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Lecture 16: Parallel and Distributed Databases



Parallel DB Recap

• Last time:  discussed parallel query execution

• Focused on partitioned parallelism
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Partitioning Strategies

• Random / Round Robin

• Evenly distributes data (no skew)

• Requires us to repartition for joins

• Range partitioning

• Allows us to perform joins without repartitioning, when tables are partitioned 
on join attributes

• Subject to skew

• Hash partitioning

▪ Allows us to perform joins without repartitioning, when tables are partitioned 
on join attributes

▪ Only subject to skew when there are many duplicate values



Parallel Operations in a Partitioned DB

• SELECT

▪ Trivial to “push down” to each worker

▪ Depending on partitioning attribute, may be able to skip some partitions 

• PROJECT

▪ Assuming all columns are on each node, nothing to be done

• JOIN

▪ Depending on data partitioning, may be able to process partitions individually and then 

merge, or may need to repartition

• AGGREGATE

▪ Partially aggregate data at each node, merge final result



Join Strategies

• If tables are partitioned on same attribute, just run local joins

▪ Also, if one table is replicated, no need to join

• Otherwise, several options:

1. Collect all tables at one node

o Inferior except in extreme cases, i.e., very small tables

2. Re-partition one or both tables – “shuffle join”

oDepending on initial partitioning

3. Replicate (smaller) table on all nodes



Table Pre-Partitioned on Join Attribute

• Suppose we have hashed A on a, using hash function F to get F(A.a) → 1..n (n 

= # machines)

• Also hash B on b using same F

• Query: SELECT * FROM A,B WHERE A.a = B.b
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Repartitioning Example – “Shuffle Join”

• Suppose A pre-partitioned on a, but B needs to be repartitioned
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merge Generalizes to the case of 
repartitioning both tables

Repartitioning Example

• Suppose A pre-partitioned on a, but B needs to be repartitioned
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repartitioning both tables

Repartitioning Example

• Suppose A pre-partitioned on a, but B needs to be repartitioned:
How many bytes are sent from each machine?

https://clicker.mit.edu/6.8530/

A:  (|B|/n) bytes 
B: (|B|/n) / n  * (n-1) bytes
C: 2* (A) (|B|/n) / n  * (n-1) bytes



Repartitioning Example

• Suppose A pre-partitioned on a, but B needs to be repartitioned
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merge Each node sends and receives
(|B|/n) / n  * (n-1) bytes

|B|/n/n 

|B|/n 

Each partition is 
|B| / n records
Repartitioning 
splits it into n new 
chunks, each node 
sends n-1 of them 



Repartitioning Both Tables

• Suppose both tables, A and B, need to be repartitioned

• Each node sends and receives

  (|A|/n)/n * (n-1)  + (|B|/n)/n * (n-1)  bytes



Replication Example
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merge |B| / n * (n-1) bytes sent  & received 
by each node 

• Suppose we replicate B to all nodes



Replication vs Repartioning

• Replication requires each node to send smaller table to all other nodes

▪ (|T| / n) * (n-1) bytes sent by each node

▪ vs ((|T| / n) / n) * (n-1)  to repartition one table

• When would replication be preferred over repartitioning for joins?

▪ If size of smaller table < data sent to repartition one or both tables

▪ Should also account for cost of join: will be higher with replicated table

• Example: |B| = 1 MB, |A|=100 MB, n=3

• Need to repartition A (B distributed on join attr)

▪ Data to repartition A is |A|/3 / 3 * 2 = 22.2 MB per node

o Join .33 MB to 33 MB 

▪ Data to broadcast B is |B| = 1/3 * 2 = .66 MB

o Join 1 MB to 33 MB 



• Suppose we have two tables R and K, partitioned across 3 nodes

• |R| = 9 MB

• |K| = 90 MB

• Join is R.b = K.b

▪ K is hash partitioned on b, R is not partitioned on b

• How much data does each node send if repartition R vs replicate R:

A) 2 MB (repartition) vs 6 MB (replicate)

B) 6 MB (repartition) vs 2 MB (replicate)

C) 0.9 MB (repartition)  vs 9 MB (replicate)

Replication: (|T| / n) * (n-1) bytes sent by each node

Partitioning:  ((|T| / n) / n) * (n-1)  to repartition one table

https://clicker.mit.edu/6.8530/



• Suppose we have two tables R and K, partitioned across 3 nodes

• |R| = 9 MB

• |K| = 90 MB

• Join is R.b = K.b

▪ K is hash partitioned on b, R is not partitioned on b

• How much data does each node send if we:

1. Repartition R

2. Replicate R

Replication: (|T| / n) * (n-1) bytes sent by each node

Partitioning:  ((|T| / n) / n) * (n-1)  to repartition one table

9 / 3 * 2  = 6 MB

(9 / 3) / 3 * 2  = 2 MB

https://clicker.mit.edu/6.8530/



Additional Options for Joins

• Pre-replicated small tables

▪ If space permits, can be a good option

• ”Semi-join”

▪ send list of join attribute values in each partition of B to A,

▪ then send list of matching tuples from A to B,

▪ then compute join at B

• Good for selective joins of wide tables

▪ Pre-filters A with join values that actually occur in B, rather than sending all of B



Semi-join Example
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Total cost:

Each nodes sends & receives

(|join col|  / n )  * (n-1)

+

(f * |A|  / n )  * (n-1)

Where f is join selectivity

(Like cost of replication, but only 

for 1 column +filtered |A|)



Aggregation

Processor  1

A1 filter aggProcessor  2

A2 filter agg

merge

Runs on 1 of 
the processors

In general, each node will have data for the same groups

So merge will need to combine groups, e.g.:

 MAX (MAX1, MAX2)

 SUM (SUM1, SUM2)

What about average?

 Maintain SUMs and COUNTs, combine in merge step



Generalized Parallel Aggregates

• Express aggregates as 3 functions:

▪ INIT – create partial aggregate value

▪ MERGE  –  combine 2 partial aggregates

▪ FINAL – compute final aggregate

▪ E.g., AVG:

o INIT(tuple) → (SUM=tuple.value, COUNT=1)

o MERGE (a1, a2) → (SUM=a1.SUM + a2.SUM, COUNT=a1.count+a2.count)

o FINAL(a) →  a.SUM/a.COUNT



What does MERGE do?

• For aggregate queries, receives partial aggregates from each 

processor, MERGEs and FINALizes them

• For non-aggregates, just UNIONs results



DB Parallel Processing vs General Parallelism

• Shared nothing partitioned parallelism is the dominant 

approach

• Hooray for the relational model!

▪ Apps don't change when you parallelize system (physical 

data independence!). 

▪ Can tune, scale system without changing applications!

▪ Can partition records arbitrarily, w/o synchronization

• Essentially no synchronization except setup & 

teardown

▪ No barriers, cache coherence,  etc.

▪ DB transactions work fine in parallel Rest of the lecture:  
Distributed Transactions!



Break



Distributed Transactions

• Suppose we have data on separate machines and want to run a 
transaction across them

• Example 1: reserve a rental car and an airline flight, and only commit 

if both are available.

• Example 2: transfer money from bank 1 to bank 2

• Example 3: add a friend to a social media graph, where user 1 is on 
Asia server and user 2 is on US server



Problem with Distributed Transactions

• Consider:

BEGIN

INSERT A → Machine 1

INSERT B → Machine 2

INSERT C → Machine 3

COMMIT

Problem: Machine 1 & 2 commit, Machine 3 crashes

What happens?



Goal: Atomicity

• If one machine crashes, system should still preserve atomicity

➔ Crashing machine should recover & commit

    or

➔ All machines (including crashing one) should rollback

In single-node system, a transaction is committed the moment the commit record 
goes to disk

In multi-node system, can’t ensure commit record is all-or-nothing across all 
nodes!



Two-Phase Commit

• Key Idea:  Add a new state, “PREPARED” to transactions

• Indicates that a node has done the work for a transaction, and the 
decision to COMMIT/ABORT will be done by a coordinator

• Once prepared, a node will not COMMIT or ABORT on its own

➔”Prepared” state must survive crashes

(Postgres Demo)



2PC Architecture

Coordinator

Worker 1

Worker n

…

Prepare



2PC Architecture

Coordinator

Worker 1

Worker n

…

Vote 
yes/no



2PC Architecture

Coordinator

Worker 1

Worker n

…

Commit
If all
yes



Two-Phase Coordinator Overview

1. Log start of transaction

2. Execute transaction on worker nodes

3. PREPARE each worker

4. Once workers are all prepared, log transaction commit

5. Commit each worker

6. Log DONE, so we know all transactions are done

(If one of the workers fails to prepare, abort each worker)

This commits the 
transaction



What If Coordinator Crashes

• Log tells us which transactions were running

• If before Coordinator COMMIT, all workers should abort

• Some may have prepared, some may not

• (Workers may be asked to abort unprepared transactions)

• If after Coordinator COMMIT, but not DONE all workers should commit

• Some may have committed, some may not

• (Workers must be asked to commit transactions again)



What Happens in Worker PREPARE?

• Because PREPAREd state is not committed, a worker must:

• Hold locks until COMMIT or ABORT

• Be able to COMMIT / ABORT even if it crashes

• Because PREPAREd state must survive a crash, a worker must

• Log that it is prepared (before acknowledging the prepare to coord)

• Recover back into the PREPAREd state (re-acquiring locks!)

• Requires logging locked objects, and forcing log to disk before 

acknowledging PREPARE



Worker Recovery Process

• Each worker has a recovery process that keeps track of the outcome of 
transactions running on the site

• If a site is prepared and crashes, it needs to ask coordinator about the 
outcome of the transaction on recovery

• This is not handled in our pseudocode, or Postgres

• Would require a separate monitor for each DB



Two-phase commit protocol

Coordinator Worker

PREPARE(T)

FW(PREPARE, T,locks,…)
VOTE(T,YES/NO)

If all yes
 FW(COMMIT)
Else
 FW(ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

Prepared worker’s wait to hear 
outcome from coord
Recover into prepared state and 
ask coord for outcome

W(DONE), once all W’s 
ACK

ACK
Worker can 
forget about 
transaction at 
this point

Coord can forget about transaction at this point

Coord must remember outcome
until all workers’s ack

1

2

3

FW = Force Write

4

5

6

7

8



Failure Cases

(1) Coordinator crashes before 
sending PREPARE

• Coord – will recover, abort 
transaction just as in normal recovery, 
discarding all state

• Worker – can safely abort; 
• Add recovery process that polls 

coordinator for status of outstanding 
txns

• Coord, which has no record of txn, will 
tell worker to abort

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK
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3

4

5

6

7

8



Failure Cases

(2) Worker crashes before 
receiving PREPARE

• Coord – will never hear reply, will 

abort

• Worker – will recover, rollback 

txn during recovery

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK
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Failure Cases

(3) Worker crashes after PREPARE

Must determine outcome from coord:

Two cases

(a) It already sent its vote, and coord is 
waiting for an ack -- thus,  worker can 
learn fate by contacting coord

(b) It didn't send its vote, in which case 
coord may or may not have timed out.  
• If it has not timed out, it can vote.

• If it has timed out, it must have aborted, and 
will tell the worker this.

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK

1

2

3

4

5

6

7

8



Failure Cases

(4) Coordinator crashes before 
receiving all votes

Coord aborts during recovery, informs 
workers

Note that workers who have 

prepared must wait for coordinator 
to restart to hear outcome

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK
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Failure Cases

(5) Coordinator crashes after 
writing COMMIT

No DONE record;  coordinator 

sends commits to all workers

Workers must wait to hear outcome

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK
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Failure Cases

(6) Worker crashes before receiving 
COMMIT / ABORT

Upon recovery, recovery process 

polls for outcome.

Since coordinator has not received 

ACK, it still knows state.

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK
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8



Failure Cases

(7) Worker crashed after writing 
COMMIT record, before ACKing. 

Worker will recover, transaction will 
be committed.  Coordinator will 
periodically send a  COMMIT 
message, which worker will ACK 
without writing any additional state.

 

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK
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Failure Cases

(8) COORD Crashed after 
receiving some ACKs.

COORD will send 

COMMIT/ABORT to all workers, 
who will ACK.

Coordinator Worker

PREPARE(T)

FW(PREPARE)

VOTE(T,YES/NO)

FW(COMMIT/ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s ACK

ACK
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Read-only Workers

• If a worker is read-only (RO), it can send a "READ VOTE" 

• Doesn't need to write any log records

• Can forget the  transaction after it votes

• Coord doesn't need to send ABORT/COMMIT to RO workers

• If all workers are RO, no ABORT/COMMIT messages needed



Two Variants

• Presumed Abort and Presumed Commit

• Avoid some logging when transactions abort / commit



Presumed Abort

• Notice that in the existing protocol, if a recovery process contacts 
coordinator, and coordinator has no info about transactions, it replies 
“abort”

• Implies we do not need to force writes for aborting transactions

• Committing transactions are unchanged



Presumed Abort – if transaction aborts

Coordinator Worker

PREPARE(T)

FW(PREPARE, T,locks,…)
VOTE(T,YES/NO)

If all yes
 FW(COMMIT)
Else
 FW(ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all W’s 
ACK

ACK



Presumed Abort – if transaction aborts

Coordinator Worker

PREPARE(T)

FW(PREPARE, T,locks,…)
VOTE(T,YES/NO)

If all yes
 FW(COMMIT)
Else
 FW(ABORT) W(ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)

W(DONE), once all S’s 
ACK

ACK



Presumed Abort – if transaction aborts

Coordinator Worker

PREPARE(T)

FW(PREPARE, T,locks,…)
VOTE(T,YES/NO)

If all yes
 FW(COMMIT)
Else
 FW(ABORT) W(ABORT)

COMMIT/ABORT(T)

FW(COMMIT/ABORT)
W(ABORT)

W(DONE), once all S’s 
ACK

ACK

Only in case of abort



Presumed commit – if transaction 
commits

• Can’t just reply “COMMIT” in no information case

• Suppose coord sends prepare messages, then crashes

• Worker sends vote, doesn’t hear anything, re-requests

• Eventually coord recovers, rolls back, and replies “COMMIT” (because it has no 
information about txn)

• Soln:  prior to sending prepare, coord force writes an additional “BEGIN 
COMMIT” records with a list of all workers

• If it crashes prior to writing COMMIT/ABORT, it can restart commit process, contact 
workers, collecting votes and sending outcomes

• Adds an additional write on coord, but allows worker COMMIT to be an 

async write



Presumed commit – if transaction commits

Coordinator Worker

PREPARE(T)

FW(PREPARE, T,locks,…)
VOTE(T,YES/NO)

COMMIT

FW(COMMIT)

W(DONE), once all W’s ACK

ACK

FW(COMMIT)



Presumed commit – if transaction commits

Coordinator Worker

PREPARE(T)

FW(PREPARE, T,locks,…)
VOTE(T,YES/NO)

COMMIT

FW(COMMIT)

W(DONE), once all W’s ACK

ACK

FW(BEGIN COMMIT, worker list)

FW(COMMIT)



Presumed commit – if transaction commits

Coordinator Worker

PREPARE(T)

FW(PREPARE, T,locks,…)
VOTE(T,YES/NO)

W(COMMIT)

COMMIT

FW(COMMIT)

W(DONE), once all W’s ACK

ACK

FW(BEGIN COMMIT, worker list)



Presumed commit – if transaction commits

Coordinator Worker

PREPARE(T)

FW(PREPARE, T,locks,…)
VOTE(T,YES/NO)

COMMIT

W(COMMIT)

W(DONE), once all W’s ACK

ACK

FW(BEGIN COMMIT, worker list)

W(COMMIT)



Presumed commit – if transaction commits

Coordinator Worker

PREPARE(T)

FW(PREPARE, T,locks,…)
VOTE(T,YES/NO)

COMMIT

W(COMMIT)

FW(BEGIN COMMIT, worker list)

W(COMMIT)

Abort case still retains all writes 
of regular protocol



Summary: Write/Message Complexity

Messages for committing transaction

  Coord   Worker

  Update or Read-only Update  Read-Only

Standard 2W,1F,1M(R/O),2M(U) 2W,2F,2M 0W,0F,1M

PA  2W,1F,1M(R/O),2M(U) 2W,2F,2M 0W,0F,1M

PC  2W,1F,1M(R/O),2M(U) 2W,1F,1M 0W,0F,1M

W = Write
F = Force Write
M = Message

PA only helps in abort cases (not this one)
PC costs more writes on coord, but has fewer writes on workers



2PC – Problems

• 2 network round trips + synchronous logging ➔ high overheads
• Particularly when Coord and Worker are far apart, i.e., in different data centers

• If Coord fails, Workers must wait, or somehow choose a new coordinator

• If Coord + 1 Worker fail, no way to recover
• Coord may have told failed Worker about outcome, it may have exposed results

2PC sacrifices availability of system for consistency

2PC is probably not a good choice in a wide-area distributed setting

 Due to possibility of network failures, and wide area latency

Alternatives:  use a more complicated consensus protocol (e.g., Paxos), use deterministic 
execution, or relax consistency


	Slide 1: Lecture 16: Parallel and Distributed Databases
	Slide 2: Parallel DB Recap
	Slide 3: Partitioning Strategies
	Slide 4: Parallel Operations in a Partitioned DB
	Slide 5: Join Strategies
	Slide 6: Table Pre-Partitioned on Join Attribute
	Slide 7: Repartitioning Example – “Shuffle Join”
	Slide 8
	Slide 9: https://clicker.mit.edu/6.8530/
	Slide 10: Repartitioning Example
	Slide 11: Repartitioning Both Tables
	Slide 12: Replication Example
	Slide 13: Replication vs Repartioning
	Slide 14
	Slide 15
	Slide 16: Additional Options for Joins
	Slide 17: Semi-join Example
	Slide 18: Aggregation
	Slide 19: Generalized Parallel Aggregates
	Slide 20: What does MERGE do?
	Slide 21: DB Parallel Processing vs General Parallelism
	Slide 22: Break
	Slide 23: Distributed Transactions
	Slide 24: Problem with Distributed Transactions
	Slide 25: Goal: Atomicity
	Slide 26: Two-Phase Commit
	Slide 27: 2PC Architecture
	Slide 28: 2PC Architecture
	Slide 29: 2PC Architecture
	Slide 30: Two-Phase Coordinator Overview
	Slide 32: What If Coordinator Crashes
	Slide 34: What Happens in Worker PREPARE?
	Slide 35: Worker Recovery Process
	Slide 36: Two-phase commit protocol
	Slide 37: Failure Cases
	Slide 38: Failure Cases
	Slide 39: Failure Cases
	Slide 40: Failure Cases
	Slide 41: Failure Cases
	Slide 42: Failure Cases
	Slide 43: Failure Cases
	Slide 44: Failure Cases
	Slide 45: Read-only Workers
	Slide 46: Two Variants
	Slide 47: Presumed Abort
	Slide 48: Presumed Abort – if transaction aborts
	Slide 49: Presumed Abort – if transaction aborts
	Slide 50: Presumed Abort – if transaction aborts
	Slide 51: Presumed commit – if transaction commits
	Slide 52: Presumed commit – if transaction commits
	Slide 53: Presumed commit – if transaction commits
	Slide 54: Presumed commit – if transaction commits
	Slide 55: Presumed commit – if transaction commits
	Slide 56: Presumed commit – if transaction commits
	Slide 57: Summary: Write/Message Complexity
	Slide 58: 2PC – Problems

