
The Lecture Art Collection So far



https://clicker.mit.edu/6.5830/

A
B

C

ED



Lecture 10
Transactions

10/16/2024

“The Moneylender and His Wife,” Quentin Matsys, 1514

Project meetings:
to be scheduled soon!



Where Are We?

• So far:
– Studied relational model & SQL
– Learned basic architecture of a database system
– Studied different operator implementations
– Looked at several data layouts
– Saw how query optimizer works with statistics to select 

plans and operators

• What next:
– Concurrency Control and Recovery: How to ensure 

correctness in the presence of modifications and failures 
to the database

– Distributed and parallel query processing
– “Advanced Topics”



Next 4 lectures



Transactions

• Group related sequence of actions so they are 
“all or nothing”

– If the system crashes, partial effects are not seen

– Other transactions do not see partial effects

• A set of implementation techniques that 
provides this abstraction with good 
performance



ACID Properties of Transactions

• A tomicity – many actions look like one; “all or 
nothing”

• C onsistency  – database preserves invariants 

• I solation – concurrent actions don’t see each 
other’s results

• D urability – completed actions in effect after 
crash (“recoverable”)



Concurrent Programming Is Hard

• Example:
T1

t = A

t = t + 1

A = t

• Looks correct!
• But maybe not if other updates to A are interleaved!
• Suppose T1 increment runs just before T2 increment

– T1 increment will be lost

• Conventional approach: programmer adds locks
– But must reason about other concurrent programs

T2

t = A

t = t + 1

A = t

A = 0A = 0 1A = 0 1 1



Transactions Dramatically Simplify 

Concurrent Programming 

• Guarantees that concurrent actions are 
serially equivalent

– I.e., appear to have run one after the other

• Programmer does not have to think about 
what is running at the same time!

• One of the big ideas in computer science



SQL Syntax

• BEGIN TRANSACTION

– Followed by SQL operations that modify database

• COMMIT: make the effects of the transaction 
durable

– After COMMIT returns database guarantees 
results present even after crash

– And results are visible to other transactions

• ABORT: undo all effects of the transaction



This Lecture: Atomicity

• Atomicity – many actions look like one; “all or 
nothing”

• In reality, actions take time!
– To get atomicity, to prevent multiple actions from 

interfering with each other

– I.e., are Isolated

• Will return to Durability in 2 lectures
– E.g., how to recover a database after a crash into a 

state where no partial transactions are present



Consistency

• Preservation of invariants

• Usually expressed in terms of constraints

– E.g., primary keys / foreign keys

– Triggers

• Example: no employee makes more than their 
manager

• Requires ugly non-SQL syntax (e.g. PL/pgSQL)

• Often done in the application



Postgres PL/pgSQL Trigger Example
CREATE FUNCTION sal_check() RETURNS trigger AS $sal_check$

 DECLARE

  mgr_sal integer;

    BEGIN

                      IF NEW.salary IS NOT NULL THEN

   SELECT INTO mgr_sal salary 

    FROM emp 

    JOIN manages 

     ON NEW.eid = manages.eid 

     AND emp.eid = manages.eid 

    LIMIT 1;

   IF (mgr_sal < NEW.salary) THEN

                              RAISE EXCEPTION 'employee cannot make more than manager’;

                       END IF;

                       END IF;

                       RETURN NEW;

    END;

$sal_check$ LANGUAGE plpgsql;

CREATE TRIGGER eid_sal BEFORE INSERT OR UPDATE ON emp

FOR EACH ROW EXECUTE FUNCTION sal_check();

NEW is the record being added 

mgr_sal is a local variable
Query finds the salary of one 
manager

Check salary (if no manager, mgr_sal is NULL)

Declare that we want to call sal_check 
every time a record changes or is added to emp



How Can We Isolate Actions?

• Serialize execution:  one transaction at a time

• Problems with this?
– No ability to use multiple processors

– Long running transactions starve others

• Goal:  allow concurrent execution while 
preserving serial equivalence

• Concurrency control algorithms do this



Serializability

• An ordering of actions in concurrent 
transactions that is serially equivalent

T1   T2

RA   RA

RB   RB

WA   WA

WB   WB

    

    

T1   T2

RA    

WA

   RA

   WA

RB 

WB

   RB

   WB

   

     

RA: Read A
WA: Write A, may depend on anything read previously

A/B are “objects” – e.g., records, disk pages, etc

Assume arbitrary application logic between reads and 
writes

Serially equivalent to T1 then T2



Serializability

• An ordering of actions in concurrent 
transactions that is serially equivalent

T1   T2

RA   RA

RB   RB

WA   WA

WB   WB

    

    

T1   T2

RA    

   RA

   WA

WA

RB 

WB

   RB

   WB

   

     

RA: Read A
WA: Write A, may depend on anything read previously

A/B are “objects” – e.g., records, disk pages, etc

Assume arbitrary application logic between reads and 
writes

Not serially equivalent – T2’s write to A is lost, couldn’t 
occur in a serial schedule
 In T1-T2, T2 should see T1’s write to A
 In T2-T1, T1 should see T2’s write to A



Testing for Serializability

View 
Serializability

Any schedule that is conflict serializable is view serializable, but not vice-versa

Conflict 
Serializability



View Serializability

A particular ordering of instructions in a schedule S is view 
equivalent to a serial ordering S' iff:

• Every value read in S is the same value that was read by 
the same read in S'.

• The final write of every object is done by the same 
transaction T in S and S’

• Less formally, all transactions in S “view” the same values 
they view in S', and the final state after the transactions 
run is  the same.



View Serializability Example

Every value read in S is the same value that 
was read by the same read in S'.

The final write of every object is done by the 
same transaction T in S and S'

S         S’

T1    T2     T1    T2

RA=A1        RA= A1

WA→A2       WA→A2

    RA = A2    RB = B1
    WA→A3   WB→B2

RB=B1            RA = A2

WB→B2           WA→A3

    RB=B2        RB = B2

    WB→B3       WB→B3

Same values 
read in both 
schedules

T2 does final 
write in both 
schedules



https://clicker.mit.edu/6.5830/

Is the following schedule 

view serializable?

T1 T2

RA=A1

RA=A1

WA->A2

WB->B2

WB->B3

A)Yes
B) No
C) I don’t know

A particular ordering of instructions in a schedule S is view 
equivalent to a serial ordering S' iff:
• Every value read in S is the same value that was read by the 

same read in S'.
• The final write of every object is done by the same transaction 

T in S and S’



View Serializability Limitations

• Must test against each possible serial schedule 
to determine serial equivalence

– NP-Hard!

• No protocol to ensure view serializability as 
transactions run

• Conflict serializability addresses both points

(For N concurrent transactions, there 
are 2N possible serial schedules)



Conflicting Operations

• Two operations are said to conflict if:

– Both operations are on the same object

– At least one operation is a write

– E.g., 

• T1WA conflicts with T2RA, but 

• T1RA does not conflict with T2RA
R W

R ✓

W

T1
T2



Conflict Serializability

A schedule is conflict serializable if it is possible 
to swap non-conflicting operations to derive a 
serial schedule.  

   Equivalently

For all pairs of conflicting operations {O1 in T1, 
O2 in T2} either

• O1 always precedes O2, or 

• O2 always precedes O1.  

T1 ≺ T2 : “T1 precedes T2”



Example

T1   T2

RA    

   RA

   WA

WA

RB 

WB

   RB

   WB

   

     

T1   T2

RA

WA    

   RA

   WA

RB 

WB

   RB

   WB

   

     

For all pairs of conflicting operations {O1 in T1, O2 in T2} either
O1 always precedes O2, or 
O2 always precedes O1.  

T1 ≺ T2

T2 ≺ T1

Not conflict serializable!

T1 ≺ T2

T1 ≺ T2

Conflict serializable!

T1   T2

RA

WA

RB 

WB    

   RA

   WA

   RB

   WB

   

     
In conflict serializable schedule, 
can reorder non-conflicting ops to 
get serial schedule

O1
O2



Precedence Graph

Given transactions Ti and Tj,
Create an edge from Ti→Tj if:

• Ti reads/writes some A before Tj writes A
RATi≺ WATj  or WATi≺ WATj 

      or

• Ti writes some A before Tj reads A
WATi≺ RATj

If there are cycles in this graph, schedule is not conflict 
serializable



Non-Serializable Example

T1   T2

RA    

   RA

   WA

WA

RB 

WB

   RB

   WB

   

     

T1
T2

Cycle!

Create an edge from Ti→Tj if:

Ti reads/writes some A before Tj writes A, or
RATi≺ WATj  or WATi≺ WATj 

Ti writes some A before Tj reads A
WATi≺ RATj

Precedence Graph



Serializable Example

T1   T2

RA

WA    

   RA

   WA

RB 

WB

   RB

   WB

   

     

T1
T2

No Cycles!

Create an edge from Ti→Tj if:

Ti reads/writes some A before Tj writes A, or
RATi≺ WATj  or WATi≺ WATj 

Ti writes some A before Tj reads A
WATi≺ RATj

Precedence Graph



Recap: 3 Ways to Test for Conflict 

Serializabiliy

1. Check: For all pairs of conflicting operations 
{O1 in T1, O2 in T2} either

1. O1 always precedes O2, or 

2. O2 always precedes O1.  

2. Swap non-conflicting operations to get serial 
schedule

3. Build precedence graph, check for cycles



Clicker: 

https://clicker.mit.edu/6.5830/

• Is this schedule conflict serializable?
T1 T2 T3

RA

RB

WA

RB

WB

WB

RA

WA

COMMIT COMMIT COMMIT

A)Yes
B) No
C) ???



Clicker

• Is this schedule conflict serializable?
T1 T2 T3

RA

RB

WA

RB

WB

WB

RA

WA

COMMIT COMMIT COMMIT

T1

T2
T3

No!



View vs Conflict Serializable
• Testing for view serializability is NP-Hard

– Have to consider all possible orderings

• Conflict serializability used in practice
– Not because of NP-Hardness
– Because we have a way to enforce it as transactions run

• Example of schedule that is view serializable but not conflict serializable:

T1  T2  T3
RA
  WA
WA
    WA
RB
WB

Equivalent to T1, T2, T3
Conflict serializability does not permit this
Only happens with blind writes

T1
T2

T3

Cycle!

Blind Writes



Implementing Conflict Serializability

• Several different protocols

• Today: Two Phase Locking (2PL)

• Basic idea:

– Acquire a shared (S) lock before each read of 
an object

– Acquire an exclusive (X) lock before each write 
of an object

• Several transactions can hold an S lock

• Only one transaction can hold an X lock

• If a transaction cannot acquire a lock it waits 
(“blocks”)

Conflicting operations (from def. of conflict serializability) are not compatible with 
each other

Lock Compatibility Table

R W

R ✓

W

T1
T2

S X

S ✓

X

T1
T2



When to Release Locks

• After each op completes? 

• Or after xaction is done with 
variable?

• No! Example of problem → 

• T2 “sneaks in” and updates 
A and B before T1 updates B

T1    T2

Xlock A

RA

WA

Rel A

    Xlock A

    RA

    WA

    Xlock B

    RB

    WB

    Rel A,B

Xlock B

RB

WB  

Rel B 

     

This schedule is not serializable



Solution: Two Phase Locking

• A transaction cannot release any locks until it 
has acquired all of its locks

• Two-phase locking has a growing phase and a 
shrinking phase



Example, Revisited

• Rule: A transaction 
cannot release any 
locks until it has 
acquired all of its 
locks

T1    T2

Xlock A

RA

WA

Rel A

    Xlock A

    RA

    WA

    Xlock B

    RB

    WB

    Rel A,B

Xlock B

RB

WB  

Rel B 

     

This schedule is not serializable

Not allowed → 



Example, Revisited

• Rule: A transaction 
cannot release any 
locks until it has 
acquired all of its 
locks

• Serial schedule 
defined by lock 
points
– Where they acquire 

last lock

T1    T2

Xlock A

RA

WA

Xlock B

Rel A

    Xlock A

    RA  

    WA

RB

WB  

Rel B     

    Xlock B

    RB

    WB

    Rel A,B

     

This schedule *is* serializable

Acquired all →
locks so
can release

 Lock point

Lock point →



Correctness Intuition

• Once a transaction T reached its lock point… 
– T’s place in serial order is set

– Any transactions that haven't acquired all their 
locks can’t take any conflicting actions until after T 
releases locks
• Ordered later

– Any transactions which already have all their locks 
must have completed their conflicting actions 
(released their locks) before T can proceed
• Ordered earlier



Two Phase Locking (2PL) Protocol 

•  Before every read, acquire a shared lock

• Before every write, acquire an exclusive lock 
(or "upgrade") a shared to an exclusive lock

• Release locks only after last lock has been 
acquired, and ops on that object are finished



Can you think of any potential 

problems with 2PL?



Refining 2PL

• Problems:

– Deadlocks

– Cascading Aborts

– How do we know when we are done with all 
operations on an object?



Deadlocks

• Possible for Ti to hold a lock Tj needs, and vice 
versa

T1    T2

RA

WA

    RB  

    WB

RB

WB  

    RA

    WA

      

T1 waits for T2 →

 T2 waits for T1

T1

T2

Waits-for graph
Cycle → Deadlock



Complex Deadlocks Are Possible

T1    T2    T3

RA

WA

        RC

    RB      

    WB

        RA

        WA

RB

WB  

    RC

    WC

      

T1 waits for T2 →

 T2 waits for T3

 T3 waits for T1

T1

T2

Waits-for graph
Cycle → Deadlock

T3



Resolving Deadlock

• Solution: abort one of the transactions

– Recall: users can abort too

T1    T2    T3

RA

WA

        RC

    RB      

    WB

        RA

        WA

RB

WB  

    RC

    WC

      

T1 waits for T2 →

 T2 waits for T3

 T3 waits for T1

T1

T2

Waits-for graph
Cycle → Deadlock

T3

Equivalent to T2 - T1



Cascading Aborts
• Problem: if T1 aborts, and T2 read something 

T1 wrote, T2 also needs to abort
T1    T2

Xlock A

RA

WA

Xlock B

Rel A

    Xlock A

    RA  

    WA

RB

WB  

Rel B     

    Xlock B

    RB

    WB

    Rel A,B

     

If T1 aborts here →

T2 also needs to abort,
as it reads T1’s write of A



Can you think of a 2PL variant which 

neither requires deadlock detection nor 

has cascading aborts?



Strict Two-Phase Locking

• Can avoid cascading aborts by holding 
exclusive locks until end of transaction

• Ensures that transactions never read other 
transaction’s uncommitted data



Strict Two-Phase Locking Protocol 

• Before every read, acquire a shared lock

• Before every write, acquire an exclusive lock (or "upgrade") 
a shared to an exclusive lock

• Release locks only after last lock has been acquired, and 
ops on that object are finished 

• Release shared locks only after last lock has been acquired, 
and ops on that object are finished

• Release exclusive locks only after the transaction commits

• Ensures cascadeless-ness



Problem: When is it OK to release?

• How does DBMS know a transaction no longer 
needs a lock?

• Difficult, since transactions can be issued 
interactively

• In practice, this means that all locks held until 
end of transaction

• This is called rigorous two-phase locking



Rigorous Two-Phase Locking 

Protocol 

• Before every read, acquire a shared lock

• Before every write, acquire an exclusive lock (or 
"upgrade") a shared to an exclusive lock

• Release locks only after the transaction commits

• Ensures cascadeless-ness, and 

• Commit order = serialization order



Next Lectures

• Optimistic concurrency control: Another 
protocol to achieve conflict serializability

• Nuances that arise with locking granularity


	Slide 1: The Lecture Art Collection So far
	Slide 2: https://clicker.mit.edu/6.5830/
	Slide 3: Lecture 10 Transactions
	Slide 4: Where Are We?
	Slide 5
	Slide 6: Transactions
	Slide 7: ACID Properties of Transactions
	Slide 8: Concurrent Programming Is Hard
	Slide 9: Transactions Dramatically Simplify Concurrent Programming 
	Slide 10: SQL Syntax
	Slide 11: This Lecture: Atomicity
	Slide 12: Consistency
	Slide 13: Postgres PL/pgSQL Trigger Example
	Slide 14: How Can We Isolate Actions?
	Slide 15: Serializability
	Slide 16: Serializability
	Slide 17: Testing for Serializability
	Slide 18: View Serializability
	Slide 19: View Serializability Example
	Slide 20: https://clicker.mit.edu/6.5830/ Is the following schedule  view serializable?
	Slide 21: View Serializability Limitations
	Slide 22: Conflicting Operations
	Slide 23: Conflict Serializability
	Slide 24: Example
	Slide 25: Precedence Graph
	Slide 26: Non-Serializable Example
	Slide 27: Serializable Example
	Slide 28: Recap: 3 Ways to Test for Conflict Serializabiliy
	Slide 29: Clicker: https://clicker.mit.edu/6.5830/
	Slide 30: Clicker
	Slide 31: View vs Conflict Serializable
	Slide 32: Implementing Conflict Serializability
	Slide 33: When to Release Locks
	Slide 34: Solution: Two Phase Locking
	Slide 35: Example, Revisited
	Slide 36: Example, Revisited
	Slide 37: Correctness Intuition
	Slide 38: Two Phase Locking (2PL) Protocol 
	Slide 39: Can you think of any potential  problems with 2PL?
	Slide 40: Refining 2PL
	Slide 41: Deadlocks
	Slide 42: Complex Deadlocks Are Possible
	Slide 43: Resolving Deadlock
	Slide 44: Cascading Aborts
	Slide 45: Can you think of a 2PL variant which neither requires deadlock detection nor has cascading aborts?
	Slide 46: Strict Two-Phase Locking
	Slide 47: Strict Two-Phase Locking Protocol 
	Slide 48: Problem: When is it OK to release?
	Slide 49: Rigorous Two-Phase Locking Protocol 
	Slide 50: Next Lectures

