
Cluster Computing: Spark
Some slides from Mosharaf Chowdhury, Sam Madden
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Today

• Data Systems for “Data Science”
• Efficient Parallel Execution for “One Off” Data Processing Tasks

• E.g., featurization for ML, indexing data, extracting information from data, etc

• Often involving unstructured → structured data conversion

• E.g., processing a set of text document into an inverted index of words and their locations in 
the documents

• Not really SQL, but a set of parallel operations that are reminiscent of SQL filters 
and joins

• MapReduce/Hadoop, briefly, and then Spark
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MapReduce: programming model for processing 
large data sets across a distributed cluster.

• Programmer specifies:
Map Function:

- Processes input key/value pairs to generate intermediate key/value pairs.

Reduce Function:
- Merges all intermediate values associated with the same intermediate key.
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# Map Function 

def map(key, value): 

 for word in value.split(): 

  emit(word, 1) 

# Reduce Function 

def reduce(key, values): 

 total_count = sum(values) 

 emit(key, total_count) 

# Example Input: [('doc1', 'hello world'), ('doc2', 'hello mapreduce’)] 

# MapReduce Process Execution 

# Example Output: [('hello', 2), ('world', 1), ('mapreduce', 1)]



MapReduce Execution

• Input Splitting:
• Data is divided into chunks for the map tasks.

• Mapping:
• Each chunk is processed by a map task independently.

• Shuffling:
• Intermediate key/value pairs are sorted and grouped by key.

• Reducing:
• Each group of intermediate values is processed by a reduce task.

• Output:
• Final output is generated from the reduce tasks.
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Motivation & Background

• Pros:
• Allowed parallel computation without 

worrying low level details (e.g., work 
distribution, fault tolerance)

• Provided a set of high-level operations 
(map, reduce)

• You didn’t have to think about 
schemas

9

• Cons:
• Little to no support for leveraging 

cluster memory

• Large overhead for reusing data 
in iterative or interactive tasks 
(I/O, replication, serialization)

• You didn’t have to think about 
schemas

• Implementations had bad latency 

Frameworks back in 2012:
MapReduce, a bit of Microsoft’s Dryad



Spark: Resilient Distributed Datasets (RDDs)

• Utilize Distributed Memory while providing efficient fault tolerance
• Avoid storing data updates explicitly
• Instead, obtain fault tolerance by logging transformations ( lineage)

• Limit operations to coarse-grained transformations (e.g., map, filter)

• Allow user control of data persistence, partitioning, and caching

• How did MapReduce obtain fault tolerance?
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RDDs

• Read-only, partitioned collection of records

• Created from either data in stable storage or other RDDs

• A sequence of transformations defines an RDD:
• Map, filter, flatmap, sample, groupbykey, reducebykey, join, union

• Actions return value or export data to storage system 
• count, collect, save, reduce, lookup

• No need to actually run code until there’s an action

• Read-only means we can exploit speculative (re)execution
•  MapReduce also does this
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Example: Console Log Mining

lines = spark.textFile("hdfs://...") 

errors = lines.filter(_.startsWith("ERROR")) 

errors.count() 
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HDFS File

Base RDD: lines

Transformed RDD: errors

Number of lines with ERROR

definition

Transformation: filter

Action: count



RDDs: Fault Tolerance

• Lineage: transformations used to build a dataset

• Recover lost partition by applying lineage from corresponding data 
partition in stable storage

• Because data is read-only, this is always possible
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Limit operations to coarse-grained transformations and only log the 
transformations instead of replicating data for recovering



Example: Console Log Mining

lines = spark.textFile("hdfs://...") 

errors = lines.filter(_.startsWith("ERROR")) 

errors.count() 
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HDFS File

Base RDD: lines

Transformed RDD: errors

Number of lines with ERROR

definition

Transformation: filter

Action: count

“Base RDD” and “Transformed RDD” may never be actually stored on disk
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4 RDDs
3 partitions. (e.g., all p1s are on worker 1)
What’s a possible program that leads to this dataflow? 
Take a minute. 
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employeeIds = spark.textFile("hdfs://...") 
names = map( # map from ID to name)
salaries = map( # map from ID to salary)
fullEmps = join( # names, salaries on empId)
execs = fullEmps.filter( # filter on salary)

employeeids
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salaries

fullEmps

execs
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RDDs
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• User can control
• Persistence: indicate storage strategy (e.g. in-memory)

• Partitioning: placement optimization (e.g. hash partitioning)



Example : PageRank
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• PageRank is an iterative algorithm 
for computing rank (centrality) of 
web graph nodes

• The PageRank paper shows that if 
you keep recomputing this value 
then the quantities will converge

• The size of the lineage graph 
depends on how many iterations 
you perform

TRY IT! Don’t look at the next slide!
Try to write down pseudocode for implementing PageRank
In terms of join, map, and reduce 

Pages that link to pi

Damping factor

Number of links from pj

Number of documents

Page rank of pi

val links = spark.textFile(...).map

var ranks = // RDD of (URL, rank) pairs, initialized to 1
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val links = spark.textFile(...).map(...).persist() 

var ranks = // RDD of (URL, rank) pairs, initialized to 1

for (i <- 1 to ITERATIONS) { 

 // Build an RDD of (targetURL, float) pairs 

 // with the contributions sent by each page 

 val contribs = links.join(ranks).flatMap { 

  (url, (links, rank)) =>

    links.map(dest => (dest, rank/links.size)) 

 }

 // Sum contributions by URL and get new ranks 

 ranks = contribs.reduceByKey((x,y) => x+y) 

   .mapValues(sum => 1-d/N + (d)*sum) 

} 



URL Link

http://a http://b

http://b http://c

http://c http://a

http://a http://c
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Ranks

(http://a,1)

(http://1,1)

(http://c,1)

val contribs = links.join(ranks).flatMap { 

  (url, (links, rank)) =>

    links.map(dest => (dest, rank/links.size)) 

 }

(a, b) => (a + b)
Defines a function that takes 
two parameters a and b and 
sums them



URL Links Rank

http://a {http://b, http://c} 1

http://b {http://c} 1

http://c {http://a} 1
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val contribs = links.join(ranks).flatMap { 

  (url, (links, rank)) =>

    links.map(dest => (dest, rank/links.size)) 

 }

(a, b) => (a + b)
Defines a function that takes 
two parameters a and b and 
sums them



URL Links Rank

http://a {http://b, http://c} 1

http://b {http://c} 1

http://c {http://a} 1
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val contribs = links.join(ranks).flatMap { 

  (url, (links, rank)) =>

    links.map(dest => (dest, rank/links.size)) 

 }

Apply function to it

The function maps over link in row’s links set

(a, b) => (a + b)
Defines a function that takes 
two parameters a and b and 
sums them

http://a {http://b, http://c} 1

Apply map() to both of these

{(http://b, 1/2), (http://c, 1/2)}

{(http://b, 1/2), (http://c, 1/2)}

{(http://c, 1)}

{(http://a, 1)}

(http://b, 1/2)

(http://c, 1/2)

(http://c, 1)

(http://a, 1)

Example

Inner map on each row

Flattened

For each row in join
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(a, b) => (a + b)
Defines a function that takes 
two parameters a and b and 
sums them

(http://b, .5)

(http://c, .5)

(http://c, 1)

(http://a, 1)

// Sum contributions by URL and get new ranks 

 ranks = contribs.reduceByKey((x,y) => x+y) 

   .mapValues(sum => 1-d/N + (d)*sum) 

(http://a, 1)

(http://b, .5)

(http://c, 1.5)

Apply x+y to combine rows that have the 
same key

(http://a, .1 + .7 = .8)

(http://b, .1  + .35 = .45 )

(http://c, .1 + 1.05 = 1.15)

d = .7;  1-d/N = .1

Compute the weighted rank

New ranks table;  b is weighted less because  only 
a links to it, and a links to 2 pages.  c is weighted 
more because both a and b link to it.



PageRank Challenges
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What problems might we face, failure-wise, that we wouldn’t 
face if we wrote similar code with MapReduce?

Take a minute

What problems might we face, runtime-wise, if we implement 
this naïvely?

Take a minute



PageRank Challenges
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What problems might we face, failure-wise, that we wouldn’t 
face if we wrote similar code with MapReduce?

Very long lineage chain for ranks;  slow.  Soln:  Use explicit persistence to avoid 
having to regenerate ranks from lineage (not necessary for links) 

What problems might we face, runtime-wise, if we implement 
this naïvely?

Very slow joins.  Soln: Partition both links and ranks in the same 
way, so joins always happen on a single machine. 



Example : PageRank
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PageRank with hash
partitioning

facebook.com google.com mit.edu

facebook.com google.com mit.edufacebook.com google.com mit.edu

facebook.com google.com mit.edu

facebook.com google.com mit.edu

PageRank without
partitioning

Use Spark support for controlling partitioning!

Partition rank and corresponding links on the same 
machine to eliminate cross-machine communication

Links Ranks



RDD Representation

• Partitions: atomic pieces of the RDD

• Dependencies: relations with parent 
RDDs

• Narrow Dependencies: A parent RDD 
partition is used by at most one child 
partition (e.g. map, filter). Can be pipelined

• Wide Dependencies: A parent RDD 
partition is used by multiple child partitions 
(e.g. join,  groupByKey). Need internode 
communication
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Job Scheduling

• Build DAG of stages to execute

• Each stage contains as much as possible 
pipelined transformations with narrow 
dependencies

• Stages are linked by wide dependencies

• Assign tasks based on data locality

• Execute tasks when their inputs are ready
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Fault Tolerance

• Task failures
• Stage’s parents available: rerun on another node

• Some stages unavailable: resubmit tasks to compute missing partitions in parallel

• Does not tolerate scheduler failures

• Solution: Lineage graph replication
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Memory Management

• Three storage strategies: 
• In-memory storage as deserialized Java objects,

(fastest performance, since JVM can access each RDD element natively)

• In-memory storage as serialized data,
(more memory-efficient than Java object graphs, useful when space is limited)

• On-disk storage
(useful when RDDs are larger than RAM, but expensive to recompute from 
lineage) 

• LRU policy for eviction at RDD level when there is not enough RAM
• Or, use user-specified “persistence priority” for eviction
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Checkpointing and Failures with Spark

• Short lineage chain?
• Just recompute from lineage

• Long lineage chain with narrow dependencies? 
• Fast to recompute from lineage using pipelined execution

• Long lineage chain with wide dependencies?
• This can be time-consuming. A node failure might require recomputing 

everything!
• Use persistence as a checkpoint to prevent long recoveries

• A lot more is left to the user than with MapReduce or RDBMS
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Performance: Iterative Machine Learning
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• K-Means and Logistic 
Regression

• Experiment Setup:
• 10 iterations

• 10GB datasets

• 25-100 machines

Note: HadoopBM in its first iteration converts text input data to a more efficient binary format



Performance: Iterative Machine Learning
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Failure and Recovery
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Spark and MapReduce

• Spark has pretty much taken over “large-scale arbitrary compute 
jobs” from MapReduce

• Are there any advantages to MapReduce? Not really; you can express 
a MapReduce program almost exactly using Spark
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Spark and RDBMS

• Spark doesn’t have anything to say about transactions

• Spark has more optimization opportunities than MapReduce, but 
they’re still mostly manual. Nothing like RDBMS optimizer (is it even 
possible with Spark?)

• Some room for exploiting RDBMS techniques, like joins 
• (Certainly, more room than with MapReduce)

• Scala programs or SQL queries?

• Spark SQL exists as SQL layer, much like Hive for MapReduce

• Likely prefer a RDBMS for updates or data that is re-accessed 
frequently.  
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Abstract representation of a RDBMS 
fighting the Spark system high fantasy 
photorealistic render
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