
Snowflake

1

The Hunters in the Snow,

Pieter Bruegel the Elder, 1565

Some slides from Sam Madden,
Ashish Motivala, Jiaqi Yan, Snowflake

Inc

December 2, 2024

Where Are We???

“Classic DB”

Row Store,

Selinger

Optimizer, 2PL

+ 2PC,

ARIES

DBs for Analytics

DBs for Transaction

Processing

DBs for the Cloud

Highly Available DBs

Systems for Data

Science

DBs for Cloud Analytics

Specializa
tio

n

C-Store

H-Store

Calvin

DynamoDB

Aurora

Spark

Snowflake (Today!)
First 18 lectures

DBs for AI

Snowflake Overview

“Elastic Data Warehouse” (db focused on analytics, not

transactions) purpose-built for the cloud

Leverages extremely reliable cloud storage (S3) for durability

“Shared disk” style design

Modern, efficient query executor

Why Use The Cloud?

6

•New(-ish) platform for building distributed systems
•Virtually unlimited, elastic compute and storage
•Pay-per-use model (with strong economies of scale)
•Efficient access from anywhere

•Software as a Service (SaaS)
•Reduced need for complex IT organization and infrastructure
•Pay-per-use model

•Simplified software delivery, update, and user support

Shared-nothing Architecture

•Tables are horizontally partitioned across nodes

•Every node has its own local storage

•Every node is only responsible for its local table partitions

•Simple and easy to reason about

•Scales well for star-schema queries

•Dominant pre-cloud architecture in data warehousing
•Teradata, Vertica, Netezza…

10

The Perils of Coupling

•Shared-nothing couples compute and storage resources

•Yields bad elasticity
•Resizing compute cluster requires redistributing (lots of) data
•Cannot simply shut off unused compute resources → no pay-per-use

•And limited availability
• Membership changes (failures, upgrades) significantly impact
performance and may cause downtime

•Faces problems with homogeneous resources vs.

heterogeneous workload
•Bulk loading, reporting, exploratory analysis

11

A Data Warehouse Design for the Cloud

Databases

Virtual

Warehouse

Virtual

Warehouse

ETL & Data
Loading

Virtual

Warehouse

Finance

Virtual

Warehouse

Dev, Test,
QA

Dashboards

Virtual

Warehouse
Marketing

Data Science

Clone

12

Snowflake is an RDBMS redesigned
entirely for cloud-based operation

Storage decoupled from compute

Native for structured & semi-
structured

Scalability along many dimensions

Low cost, w/compute on demand

Instant db cloning

Isolate production from Dev & QA

Highly available

Concerns?

Photo realistic render

scary snowflake crown

fantasy elements with

the words “What could
go wrong” glowing

letters above

Performance?

Updates?

Lack of Control?

Data Storage

Multi-cluster Shared-data Architecture

• All data in one place

• Independently scale
storage and compute

• No unload / reload to
shut off compute

• Every virtual warehouse
can access all data

Cloud
Services

Transaction

Manager
SecurityOptimizer

Infrastructure

manager

Authentication & access control

Virtual
Warehouse

Cache

Virtual
Warehouse

Cache

Virtual
Warehouse

Cache

Virtual
Warehouse

Cache

Rest (JDBC/ODBC/Python)

Metadata

14

Data Storage Layer

•Stores table data and query results
•Table is a set of immutable micro-partitions

•Uses tiered storage with Amazon S3 at the bottom
•Object store (key-value) with HTTP(S) PUT/GET/DELETE interface

•High availability, 3x replicated, extreme durability (11-9’s)

•Some important differences w.r.t. local disks
•Latency and BW to a single node is poor relative to disk

•No update-in-place, objects must be written in full

•Highly concurrent

15

Table Files

• Snowflake uses PAX [Ailamaki01] aka

hybrid columnar storage

• Tables horizontally partitioned into

immutable micro-partitions (~16 MB)
•Updates add or remove entire files

• Values of each column grouped together

and compressed

•Queries read header + columns they need

16

Not great for point updates / deletes!

Table Clustering

Tables can be clustered on a particular key

Partitions records by ranges of the key attribute, such that

each micro-partition (mostly) contains a contiguous range of
attributes

Clustering is lazy, not eager

Reclustering done automatically

https://docs.snowflake.com/en/user-guide/tables-clustering-keys

1, 2, 9, 5, 3, 11,

3, 12, 4

1 2 3

3 4 5

9 11 12

3, 3, 7

3 3 7

1 2 9

5 3 11

3 12 4

Micro-partitions Cluster

1 2 3

4 5 7

9 11 12

3 3 3

Re-cluster

Block Skipping (“Pruning”) vs Indexing

Snowflake has no indexes - how does table clustering help?

Allows “skipping” – each partition has a min/max value, only

read partitions that satisfy query.

Systems stores block metadata separately to enable this

1 2 3

4 5 7

9 11 12

3 3 3

Min Max

1 3

3 3

4 7

9 12

SELECT a2 from T

WHERE a > 5

T.a metatdata

Block Skipping (“Pruning”) vs Indexing

Snowflake has no indexes - how does table clustering help?

Allows “skipping” – each partition has a min/max value, only

read partitions that satisfy query.

Systems stores block metadata separately to enable this

Partitions may overlap; easy to update / maintain partitions

Why not just use B+Trees + clustering?

Intermediate Data

•Tiered storage also used for temp data and query results
•Arbitrarily large queries, never run out of disk

•New forms of client interaction
•No server-side cursors, since clients can directly access S3 to retrieve and

reuse previous query results

•Metadata stored in a transactional key-value store (not S3)
•Which table consists of which S3 objects?

•Optimizer statistics, lock tables, transaction logs etc.

•Part of Cloud Services layer (see later)

21

Virtual Warehouse

•A virtual warehouse is a cluster of EC2 instances serving as query

processor “workers”

•Pure compute resources, decoupled from data storage
•Created, destroyed, resized on demand

•Users may run multiple warehouses at same time

•Each warehouse has access to all data but isolated performance

•Users may shut down all warehouses when they have nothing to run

•"T-Shirt sizes": XS to 4XL
•Users do not know which type or how many EC2 instances

•Service and pricing can evolve independent of cloud platform

23

Worker Nodes

•Worker processes are ephemeral and idempotent
•Worker node forks new worker process when query arrives

• They do not modify micro-partitions directly but queue removal or

addition of micro-partitions

•Each worker node maintains local table cache
•Collection of table files i.e., S3 objects accessed in past

•Shared across concurrent and subsequent worker processes

• Assignment of micro-partitions to nodes uses consistent hashing, with

deterministic stealing

24

Data Affinity and Caching

Data cached on local storage; managed via LRU

Affinity between workers and partitions via consistent hashing

Worker 1

SSD

Worker 2

SSD

S3

Part 1 Part 2 Part 3

Part 5Part 4

SELECT MAX(a)

FROM T

W1

W2

W3

Worker 3

SSD
SELECT MIN(a)

FROM T

Execution Engine

•Columnar [MonetDB, C-Store, many more]
•Effective use of CPU caches, SIMD instructions, and compression

•Vectorized [Zukowski05]
•Operators handle batches of a few thousand rows in columnar format

•Avoids materialization of intermediate results

•Push-based [Neumann11 and many before that]
•Operators push results to downstream operators (no Volcano iterators)

•Removes control logic from tight loops
•Works well with DAG-shaped plans

•No transaction management, no buffer pool
•But: most operators (join, group by, sort) can spill to disk and recurse

•Queries are transactionally isolated from concurrent updates

26

Vectorized Execution

What’s wrong with tuple at a time

execution?

Alternatives:
Column/table-at-a-time?

• No pipelining (passing data to ops without copies)

• May unnecessarily materialize intermediates, e.g.,:
SELECT … WHERE sal + bonus > x

sal + bonus doesn’t need to be stored in tuple-at-a-time
(MapReduce materializes tons of intermediate data)

• Not great for cache locality

• Iterator model invokes

getNext() many times,

imposes huge function call

overhead

• Virtual functions make branch

prediction in tight loop bad

• Large amounts of code per

tuple means bad code locality

Vectorized Execution

Vectorized = “batch at a time”, e.g., ~1000 tuples

• Improves cache locality

• Avoids large intermediates
• Can be pipelined

• ~1000x lower functional call overhead

Picking batch size a bit difficult; what happens with very

selective operators?

Boncz et al. MonetDB/X100: Hyper-Pipelining Query Execution. CIDR 2005.

Illustrative Example

Neumann et al, Efficiently Compiling Efficient Query Plans for
Modern Hardware, VLDB 2011.

Push-Based
They cite the paper below, which really
is about compilation

But say: that a push-based system
“enable Snowflake to efficiently process
DAG-shaped plans” – paper below does
not make it clear how they help with
DAG shaped plans

In fact, not clear Snowflake implements
codegen / compilation at all!

Neumann et al, Efficiently Compiling Efficient Query Plans for
Modern Hardware, VLDB 2011.

Example from https://justinjaffray.com/query-engines-push-vs.-pull/

WITH foo as (…)

SELECT * FROM

(SELECT * FROM foo WHERE c) AS foo1

JOIN foo AS foo2 ON foo1.a = foo2.b

Push-Based
In an iterator model, this is annoying to deal with:
• foo has to buffer results until upstream operators

pull, and
• keep track of which consumers have consumed

which results

In a push model, this is greatly simplified – foo just
sends results to both operators (who may have to
buffer)

WITH foo as (…)

SELECT * FROM

(SELECT * FROM foo WHERE c) AS foo1

JOIN foo AS foo2 ON foo1.a = foo2.b

Example from https://justinjaffray.com/query-engines-push-vs.-pull/

No Buffer Pool?!

What do they mean by this?

(Presumably just that they rely on the OS cache to keep data

in memory)

• Adaptive

• Self-tuning

• Do no harm!

• Automatic

• Work by

default

Self Tuning & Self Healing

Automatic
Memory

Management

Automatic
Workload

Management

Automatic
Distribution

Method

Automatic
Degree of
Parallelism

Automatic
Fault

Handling

34

This part of the paper has a heavy marketing

quality to it

•

•

•

•

•

Example: Automatic Skew Avoidance

Execution Plan

2

scan

join

filter

scan

1

1

2

35

Q: What is the issue with

popular values? Why do

those mess up the build

side of joins?

A: Naively, values in a join get sent to a particular node for processing; popular values mean some nodes will be

overwhelmed. So broadcast the popular ones everywhere so that certain keys are not tied to certain nodes

Example: Workload Stealing

Consistent hashing determines which files workers will retrieve

for processing a query before execution.

When a worker process completes scanning its input files, it
might mean one worker has finished ahead of others; it can

ask peer worker processes that it scan their files for them

The requestor always downloads from storage instead of the

peer to avoid additional burden.

Concurrency Control

•Designed for analytic workloads
•Large reads, bulk or trickle inserts, bulk updates

•Snapshot Isolation (SI) [Berenson95]

•SI based on multi-version concurrency control (MVCC)
• DML statements (insert, update, delete, merge) produce new table
versions of tables by adding or removing whole files

•Natural choice because table files on S3 are immutable
•Additions and removals tracked in metadata (key-value store)

•Versioned snapshots used also for time travel and cloning

38

Snapshot Isolation

Recall:

• ”Snapshot” state of database at start of query

• Abort any xaction that does a WX for some X updated by

another concurrent xaction
• This prevents a mixture of writes from two concurrent

transactions being written

• Conflicting reads are permitted

• It does not enforce a total ordering of txs (like Serializability)

In a system with immutable storage, this is easy: just need to track

the set of files that were on S3 when the query started and read

from those. Later writes create new files.

Is Snapshot Isolation Serializable?

Write skew:

T1: T2:

RX = 1
RY = 1

WY = 2

WX = 3

Neither observed each other’s write!

Many database systems use

snapshot isolation anyway, since

this scenario is somewhat unusual.

Unlikely to be a problem in
Snowflake as updates are not

common.

No!

Semi-Structured and Schema-Less Data

43

•Three new data types: VARIANT, ARRAY, OBJECT
•VARIANT: holds values of any standard SQL type + ARRAY + OBJECT

•ARRAY: offset-addressable collection of VARIANT values

•OBJECT: dictionary that maps strings to VARIANT values
•Like JavaScript objects, protobufs, JSON, MongoDB documents

•Self-describing, compact binary serialization
•Designed for fast key-value lookup, comparison, and hashing

•Supported by all SQL operators (joins, group by, sort…)

Post-relational Operations

44

“John"

“John"

| “Doe"

| “Doe"

| email: john@doe.xyz |

| phone: 555-123-4567 |

“John" | “Doe" | phone: 555-666-7777 |

------------+-----------+---------------------+

•Extraction from VARIANTs using path syntax
SELECT sensor.measure.value, sensor.measure.unit

FROM sensor_events

WHERE sensor.type = ‘THERMOMETER’;

•Flattening (pivoting) a single OBJECT or ARRAY into multiple rows
SELECT p.contact.name.first AS "first_name",

p.contact.name.last AS "last_name",

(f.value.type || ': ' || f.value.contact) AS "contact"

FROM person p,

LATERAL FLATTEN(input => p.contact) f;

------------+-----------+---------------------+

first_name | last_name | contact |

------------+-----------+---------------------+

mailto:john@doe.xyz

Schema-Less Data

45

•Cloudera Impala, Google BigQuery/Dremel
•Columnar storage and processing of semi-structured data
•But: full schema required up front!

•Snowflake introduces automatic type inference and columnar storage for
schema-less data (VARIANT)

• Frequently common paths are detected, projected out, and stored in separate (typed
and compressed) columns in table file
•Collect metadata on these columns for use by optimizer → pruning
•Independent for each micro-partition → schema evolution

Automatic Columnarization of
semi-structured data

> SELECT … FROM …

Semi-structured data
(e.g. JSON, Avro, XML)

Structured data
(e.g. CSV, TSV, …)

Native support

46

Loaded in raw form (e.g.
JSON, Avro, XML)

Optimized storage
Optimized data type, no fixed schema or

transformation required

Optimized SQL querying

Full benefit of database optimizations

(pruning, filtering, …)

["row-acpd~3xuz-spjz", "00000000-0000-0000-8937-94B69691FF22", 0, 1700086033,

null, 1700086227, null, "{ }", "1N4AZ1CP2J", "King", "Bothell", "WA", "98011", "2018",

"NISSAN", "LEAF", "Battery Electric Vehicle (BEV)", "Clean Alternative Fuel Vehicle

Eligible", "151", "0", "1", "239393178", "POINT (-122.20578 47.762405)", "PUGET

SOUND ENERGY INC||CITY OF TACOMA - (WA)", "53033022102", "3009", "1", "1"]

, ["row-w97i-93tb~sstr", "00000000-0000-0000-DCF4-624CB67EA957", 0,

1700086033, null, 1700086227, null, "{ }", "JN1AZ0CP3B", "King", "Kirkland", "WA",

"98034", "2011", "NISSAN", "LEAF", "Battery Electric Vehicle (BEV)", "Clean

Alternative Fuel Vehicle Eligible", "73", "0", "1", "192638967", "POINT (-122.209285

47.71124)", "PUGET SOUND ENERGY INC||CITY OF TACOMA - (WA)",

"53033022201", "3009", "1", "1"]

, ["row-ehsn~3tfd-bs3s", "00000000-0000-0000-10A3-AE8F3AF08C18", 0,

1700086033, null, 1700086227, null, "{ }", "1N4BZ0CP6H", "King", "Kirkland", "WA",

"98034", "2017", "NISSAN", "LEAF", "Battery Electric Vehicle (BEV)", "Clean

Alternative Fuel Vehicle Eligible", "107", "0", "45", "145384389", "POINT (-122.209285

47.71124)", "PUGET SOUND ENERGY INC||CITY OF TACOMA - (WA)",

"53033021904", "3009", "1", "1"]

, ["row-zppk.fdn2_qd4h", "00000000-0000-0000-41D2-A4A4D5AD86D3", 0,

1700086033, null, 1700086227, null, "{ }", "3C3CFFGE4F", "Snohomish", "Lake

Stevens", "WA", "98258", "2015", "FIAT", "500", "Battery Electric Vehicle (BEV)", "Clean

Alternative Fuel Vehicle Eligible", "87", "0", "44", "292932748", "POINT (-122.112265

48.0047)", "PUGET SOUND ENERGY INC", "53061052706", "3213", "1", "45"]

, ["row-744h.m6bd.ijbn", "00000000-0000-0000-A6A8-EE9BE4A46669", 0,

1700086033, null, 1700086227, null, "{ }", "5YJ3E1EA5K", "Kitsap", "Bainbridge Island",

"WA", "98110", "2019", "TESLA", "MODEL 3", "Battery Electric Vehicle (BEV)", "Clean

Alternative Fuel Vehicle Eligible", "220", "0", "23", "214907430", "POINT (-122.5235781

47.6293323)", "PUGET SOUND ENERGY INC", "53035090700", "848", "6", "29"]

, ["row-a7d4_x75h_wbhn", "00000000-0000-0000-D8AB-ED869B6FFA74", 0,

1700086033, null, 1700086227, null, "{ }", "JTDKARFP3K", "Thurston", "Olympia",

"WA", "98501", "2019", "TOYOTA", "PRIUS PRIME", "Plug-in Hybrid Electric Vehicle

(PHEV)", "Not eligible due to low battery range", "25", "0", "22", "289260751", "POINT (-

122.89692 47.043535)", "PUGET SOUND ENERGY INC", "53067010400", "2742",

"10", "28"]

, ["row-bvdk.tugx.mth2", "00000000-0000-0000-9C08-04D22DB8DB21", 0,

1700086033, null, 1700086227, null, "{ }", "5YJYGDEEXM", "King", "Seattle", "WA",

"98102", "2021", "TESLA", "MODEL Y", "Battery Electric Vehicle (BEV)", "Eligibility

unknown as battery range has not been researched", "0", "0", "43", "166434649",

NISSAN

NISSAN

NISSAN

FIAT

TESLA
TOYOTA

TESLA

LEAF

LEAF

LEAF

500

MODEL 3
PRIUS PRIME

MODEL Y

Make Model

Schema-Less Performance

48

ETL vs. ELT

49

•ETL = Extract-Transform-Load
• Classic approach: extract from source systems, run through some
transformations (perhaps using MapReduce), then load into RDBMS

•ELT = Extract-Load-Transform (“transform on demand”)
• Schema-later or schema-never: extract from source systems, leave in
or convert to JSON or XML, load into data warehouse, transform

there if desired
•Decouples information producers from information consumers

•Snowflake aims for ELT with speed and expressiveness of

RDBMS

Time Travel and Cloning

• Previous versions of data
automatically retained

•Same metadata as Snapshot Isolation

•Accessed via SQL extensions

• UNDROP recovers from accidental
deletion

•SELECT AT for point-in-time selection

•CLONE [AT] to recreate past versions

> SELECT * FROM mytable
AT T0

New
data

Modified
data

T0 T1 T2

50

Lessons Learned

53

•Building a relational DW was a controversial decision in 2012
•But turned out correct; Hadoop did not replace RDBMSs

•Multi-cluster, shared-data architecture game changer for org
•Business units can provision warehouses on-demand

•Fewer data silos
•Dramatically lower load times and higher load frequency

•Semi-structured extensions were a bigger hit than expected
•People use Snowflake to replace Hadoop clusters

Lessons Learned (2)

54

•SaaS model dramatically helped speed of development
•Only one platform to develop for
•Every user running the same version
•Bugs can be analyzed, reproduced, and fixed very quickly

•Users love “no tuning” aspect
•But creates continuous stream of hard engineering challenges…

•Core performance less important than anticipated
•Elasticity matters more in practice

Summary

58

•Snowflake is a cloud-native data warehouse as a service
•Novel multi-cluster, shared-data architecture
•Highly elastic and available
•Semi-structured and schema-less data at the speed of relational data

	Slide 1: Snowflake
	Slide 2: Where Are We???
	Slide 3: Snowflake Overview
	Slide 6: Why Use The Cloud?
	Slide 10: Shared-nothing Architecture
	Slide 11: The Perils of Coupling
	Slide 12: A Data Warehouse Design for the Cloud
	Slide 13: Concerns?
	Slide 14: Multi-cluster Shared-data Architecture
	Slide 15: Data Storage Layer
	Slide 16: Table Files
	Slide 17: Table Clustering
	Slide 18: Block Skipping (“Pruning”) vs Indexing
	Slide 19: Block Skipping (“Pruning”) vs Indexing
	Slide 21: Intermediate Data
	Slide 22
	Slide 23: Virtual Warehouse
	Slide 24: Worker Nodes
	Slide 25: Data Affinity and Caching
	Slide 26: Execution Engine
	Slide 27: Vectorized Execution
	Slide 28: Vectorized Execution
	Slide 29: Illustrative Example
	Slide 30: Push-Based
	Slide 32: Push-Based
	Slide 33: No Buffer Pool?!
	Slide 34: Self Tuning & Self Healing
	Slide 35: Example: Automatic Skew Avoidance
	Slide 36: Example: Workload Stealing
	Slide 38: Concurrency Control
	Slide 39: Snapshot Isolation
	Slide 40: Is Snapshot Isolation Serializable?
	Slide 43: Semi-Structured and Schema-Less Data
	Slide 44: Post-relational Operations
	Slide 45: Schema-Less Data
	Slide 46: Automatic Columnarization of semi-structured data
	Slide 47
	Slide 48: Schema-Less Performance
	Slide 49: ETL vs. ELT
	Slide 50: Time Travel and Cloning
	Slide 53: Lessons Learned
	Slide 54: Lessons Learned (2)
	Slide 58: Summary

