
Eventual Consistency &
Amazon Dynamo

“electric dynamo in the style of early 20th century art”,
Stable Diffusion, November 14, 2022

“Dynamo Machine”, Natalia Sergeevna Goncharova, 1913

Administrative

Quiz Review session:

Friday Nov 15th 4-5:30 pm at Star Room (32-D463)

Mid-term project review this week

If they are planning to submit lab 3 after this Saturday, please let is
know

2PC Recap

• Remember this?

• If Coord + 1 Worker fail, no way to recover

• Coord may have told failed Worker about outcome, it may have exposed
results

Failure Cases

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK

1

2

3

4

5

6

7

8

Failure Cases

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK

1

2

3

4

5

6

7

8

What happens if
Coordinator transmits

COMMIT to some workers,
then dies forever?

Some workers think
COMMIT took place, others

can never obtain an
outcome

Amazon Operational DB Desiderata

• ”Always Available” shopping cart

• Should not go down even if a datacenter fails

• No centralized point of failure

• Very low latency

• Lots of orders being processed

• Many lookups required to render a page

• No need for complex analytics

• Incrementally scalable

Enter Dynamo

• “Always Available” shopping cart

Data replicated across multiple nodes

Favor availability over consistency

• Very low latency

• No need for complex analytics

• Incrementally scalable

Key value store

CRUD semantics

Keys partitioned across workers using consistent hashing

Versus RDBMS

• “Always Available” shopping cart

Data replicated across multiple nodes

Favor availability over consistency

• Very low latency

• No need for complex analytics

• Incrementally scalable

Key value store

CRUD semantics

Keys partitioned across workers using consistent hashing

Favor consistency above all else

Complex SQL queries can be slow

Can add new nodes in shared nothing but shuffle

joins may not scale incrementally

Replication Primer

• Replicating data helps with fault tolerance and performance

• Reads:

• On a fault, reads can be directed to replica

• Also, reads can be handled by local replica

• What about writes?

• Slower? (More nodes to write)

• Less available? (Have to write all nodes, what if some nodes crash?)

Availability

• Availability: can the system process requests?

• In large systems, even w/ very reliable nodes, failures happen!

• Replication clearly provides read availability

• What about writes?

Write Availability Tradeoff

• If we write to all replicas, availability is worse!

• If we only write some replicas, availability is better, but replicas can be stale

• Availability and consistency are a spectrum:

• Many models of consistency

Eventual

Consistency

HIGHLY

AVAILABLE

Strong
Consistency
NOT HIGHLY
AVAILABLE

Read your writes

Monotonicity (always see a view of

data moving forward in time)

Write Availability Tradeoff

• If we write to all replicas, availability is worse!

• If we only write some replicas, availability is better, but replicas can be stale

• Availability and consistency are a spectrum:

• Many models of consistency

Eventual

Consistency

HIGHLY

AVAILABLE

Strong
Consistency
NOT HIGHLY
AVAILABLE

Read your writes

Monotonicity (always see a view of

data moving forward in time)

https://clicker.mit.edu/6.8530/

Consider the following 3 properties:

- Consistency: The data is always consistent (think serializability)

- Availability: The system is available as long as one replica is up and running

- Partition tolerance: The system can sustain network partitions

Is it possible to design a system that is (select true statements):

A) Consistent and Available?

B) Available and Partition tolerant?

C) Consistent and Partition tolerant?

D) Consistent, Available, and Partition tolerant?

No Free Lunch

• Pick one of availability or consistency

• CAP Theorem

• Eric Brewer at PODC 02; system can have 2 of 3 properties

Consistency
Availability
Partition Tolerance

• CAP proof on systems with async communication

CAP Example

Options:

1. Wait for partition to heal (Consistent)

2. Forge ahead: n1 and n2 process write, somehow make n3 aware later? (Available)

If data is partitioned must choose either consistent or available!

n1 n2 n3

x=4 x=4 x=4

PartitionWx=5
Rx?

NoSQL

•Class of systems like Dynamo that generally offer:

• Key/value storage (not SQL!)

• Partitioned and replicated by key

• Favoring availability over consistency

Source: https://www.slideshare.net/danglbl/schemaless-databases/7

Early 2010’s saw MANY
such systems, with
slightly different data
models and semantics

Dynamo Query Interface

• Key / Value store

• All keys and values are arbitrary byte arrays
• md5 on key to generate ID

• get(key)

• put(key, context, value)
• Context is a sequence number done by coordinator of write

• More later

• single-key atomicity
• I.e., each read/write is atomic, but only with respect to key

Dynamo Data Partitioning and Replication

• All data replicated on N nodes

• Each node has an address on a “ring” representing space
of hash values from say, 0→2128

• Data stored on ring as well

Each node occupies
one (or multiple)
random locations on
ring

k A key hashed to location k is
stored on N successors in ring

“Overlay
network”:
Nodes are not
actually in a
physical ring, but
are just
machines on the
Internet

N=3

Consistent Hashing

• Data and nodes mapped to ring

• Data assigned to nearest successor(s)

• When a node joins, it takes over only keys in range it joins

• No need to rehash all values!

F

F
takes
over

Joining the Ring

• Administrators explicitly add / remove nodes

• When a node joins, it contacts a list of “seed nodes”

• Other nodes periodically “gossip” to learn about ring structure

• When a node i learns about new node j, i sends j any keys j is

responsible for

F

Each node has mapping of all other nodes.
This is small, even for thousands of nodesSeed nodes are

nodes clients
and other nodes
can ask for
current
mapping

External discovery
service

Seed node list

Node Loc

A 0

B X

C Y

…

Node Loc

A 0

B X

C Y

…

Node Loc

A 0

B X

C Y

F W

B Table

Node Loc

A 0

B X

C Y

F W

C Table

Keys in range [X,W]

What about data skew?

A

B

C

E

D F

A

B

C

E

D F

A

A

E

E

D
D

D

F

F

C

C

B B

Handling Reads

• Each item is replicated on N nodes

• To read: hash key, send request to one replica

• Client either uses Amazon front end or reads mapping table from seeds

k

N=3

Client selects one
node to be
coordinator

Handling Writes

• Route as in reads

• Back to our availability conundrum

• Do we write all replicas? What if one has failed / isn’t available?

• Do we write just one replica? How do we ensure that our read will be visible to
other nodes?

k

N=3

Client selects one
node to be
coordinator

Dynamo Consistency

• “Quorum Writes”

• R+W > N

• N = number of replicas of each data item

• R = number of replicas each read must be heard from

• W = number of replicas each write must be sent to

• E.g., R = 2, W = 2, N = 3

R1 R2 R3

 v1 v1 v1

 v2 v1 v2 write to 2 out of 3

Any read of 2 will see v2!

Dynamo Consistency

• “Quorum Writes”

• R+W > N

• N = number of replicas of each data item

• R = number of replicas each read must be heard from

• W = number of replicas each write must be sent to

• Need some way to ensure that if fewer than N nodes written to,
write eventually propagates

• If a reader sees that a replica has a stale version, it writes back

What about data skew?

A

B

C

E

D F

A

B

C

E

D F

A

A

E

E

D
D

D

F

F

C

C

B B

3 way replication.
Second a has to be skipped

https://clicker.mit.edu/6.8530/

Assume that we use Dynamo to store shopping cart items (e.g., (key:Tim,
value:<milk, chocolate, bread>)

What statements are true with R+W > N (e.g., N=3, R=2, W=2)

1) The system is always available

2) The system can tolerate network partitions

3) The system is consistent

https://clicker.mit.edu/6.8530/

Assume that we use Dynamo to store shopping cart items (e.g., (key:Tim,
value:<milk, chocolate, bread>)

What statements are true with N=3 R=1 W=2

1) The system is always available

2) The system can tolerate network partitions

3) The system is consistent

Sloppy Quorum

• Quorums still favor consistency too heavily, because:

• Decreased durability (want to write all data at least N times)

• Decreased availability in the case of partitioning.

• Solution: Sloppy Quorum

Sloppy Quorum & Hinted Handoff

• If fewer than N writes succeed, continue around ring, past successors

k

N=3

2 our of 3 writes succeed
Continue around ring, write to B

K=x
Hint: Owner=E

”Hinted Handoff”: B will keep
trying to read E to let it know
about the value of K

https://clicker.mit.edu/6.8530/

Assume that we use Dynamo to store shopping cart items (e.g., (key:Tim,
value:<milk, chocolate, bread>)

With sloppy quorums is the system

1) Always available

2) Tolerant against network partitions

3) Consistent

Sloppy Quorum ➔ Divergence

• If network is partitioned, hinted handoff can lead to divergent replicas

• E.g., suppose N=3, W=2, R=2, Partitioned

Client 1
k

(sloppy)

(sloppy)

Sloppy Quorum ➔ Divergence

• If network is partitioned, hinted handoff can lead to divergent replicas

• E.g., suppose N=3, W=2, R=2, Partitioned

Client 2

k

(sloppy)

Two different
versions of key
k, k1 and k2
now exist

Vector Clocks

A B C D E F

k

• Each node keeps a monotonic version counter that increments
for every write it coordinates

• Each data item has a clock, consisting of a list of the most
recent version it includes from each coordinator

Vector Clocks

A B C D E F

1 [C,1] 1 [C,1] 1 [C,1]

k

• Each node keeps a monotonic version counter that increments
for every write it coordinates

• Each data item has a clock, consisting of a list of the most
recent version it includes from each coordinator

[C,1]: Contains
first version from
C as coordinater

Client 1
Create k → C
 C writes [C,1] to C, D, E

Vector Clocks

A B C D E F

1 [C,1] 1 [C,1] 1 [C,1]

2 [C,2] 2 [C,2] 2 [C,2]

k

C1

• Each node keeps a monotonic version counter that increments
for every write it coordinates

• Each data item has a clock, consisting of a list of the most
recent version it includes from each coordinator

Client 1
Create k → C
 C writes [C,1] to C, D, E

Client 1
Read k → C
 C reads C, D, E
 C returns [C,1]
Write k [C, 1] → C
 C writes [C,2] → C, A, B

Vector Clocks

• Each node keeps a monotonic version counter that increments
for every write it coordinates

• Each data item has a clock, consisting of a list of the most
recent version it includes from each coordinator

A B C D E F

1 [C,1] 1 [C,1] 1 [C,1]

2 [C,2] 2 [C,2] 2 [C,2]

3 [C,1][D,1] 3 [C,1][D,1] 3 [C,1][D,1]

k

C2

Incomparable
(can’t totally order)

Client 2
Read k → D
 D reads D,E,F
 D returns [C,1]
Write k [C, 1] → D
 D writes [C,1][D,1]
 to D, E, F

Vector Clocks

39

Each data item associated with a list of (server, timestamp)
pairs indicating its version history.

• A client writes D1 at server SX: D1 ([SX,1])

• Another client reads D1, writes back D2; also handled by
SX: D2 ([SX,2]) (D1 garbage collected)

• Another client reads D2, writes back D3; handled by server
SY: D3 ([SX,2], [SY,1])

• Another client reads D2, writes back D4; handled by server
SZ: D4 ([SX,2], [SZ,1])

• Another client reads D3, D4: CONFLICT !

40

Replica 1 Replica 2
A ([SX,3],[SY,6]) ([SX,3],[SZ,2])
B ([SX,3]) ([SX,5])
C ([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2])
D ([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2])
E ([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2])

https://clicker.mit.edu/6.8530/

Select all versions, which are in conflict

Read Repair

• Possible for a client to read 2 incomparable versions

• Need reconciliation; options:

• Latest writer wins

• Application specific reconciliation (e.g., shopping cart union)

• After reconciliation, perform write back, so replicas know about new
state

https://clicker.mit.edu/6.8530/

V1 =<R1:0,R2:3,R3:2>

V2 =<R1:1,R2:3,R3:2>

V3 =<R1:0,R2:0,R3:3>

1. The writer that produced V1 observed V2.

2. The writer that produced V2 observed V1.

3. The writer that produced V3 observed V1.

V2 was coordinated by R1, saw same versions as V1

V3 was coordinated by R3, did not see R2 1, 2, or 3, and
happened concurrently with V2

✓

Anti-entropy

• Once a partition heals, or a node recovers, need a way to patch up

• Could rely on gossip & hinted handoff

• Dynamo also compares nodes responsible for each key range

• Comparison done via hashing, using a technique called Merkle trees

Here, for EA range, B and C

are also responsible

Merkle Trees

Suppose EA range has keys u,v,w,x,y,z, A and B are comparing

Here, for EA

range, B and C are

also responsible

Merkle Trees

Suppose EA range has keys u,v,w,x,y,z, A and B are comparing

Here, for EA

range, B and C are

also responsible

Merkle Trees

Suppose EA range has keys u,v,w,x,y,z, A and B are comparing

Here, for EA

range, B and C are

also responsible

Merkle Trees

Suppose EA range has keys u,v,w,x,y,z, A and B are comparing

Here, for EA

range, B and C are

also responsible

Merkle Trees

Suppose EA range has keys u,v,w,x,y,z, A and B are comparing

This whole tree is as big as data, but only need to exchange parts of it

that are different, i.e., no need to send light gray nodes in diagram,

since parent hashes are all equal

Here, for EA

range, B and C are

also responsible

https://clicker.mit.edu/6.8530/

Hash-function: x mod 5

<a,1>
H[a-a]: 1

<b,5>
H[b-b]: 0

<c,7>
H[c-c]: 2

<d,3>
H[d-d]: 3

?

What is the top-level hash value?
A) 0
B) 1
C) 2
D) 3
E) 4

https://clicker.mit.edu/6.8530/

Hash-function: x mod 5

<a,1>
H[a-a]: 1

<b,5>
H[b-b]: 0

<c,7>
H[c-c]: 2

<d,3>
H[d-d]: 3

H[a-b]: h(1+0)=1 H[c-d]: h(2+3)=0

H[a-d]: h(1+0)=1

https://clicker.mit.edu/6.8530/

With R+W>N (read and write quorum overlap) and no sloppy

quorums

What statements are true?

A) We do not need 2 phase commit anymore.

B) Single value reads are always consistent (i.e., monotonically

increasing)

C) No updates can be lost

Summary

Problem Technique Purpose

Partitioning Consistent hashing Incremental scalability

Summary

Problem Technique Purpose

Partitioning Consistent hashing Incremental scalability

Highly available for writes
Vector clocks with read

repair

Version size decoupled

from update rate

Summary

Problem Technique Purpose

Partitioning Consistent hashing Incremental scalability

Highly available for writes
Vector clocks with read

repair

Version size decoupled

from update rate

Handle temporary failures
Sloppy quorum and hinted

handoff
HA with some durability

Summary

Problem Technique Purpose

Partitioning Consistent hashing Incremental scalability

Highly available for writes
Vector clocks with read

repair

Version size decoupled

from update rate

Handle temporary failures
Sloppy quorum and hinted

handoff
HA with some durability

Recovery from permanent

failures
Anti-entropy

Sync replicas w/ Merkle

Trees

Summary

Problem Technique Purpose

Partitioning Consistent hashing Incremental scalability

Highly available for writes
Vector clocks with read

repair

Version size decoupled

from update rate

Handle temporary failures
Sloppy quorum and hinted

handoff
HA with some durability

Recovery from permanent

failures
Anti-entropy

Sync replicas w/ Merkle

Trees

Membership / failure

detection
Gossip based membership

Symmetry and no

centralized coordination

	Slide 1: Eventual Consistency & Amazon Dynamo
	Slide 2: Administrative
	Slide 3: 2PC Recap
	Slide 4: Failure Cases
	Slide 5: Failure Cases
	Slide 6: Amazon Operational DB Desiderata
	Slide 7: Enter Dynamo
	Slide 8: Versus RDBMS
	Slide 9: Replication Primer
	Slide 10: Availability
	Slide 11: Write Availability Tradeoff
	Slide 12: Write Availability Tradeoff
	Slide 13: https://clicker.mit.edu/6.8530/
	Slide 14: No Free Lunch
	Slide 15: CAP Example
	Slide 16: NoSQL
	Slide 17
	Slide 18: Dynamo Query Interface
	Slide 19: Dynamo Data Partitioning and Replication
	Slide 20: Consistent Hashing
	Slide 21: Joining the Ring
	Slide 22: What about data skew?
	Slide 23: Handling Reads
	Slide 24: Handling Writes
	Slide 25: Dynamo Consistency
	Slide 26: Dynamo Consistency
	Slide 27: What about data skew?
	Slide 28: https://clicker.mit.edu/6.8530/
	Slide 29: https://clicker.mit.edu/6.8530/
	Slide 30: Sloppy Quorum
	Slide 31: Sloppy Quorum & Hinted Handoff
	Slide 32: https://clicker.mit.edu/6.8530/
	Slide 33: Sloppy Quorum Divergence
	Slide 34: Sloppy Quorum Divergence
	Slide 35: Vector Clocks
	Slide 36: Vector Clocks
	Slide 37: Vector Clocks
	Slide 38: Vector Clocks
	Slide 39: Vector Clocks
	Slide 40: https://clicker.mit.edu/6.8530/
	Slide 41: Read Repair
	Slide 42: https://clicker.mit.edu/6.8530/
	Slide 43: Anti-entropy
	Slide 44: Merkle Trees
	Slide 45: Merkle Trees
	Slide 46: Merkle Trees
	Slide 47: Merkle Trees
	Slide 48: Merkle Trees
	Slide 49: https://clicker.mit.edu/6.8530/
	Slide 50: https://clicker.mit.edu/6.8530/
	Slide 51: https://clicker.mit.edu/6.8530/
	Slide 52: Summary
	Slide 53: Summary
	Slide 54: Summary
	Slide 55: Summary
	Slide 56: Summary

