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Stable Diffusion, November 14, 2022

“Dynamo Machine”, Natalia Sergeevna Goncharova, 1913



Administrative

Quiz Review session: 

Friday Nov 15th 4-5:30 pm at Star Room (32-D463)

Mid-term project review this week

If they are planning to submit lab 3 after this Saturday, please let is 
know



2PC Recap

• Remember this?

• If Coord + 1 Worker fail, no way to recover

• Coord may have told failed Worker about outcome, it may have exposed 
results
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What happens if 
Coordinator transmits 

COMMIT to some workers, 
then dies forever?

Some workers think 
COMMIT took place, others 

can never obtain an 
outcome



Amazon Operational DB Desiderata

• ”Always Available” shopping cart

• Should not go down even if a datacenter fails

• No centralized point of failure

• Very low latency

• Lots of orders being processed

• Many lookups required to render a page

• No need for complex analytics

• Incrementally scalable



Enter Dynamo

• “Always Available” shopping cart

Data replicated across multiple nodes

Favor availability over consistency

• Very low latency

• No need for complex analytics

• Incrementally scalable

Key value store

CRUD semantics

Keys partitioned across workers using consistent hashing



Versus RDBMS

• “Always Available” shopping cart

Data replicated across multiple nodes

Favor availability over consistency

• Very low latency

• No need for complex analytics

• Incrementally scalable

Key value store

CRUD semantics

Keys partitioned across workers using consistent hashing

Favor consistency above all else

Complex SQL queries can be slow

Can add new nodes in shared nothing but shuffle 

joins may not scale incrementally



Replication Primer

• Replicating data helps with fault tolerance and performance

• Reads:

• On a fault, reads can be directed to replica

• Also, reads can be handled by local replica

• What about writes?

• Slower?  (More nodes to write)

• Less available? (Have to write all nodes, what if some nodes crash?)



Availability

• Availability:  can the system process requests?

• In large systems, even w/ very reliable nodes, failures happen!

• Replication clearly provides read availability

• What about writes?



Write Availability Tradeoff

• If we write to all replicas, availability is worse!

• If we only write some replicas, availability is better, but replicas can be stale

• Availability and consistency are a spectrum:

• Many models of consistency

Eventual 

Consistency

HIGHLY 

AVAILABLE 

Strong 
Consistency
NOT HIGHLY 
AVAILABLE

Read your writes

Monotonicity (always see a view of 

data moving forward in time)
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https://clicker.mit.edu/6.8530/

Consider the following 3 properties:

- Consistency: The data is always consistent (think serializability)

- Availability: The system is available as long as one replica is up and running

- Partition tolerance: The system can sustain network partitions

Is it possible to design a system that is (select true statements):

A) Consistent and Available?

B) Available and Partition tolerant?

C) Consistent and Partition tolerant?

D) Consistent, Available, and Partition tolerant?



No Free Lunch

• Pick one of availability or consistency

• CAP Theorem

• Eric Brewer at PODC 02;  system can have 2 of 3 properties

Consistency
Availability
Partition Tolerance

• CAP proof on systems with async communication



CAP Example

Options:

1. Wait for partition to heal (Consistent)

2. Forge ahead: n1 and n2 process write, somehow make n3 aware later? (Available)

If data is partitioned must choose either consistent or available!

n1 n2 n3

x=4 x=4 x=4 

PartitionWx=5
Rx?



NoSQL

•Class of systems like Dynamo that generally offer:

• Key/value storage (not SQL!)

• Partitioned and replicated by key

• Favoring availability over consistency



Source: https://www.slideshare.net/danglbl/schemaless-databases/7

Early 2010’s saw MANY 
such systems, with 
slightly different data 
models and semantics



Dynamo Query Interface 

• Key / Value store

• All keys and values are arbitrary byte arrays
• md5 on key to generate ID 

• get(key)

• put(key, context, value)
• Context is a sequence number done by coordinator of write

• More later

• single-key atomicity
• I.e., each read/write is atomic, but only with respect to key



Dynamo Data Partitioning and Replication

• All data replicated on N nodes

• Each node has an address on a “ring” representing space 
of hash values from say, 0→2128

• Data stored on ring as well

Each node occupies 
one (or multiple) 
random locations on 
ring 

k A key hashed to location k is 
stored on N successors in ring

“Overlay 
network”:  
Nodes are not 
actually in a 
physical ring, but 
are just 
machines on the 
Internet

N=3



Consistent Hashing

• Data and nodes mapped to ring

• Data assigned to nearest successor(s)

• When a node joins, it takes over only keys in range it joins

• No need to rehash all values!

F

F 
takes 
over 



Joining the Ring

• Administrators explicitly add / remove nodes

• When a node joins, it contacts a list of “seed nodes”

• Other nodes periodically “gossip” to learn about ring structure

• When a node i learns about new node j, i sends j any keys j is 

responsible for

F

Each node has mapping of all other nodes.
This is small, even for thousands of nodesSeed nodes are 

nodes clients 
and other nodes 
can ask for 
current 
mapping

External discovery 
service

Seed node list

Node Loc

A 0

B X

C Y

…

Node Loc

A 0

B X

C Y

…

Node Loc

A 0

B X

C Y

F W

B Table

Node Loc

A 0

B X

C Y

F W

C Table

Keys in range [X,W]



What about data skew?
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D F
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Handling Reads

• Each item is replicated on N nodes

• To read: hash key, send request to one replica

• Client either uses Amazon front end or reads mapping table from seeds

k

N=3

Client selects one 
node to be 
coordinator



Handling Writes

• Route as in reads

• Back to our availability conundrum

• Do we write all replicas?  What if one has failed / isn’t available?

• Do we write just one replica?  How do we ensure that our read will be visible to 
other nodes?

k

N=3

Client selects one 
node to be 
coordinator



Dynamo Consistency

• “Quorum Writes”

• R+W > N

• N = number of replicas of each data item

• R = number of replicas each read must be heard from

• W = number of replicas each write must be sent to

• E.g., R = 2, W = 2, N = 3

R1 R2 R3

 v1 v1 v1

 v2 v1 v2  write to 2 out of 3

Any read of 2 will see v2!



Dynamo Consistency

• “Quorum Writes”

• R+W > N

• N = number of replicas of each data item

• R = number of replicas each read must be heard from

• W = number of replicas each write must be sent to

• Need some way to ensure that if fewer than N nodes written to, 
write eventually propagates

• If a reader sees that a replica has a stale version, it writes back



What about data skew?

A

B

C

E

D F

A

B

C

E

D F

A

A

E

E

D
D

D

F

F

C

C

B B

3 way replication. 
Second a has to be skipped



https://clicker.mit.edu/6.8530/

Assume that we use Dynamo to store shopping cart items (e.g., (key:Tim, 
value:<milk, chocolate, bread>)

What statements are true with R+W > N (e.g., N=3, R=2, W=2)

1) The system is always available

2) The system can tolerate network partitions

3) The system is consistent 



https://clicker.mit.edu/6.8530/

Assume that we use Dynamo to store shopping cart items (e.g., (key:Tim, 
value:<milk, chocolate, bread>)

What statements are true with N=3 R=1 W=2

1) The system is always available

2) The system can tolerate network partitions

3) The system is consistent 



Sloppy Quorum

• Quorums still favor consistency too heavily, because:

• Decreased durability (want to write all data at least N times)

• Decreased availability in the case of partitioning.

• Solution: Sloppy Quorum



Sloppy Quorum & Hinted Handoff

• If fewer than N writes succeed, continue around ring, past successors

k

N=3

2 our of 3 writes succeed
Continue around ring, write to B

K=x
Hint: Owner=E

”Hinted Handoff”:  B will keep 
trying to read E to let it know 
about the value of K



https://clicker.mit.edu/6.8530/

Assume that we use Dynamo to store shopping cart items (e.g., (key:Tim, 
value:<milk, chocolate, bread>)

With sloppy quorums is the system

1) Always available

2) Tolerant against network partitions

3) Consistent 



Sloppy Quorum ➔ Divergence

• If network is partitioned, hinted handoff can lead to divergent replicas

• E.g., suppose N=3, W=2, R=2, Partitioned

Client 1
k

(sloppy)

(sloppy)



Sloppy Quorum ➔ Divergence

• If network is partitioned, hinted handoff can lead to divergent replicas

• E.g., suppose N=3, W=2, R=2, Partitioned

Client 2

k

(sloppy) 

Two different 
versions of key 
k, k1 and k2 
now exist



Vector Clocks

A B C D E F

k

• Each node keeps a monotonic version counter that increments 
for every write it coordinates

• Each data item has a clock, consisting of a list of the most 
recent version it includes from each coordinator



Vector Clocks

A B C D E F

1 [C,1] 1 [C,1] 1 [C,1]

k

• Each node keeps a monotonic version counter that increments 
for every write it coordinates

• Each data item has a clock, consisting of a list of the most 
recent version it includes from each coordinator

[C,1]: Contains 
first version from 
C as coordinater

Client 1
Create k → C
 C writes [C,1] to C, D, E



Vector Clocks

A B C D E F

1 [C,1] 1 [C,1] 1 [C,1]

2 [C,2] 2 [C,2] 2 [C,2]

k

C1

• Each node keeps a monotonic version counter that increments 
for every write it coordinates

• Each data item has a clock, consisting of a list of the most 
recent version it includes from each coordinator

Client 1
Create k → C
 C writes [C,1] to C, D, E

Client 1
Read k → C
 C reads C, D, E
 C returns [C,1]
Write k [C, 1] → C
 C writes [C,2] → C, A, B



Vector Clocks

• Each node keeps a monotonic version counter that increments 
for every write it coordinates

• Each data item has a clock, consisting of a list of the most 
recent version it includes from each coordinator

A B C D E F

1 [C,1] 1 [C,1] 1 [C,1]

2 [C,2] 2 [C,2] 2 [C,2]

3 [C,1][D,1] 3 [C,1][D,1] 3 [C,1][D,1]

k

C2

Incomparable 
(can’t totally order)

Client 2
Read k → D
 D reads D,E,F
 D returns [C,1]
Write k [C, 1] → D
 D writes [C,1][D,1]
  to D, E, F



Vector Clocks

39

Each data item associated with a list of (server, timestamp) 
pairs indicating its version history.

• A client writes D1 at server SX: D1 ([SX,1]) 

• Another client reads D1, writes back D2; also handled by 
SX: D2 ([SX,2]) (D1 garbage collected) 

• Another client reads D2, writes back D3; handled by server 
SY: D3 ([SX,2], [SY,1]) 

• Another client reads D2, writes back D4; handled by server 
SZ: D4 ([SX,2], [SZ,1]) 

• Another client reads D3, D4: CONFLICT !



40

Replica 1 Replica 2
A ([SX,3],[SY,6]) ([SX,3],[SZ,2])
B ([SX,3]) ([SX,5])
C ([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2])
D ([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2])
E ([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2])

https://clicker.mit.edu/6.8530/

Select all versions, which are in conflict



Read Repair

• Possible for a client to read  2 incomparable versions

• Need reconciliation;  options:

• Latest writer wins

• Application specific reconciliation (e.g., shopping cart union)

• After reconciliation, perform write back, so replicas know about new 
state



https://clicker.mit.edu/6.8530/

V1 =<R1:0,R2:3,R3:2>

V2 =<R1:1,R2:3,R3:2>

V3 =<R1:0,R2:0,R3:3>

1. The writer that produced V1 observed V2. 

2. The writer that produced V2 observed V1. 

3. The writer that produced V3 observed V1. 

V2 was coordinated by R1, saw same versions as V1

V3 was coordinated by R3, did not see R2 1, 2, or 3, and 
happened concurrently with V2

✓



Anti-entropy

• Once a partition heals, or a node recovers, need a way to patch up

• Could rely on gossip & hinted handoff

• Dynamo also compares nodes responsible for each key range

• Comparison done via hashing, using a technique called Merkle trees

Here, for EA range, B and C 

are also responsible 



Merkle Trees

Suppose EA  range has keys u,v,w,x,y,z, A and B are comparing

Here, for EA 

range, B and C are 

also responsible 
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Merkle Trees

Suppose EA  range has keys u,v,w,x,y,z, A and B are comparing

This whole tree is as big as data, but only need to exchange parts of it 

that are different, i.e., no need to send light gray nodes in diagram, 

since parent hashes are all equal

Here, for EA 

range, B and C are 

also responsible 
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Hash-function: x mod 5 

<a,1>
H[a-a]: 1

<b,5>
H[b-b]: 0

<c,7>
H[c-c]: 2

<d,3>
H[d-d]: 3

?

What is the top-level hash value?
A) 0
B) 1
C) 2
D) 3
E) 4
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Hash-function: x mod 5 

<a,1>
H[a-a]: 1

<b,5>
H[b-b]: 0

<c,7>
H[c-c]: 2

<d,3>
H[d-d]: 3

H[a-b]: h(1+0)=1 H[c-d]: h(2+3)=0

H[a-d]: h(1+0)=1



https://clicker.mit.edu/6.8530/

With R+W>N (read and write quorum overlap) and no sloppy 

quorums 

What statements are true?

A) We do not need 2 phase commit anymore. 

B) Single value reads are always consistent (i.e., monotonically 

increasing)

C) No updates can be lost



Summary

Problem Technique Purpose

Partitioning Consistent hashing Incremental scalability
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Summary

Problem Technique Purpose

Partitioning Consistent hashing Incremental scalability

Highly available for writes
Vector clocks with read 

repair

Version size decoupled 

from update rate

Handle temporary failures
Sloppy quorum and hinted 

handoff
HA with some durability

Recovery from permanent 

failures
Anti-entropy

Sync replicas w/ Merkle 

Trees

Membership / failure 

detection
Gossip based membership

Symmetry and no 

centralized coordination
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