 8,9,12 S3 = 4,6,15

R1 R2 R3 S1 S2 S3

1 6 1 2 8 4

3 9 7 3 9 6

4 14 11 7 12 15

OUTPUT

(3,3)

(4,4)

(6,6)

Example
R=1,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R1 = 1,3,4 R2 = 6,9,14 R3 = 1,7,11
S1 = 2,3,7 S2 = 8,9,12 S3 = 4,6,15

R1 R2 R3 S1 S2 S3

1 6 1 2 8 4

3 9 7 3 9 6

4 14 11 7 12 15

OUTPUT

(3,3)

(4,4)

(6,6)

(7,7)… Output in
sorted
order!

Simple “External” Hash

Idea: Avoid repeated passes over S in blocked hash
Algorithm:
 Given hash function H(x) [0,…,P-1] (e.g., x mod P)
 where P is number of partitions
 for i in [0,…,P-1]:
 for each r in R:
 if H(r)=i, add r to in memory hash
 otherwise, write r back to disk in R’
 for each s in S:
 if H(s)=i, lookup s in hash, output matches
 otherwise, write s back to disk in S’
 replace R with R’, S with S’

Illustration

R S

Hash function in
0…P

Pass 0

Records in R
with H(r) = 0

Scan of R In memory hash table

S’

Remainder of S
(Records with H(s) > 0

Scan of S

Remainder of R
(Records with H(r) > 0

R’

Illustration

R S

Hash function in
0…P

Pass 0

S’R’

R S

Illustration

R S

Hash function in
0…P

Pass 1

Records in R
with H(r) = 1

Scan of R In memory hash table

S’

Remainder of S
(Records with H(s) > 1

Scan of S

Remainder of R
(Records with H(r) > 1

R’

Repeat for P passes

https://clicker.mit.edu/6.5830/

I/O Complexity

(A)

(B)

(C)

(D)
N = number of partitions

Simple Hash I/O Analysis
Suppose P=2, and hash uniformly maps tuples to partitions

Read |R| + |S|
Write 1/2 (|R| + |S|)
Read 1/2 (|R| + |S|)

P=3
 Read |R| + |S|
 Write 2/3 (|R| + |S|)
 Read 2/3 (|R| + |S|)
 Write 1/3 (|R| + |S|)
 Read 1/3 (|R| + |S|)
P=4
 |R| + |S| + 2 * (3/4 (|R| + |S|)) + 2 * (2/4 (|R| + |S|)) + 2 * (1/4 (|R| + |S|))
 = 4 (|R| + |S|)

➔ P = n ; n * (|R| + |S|) I/Os

2 (|R| + |S|)

3 (|R| + |S|)

Grace Hash
Algorithm:
Partition:
 Suppose we have P partitions, and H(x) [0…P-1]
 Choose P = |S| / M ➔ P ≤ sqrt(|S|) //may need to leave a little slop for imperfect hashing
 Allocate P 1-page output buffers, and P output files for R
 For each r in R:
 Write r into buffer H(r)
 If buffer full, append to file H(r)
 Allocate P output files for S
 For each s in S:
 Write s into buffer H(s)
 if buffer full, append to file H(s)
Join:
 For i in [0,…,P-1]
 Read file i of R, build hash table (memory should hold this)
 Scan file i of S, probing into hash table and outputting matches

Need one page of RAM for
each of P partitions

Since
M > sqrt(|S|) and
P ≤ sqrt(|S|), all is well

Total I/O cost: Read |R| and |S| once, write once, read back once more
3(|R| + |S|) I/Os

Can we avoid rewriting some records many times?

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2 F0 F1 F2

P output buffers

P output files

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

5

F0 F1 F2

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

4 5

F0 F1 F2

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

3 4 5

F0 F1 F2

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

3 4 5
6

F0 F1 F2

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

3 4 5
6

F0 F1 F2

Need to flush R0 to F0!

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

4 5

F0 F1 F2

3
6

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

9 4 5

F0 F1 F2

3
6

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

9 4 5
14

F0 F1 F2

3
6

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

9 4 5
1 14

F0 F1 F2

3
6

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

9 4 5
1 14

F0 F1 F2

3
6

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

9 5
14

F0 F1 F2

3 4
6 1

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

9 7 5
14

F0 F1 F2

3 4
6 1

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

9 7 5
14

F0 F1 F2

3 4
6 1

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

9 7

F0 F1 F2

3 4 5
6 1 14

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2

9 7 11

F0 F1 F2

3 4 5
6 1 14

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

R0 R1 R2 F0 F1 F2

3 4 5
6 1 14

9 7 11

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:

Load F0 from R into memory

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:

Load F0 from R into memory

Scan F0 from S

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:
3,3

Load F0 from R into memory

Scan F0 from S

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:
3,3

Load F0 from R into memory

Scan F0 from S

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:
3,3
9,9

Load F0 from R into memory

Scan F0 from S

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:
3,3
9,9

Load F0 from R into memory

Scan F0 from S

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:
3,3
9,9
6,6

Load F0 from R into memory

Scan F0 from S

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:
3,3
9,9
6,6

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:
3,3
9,9
6,6
7,7
4,4

Example
P = 3; H(x) = x mod P

R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

F0 F1 F2

3 7 2
12 4 8

9

15

6

F0 F1 F2

3 4 5
6 1 14

9 7 11

R Files S Files

Matches:
3,3
9,9
6,6
7,7
4,4

Hybrid

• Acts like simple for small tables, grace for large tables

• Suppose we have M = + E
– E is additional memory beyond the minimum

• Make the first partition size E, and join as in simple
• For remaining partitions write out as in grace
• Repeat with S, joining first partition on the fly, and

writing out remaining partitions as in grace
• Join remaining partitions as in grace

|𝑅 |

External Join Summary
Sort-Merge Simple Hash Grace Hash

I/O: 3 (|R| + |S|)
CPU: O(P x {S}/P log {S}/P)

I/O: P (|R| + |S|)
CPU: O({R} + {S})

I/O: 3 (|R| + |S|)
CPU: O({R} + {S})

Notation: P partitions / passes over data; assuming hash is O(1)

Grace hash is generally a safe bet, unless memory is close to size of tables, in which
case simple can be preferable

Extra cost of sorting makes sort merge unattractive unless there is a way to access
tables in sorted order (e.g., a clustered index), or a need to output data in sorted order
(e.g., for a subsequent ORDER BY)

Many fancier versions exist, e.g., using modern sorting techniques (radix or counting
sort), parallel cores, etc

