The Lecture Art Collection So far

https://clicker.mit.edu/6.5830/

Lecture 10
Tastions

Project meetings:
to be scheduled soon!

“The Moneylender and His Wife,” Quentin Matsys, 1514

10/16/2024

WHO AM I2.WHERE AM | GOING?

Where Are We? ER

e Sofar:
— Studied relational model & SQL WA
— Learned basic architecture of a database system
— Studied different operator implementations
— Looked at several data layouts

— Saw how query optimizer works with statistics to select
plans and operators

e \What next:

— Concurrency Control and Recovery: How to ensure
correctness in the presence of modifications and failures
to the database

— Distributed and parallel query processing
— “Advanced Topics”

~

ORMs jata types

GROUP BY

LIMIT and OFFSET

window functions
outer joins

connection p‘m -

LATERAL joins

ORDER BY M?ABLE foreign keys

SELECT / INSERT / UPDATE / DELETE

A~

transactions

K &, ORDER BY in agaregates
-~ Ve
Stged c}!\lﬁms « normal forms
» 3
the DUAL t

recursive CTEsS

Me create
ORMs create bad queries stored procedures B aEors

there are no non-nullable types

plan hints = gntimizers don't work without

MVCC ga{bage co“e.cwn table statistics

—

: i Sratgr functions -
COUNT(* - ge dunctions zip
SOUNTE COUNT}) when ¢ joined sharding

senalizable wslargﬂequwe
retry loops onait statements

zigzag joir

figge !
phantom reads sggers MERGE

grouping sets, cube, rollup partial indexes

alization, SELECT FORUPDATE NULLs inGREgK consiraints

transaction contention

sargability

~ A

are truthy =
star schemas
timestamptz doesn’t
store a timezZone

ascending key problerh ambiguous network errors utf8mba

don't

‘Aulf:;jsonb 1S NULL s faisdl
. -

¥ TPCC requires wait tin

S | ¢
DEFERRABLE INITIABEY IMMEDINT =
yoximates 4* -“/\\“’I causal reverse
MATCH PARTIAL foreign keys

NULL:
but ing

ring is NP hard

learned indexes

the hallc n problem

e equal in DISTINCT volcano model

jual in UNIQUE

datat WcoJ

XTID exhaustion

dee and dum

allballs
fsyncgate

NULL

Next 4 lectures

Transactions

e Group related sequence of actions so they are
“all or nothing”

— If the system crashes, partial effects are not seen
— Other transactions do not see partial effects

e A set of implementation techniques that
provides this abstraction with good
performance

ACID Properties of Transactions

A tomicity — many actions look like one; “all or
nothing”

C onsistency — database preserves invariants

| solation — concurrent actions don’t see each
other’s results

D urability — completed actions in effect after
crash (“recoverable”)

Concurrent Programming Is Hard

A=011
Example:
Tl T2
t=t+1 t =t + 1
A =1 A=t

Looks correct!
But maybe not if other updates to A are interleaved!

Suppose T1 increment runs just before T2 increment
— T1increment will be lost

Conventional approach: programmer adds locks
— But must reason about other concurrent programs

Transactions Dramatically Simplify
Concurrent Programming

* Guarantees that concurrent actions are
serially equivalent

— l.e., appear to have run one after the other

* Programmer does not have to think about
what is running at the same time!

* One of the big ideas in computer science

SQL Syntax

* BEGIN TRANSACTION
— Followed by SQL operations that modify database

* COMMIT: make the effects of the transaction
durable

— After COMMIT returns database guarantees
results present even after crash

— And results are visible to other transactions

* ABORT: undo all effects of the transaction

This Lecture: Atomicity

* Atomicity — many actions look like one; “all or
nothing”

* |n reality, actions take time!

— To get atomicity, to prevent multiple actions from
interfering with each other

— l.e., are Isolated

* Will return to Durability in 2 lectures

— E.g., how to recover a database after a crash into a
state where no partial transactions are present

Consistency

Preservation of invariants

Usually expressed in terms of constraints

— E.g., primary keys / foreign keys

— Triggers

Example: no employee makes more than their
manager

Requires ugly non-SQL syntax (e.g. PL/pgSQL)
Often done in the application

Postgres PL/pgSQL Trigger Example

CREATE FUNCTION sal_check() RETURNS trigger AS Ssal_checkS

DECLARE
mgr_sal integer;
BEGIN
IF NEW.salary IS NOT NULL THEN NEW is the record being added
SELECT INTO mgr_sal salary mgr_sal is a local variable
FROM emp Query finds the salary of one
JOIN manages manager
ON NEW.eid = manages.eid
AND emp.eid = manages.eid
LIMIT 1; Check salary (if no manager, mgr_sal is NULL)
IF (mgr_sal < NEW.salary) THEN
RAISE EXCEPTION 'employee cannot make more than manager’;
END IF;
END IF;
RETURN NEW;
END; Declare that we want to call sal check
sal_check LANGUAGE plpgsql; every time a record changes or is added to emp

CREATE TRIGGER eid_sal BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW EXECUTE FUNCTION sal_check();

How Can We Isolate Actions?

Serialize execution: one transaction at a time

Problems with this?

— No ability to use multiple processors
— Long running transactions starve others

Goal: allow concurrent execution while
preserving serial equivalence

Concurrency control algorithms do this

Serializability

* An ordering of actions in concurrent
transactions that is serially equivalent

T1
RA
WA

RB
WB

T2

WA

RB
WB

RA: Read A
WA: Write A, may depend on anything read previously

A/B are “objects” — e.g., records, disk pages, etc

Assume arbitrary application logic between reads and
writes

toT1lthenT2

Serializability

* An ordering of actions in concurrent
transactions that is serially equivalent

T1
RA

WA
RB
WB

T2

RA
WA

RB
WB

RA: Read A
WA: Write A, may depend on anything read previously

A/B are “objects” — e.g., records, disk pages, etc

Assume arbitrary application logic between reads and
writes

Not serially equivalent — T2’s write to A is lost, couldn’t
occur in a serial schedule

In T1-T2, T2 should see T1’s write to A
In T2-T1, T1 should see T2's write to A

Testing for Serializability

Any schedule that is conflict serializable is view serializable, but not vice-versa

View Serializability

A particular ordering of instructions in a schedule S is view
equivalent to a serial ordering S' iff:

* Every value read in S is the same value that was read by
the same read in S'.

* The final write of every object is done by the same
transaction TinSand S’

e Less formally, all transactions in S “view” the same values
they view in S, and the final state after the transactions
runis the same.

View Serializability Example

S
11 T2
RA=A1
WA A2
RA=A2 - __ e
WA—>A3
RB=B1
WB—->B2
Same valu
RB=B2---------------;- S
WB->B3 read in bo
schedules

Every value read in S is the same value that
was read by the sameread in S'.

The final write of every object is done by the
same transaction TinSand S'

https://clicker.mit.edu/6.5830/
Is the following schedule
view serializable?

T1 T2
RA=A1
RA=A1
WA->A2
WB->B2
WB->B3
A)Y A particular ordering of instructions in a schedule S is view
es . . . L
equivalent to a serial ordering S' iff:
B) No * EveryvaluereadinS is the same value that was read by the

C) I dOn’t knoW] same read in S'.

The final write of every object is done by the same transaction
TinSand$s’

View Serializability Limitations

* Must test against each possible serial schedule

to determine serial equivalence

— NP-Hard! (For N concurrent transactions, there
are 2V possible serial schedules)

* No protocol to ensure view serializability as
transactions run

* Conflict serializability addresses both points

Conflicting Operations

* Two operations are said to conflict if:
— Both operations are on the same object
— At least one operation is a write

—E.g,,
* T1,, conflicts with T2;,, but

* T1z, does not conflict with T2, =

T2

X|=

Conflict Serializability

A schedule is conflict serializable if it is possible
to swap non-conflicting operations to derive a
serial schedule.

Equivalently

For all pairs of conflicting operations {O1 in T1,
02 in T2} either

 O1 always precedes 02, or

e 02 always precedes O1.
T1<T2:“T1 precedes T2”

Example

T2 T1 T2
01 T1<T2 RA
02 WA
RA%A RB
T2<T1 wB
RA
WB WA
\ RB
WB

In conflict serializable schedule,
can reorder non-conflicting ops to
get serial schedule

Not conflict serializable!

For all pairs of conflicting operations {O1 in T1, O2 in T2} either
O1 always precedes 02, or
02 always precedes O1.

Precedence Graph

Given transactions Ti and Tj,
Create an edge from Ti—=2>Tj if:

* Tireads/writes some A before Tj writes A

RAR< WA or WAL< WA
or

* Tiwrites some A before Tj reads A

WA;< RAy

If there are cycles in this graph, schedule is not conflict
serializable

Non-Serializable Example

Precedence Graph

T1 T2
RA
RA < WATZ
WA
WA RA=S WAT 1
RB
WB
RB Cycle!
WB

Create an edge from Ti—=>Tj if:

Ti reads/writes some A before Tj writes A, or
RAR< WA or WALR< WAy

Ti writes some A before Tj reads A
WA < RA;

Serializable Example

Precedence Graph

T1 T2
RA
WA A=< WATZ
RA
WA WAT1< RAF 2
RB A< Whr
WB
RB No Cycles!
WB

Create an edge from Ti—=>Tj if:

Ti reads/writes some A before Tj writes A, or
RAR< WA or WALR< WAy

Ti writes some A before Tj reads A
WA < RA;

Recap: 3 Ways to Test for Conflict
Serializabiliy

1. Check: For all pairs of conflicting operations
{01inT1, 02 in T2} either

1. O1 always precedes 02, or
2. 02 always precedes O1.

2. Swap non-conflicting operations to get serial
schedule

3. Build precedence graph, check for cycles

Clicker:
https://clicker.mit.edu/6.5830/

e |s this schedule conflict serializable?

A)Yes g
B)No RB
C)??? WwaA
RB
WB
WB
RA
WA

COMMIT COMMIT COMMIT

Clicker

e |s this schedule conflict serializable?

RA
RB No!
W
RB
W
B
RA
WA

COMMIT COMMIT COMMIT

View vs Conflict Serializable

* Testing for view serializability is NP-Hard
— Have to consider all possible orderings
* Conflict serializability used in practice
— Not because of NP-Hardness
— Because we have a way to enforce it as transactions run

 Example of schedule that is view serializable but not conflict serializable:

T1 T2 T3 Cycle!
RA RA[< WA

N .— Blind Writes —_—

WA —
WA S \ WA < Whn
WA p ‘&z
RB X ‘2&
WB EANRN:
X

Equivalent to T1, T2, T3
Conflict serializability does not permit this Q
Only happens with blind writes

Implementing Conflict Serializability

Tl

Several different protocols T2 R W
Today: Two Phase Locking (2PL) R v x
Basic idea:
— Acquire a shared (S) lock before each read of W x x
an object m
— Acquire an exclusive (X) lock before each write ‘Jé
of an object T1
Several transactions can hold an S lock 12 > X
Only one transaction can hold an X lock S v X
If a transaction cannot acquire a lock it waits
(“blocks”) i X x x

Lock Compatibility Table

When to Release Locks

After each op completes?

Or after xaction is done with
variable?

No! Example of problem -

T2 “sneaks in” and updates
A and B before T1 updates B

T1 T2
Xlock A
RA
WA
Rel A
Xlock A
RA
WA
Xlock B
RB
WB
Rel A,B
Xlock B
RB
WB
Rel B

This schedule is not serializable

Solution: Two Phase Locking

* A transaction cannot release any locks until it
has acquired all of its locks

* Two-phase locking has a growing phase and a
shrinking phase

Example, Revisited

: : T1 T2
e Rule: A transaction P
cannot release any ;i
locks until it has Not allowed DRel A
. . Xlock A
acquired all of its R
WA
IOCkS Xlock B
RB
WB
Rel A,B
Xlock B
RB
WB
Rel B

This schedule is not serializable

Example, Revisited

e Rule: A transaction T1 T2
Xlock A
cannot release any R
locks until it has WA
. . Xlock B & lock point
acquired all of its Acquired all = Rel A
locks locks so ¥lock A
can release RA
 Serial schedule WA
. RB
defined by lock B
pOIntS Rel B
— Where they acquire Lock point > *-ock B
last lock WB
Rel A,B

This schedule *is* serializable

Correctness Intuition

* Once a transaction T reached its lock point...
— T’s place in serial order is set

— Any transactions that haven't acquired all their
locks can’t take any conflicting actions until after T
releases locks

* Ordered later
— Any transactions which already have all their locks

must have completed their conflicting actions
(released their locks) before T can proceed

 Ordered earlier

Two Phase Locking (2PL) Protocol

 Before every read, acquire a shared lock

* Before every write, acquire an exclusive lock
(or "upgrade") a shared to an exclusive lock

* Release locks only after last lock has been
acquired, and ops on that object are finished

Can you think of any potential
problems with 2PL?

Refining 2PL

* Problems:
— Deadlocks
— Cascading Aborts

— How do we know when we are done with all
operations on an object?

Deadlocks

* Possible for Ti to hold a lock Tj needs, and vice
versa

< Waits-for graph

Tl
RA @ Cycle - Deadlock
WA

RB

WB \
T1 waits forT2 2> RB

WB

rRA € T2 waits for T1
WA

Complex Deadlocks Are Possible

1 T2 T3
RA
WA
RC
RB
WB

RA & T3 waits for T1
WA

T1 waits for T2 - RB
WB

Waits-for graph
Cycle = Deadlock

RC € T2 waits for T3
WC

Resolving Deadlock

e Solution: abort one of the transactions

— Recall: users can abort too

T1 T2
RA
WA
RB
WB
T1 waits for T2 - RB Waits-for graph
WB

Cycle - Deadlock
RC &Fowoitsfor+-
WC

Equivalentto T2 - T1

Cascading Aborts

* Problem: if T1 aborts, and T2 read something
T1 wrote, T2 also needs to abort

T1 T2
Xlock A
RA
WA
Xlock B
Rel A
Xlock A
RA
WA

If T1 aborts here - RB
T2 also needs to abort, WB

as it reads T1’s write of A Rel B
Xlock B

RB
WB
Rel A,B

Can you think of a 2PL variant which
neither requires deadlock detection nor
has cascading aborts?

Strict Two-Phase Locking

* Can avoid cascading aborts by holding
exclusive locks until end of transaction

 Ensures that transactions never read other
transaction’s uncommitted data

Strict Two-Phase Locking Protocol

 Before every read, acquire a shared lock

* Before every write, acquire an exclusive lock (or "upgrade")
a shared to an exclusive lock

s PReologselgsksanbiatorlbsleckhassoonasegrires—ard
| o Cinichod

* Release shared locks only after last lock has been acquired,
and ops on that object are finished

e Release exclusive locks only after the transaction commits

* Ensures cascadeless-ness

Problem: When is it OK to release?

How does DBMS know a transaction no longer
needs a lock?

Difficult, since transactions can be issued
interactively

In practice, this means that all locks held until
end of transaction

This is called rigorous two-phase locking

Rigorous Two-Phase Locking
Protocol

Before every read, acquire a shared lock

Before every write, acquire an exclusive lock (or
"upgrade") a shared to an exclusive lock

Ensures cascadeless-ness, and
Commit order = serialization order

Next Lectures

e Optimistic concurrency control: Another
protocol to achieve conflict serializability

* Nuances that arise with locking granularity

	Slide 1: The Lecture Art Collection So far
	Slide 2: https://clicker.mit.edu/6.5830/
	Slide 3: Lecture 10 Transactions
	Slide 4: Where Are We?
	Slide 5
	Slide 6: Transactions
	Slide 7: ACID Properties of Transactions
	Slide 8: Concurrent Programming Is Hard
	Slide 9: Transactions Dramatically Simplify Concurrent Programming
	Slide 10: SQL Syntax
	Slide 11: This Lecture: Atomicity
	Slide 12: Consistency
	Slide 13: Postgres PL/pgSQL Trigger Example
	Slide 14: How Can We Isolate Actions?
	Slide 15: Serializability
	Slide 16: Serializability
	Slide 17: Testing for Serializability
	Slide 18: View Serializability
	Slide 19: View Serializability Example
	Slide 20: https://clicker.mit.edu/6.5830/ Is the following schedule view serializable?
	Slide 21: View Serializability Limitations
	Slide 22: Conflicting Operations
	Slide 23: Conflict Serializability
	Slide 24: Example
	Slide 25: Precedence Graph
	Slide 26: Non-Serializable Example
	Slide 27: Serializable Example
	Slide 28: Recap: 3 Ways to Test for Conflict Serializabiliy
	Slide 29: Clicker: https://clicker.mit.edu/6.5830/
	Slide 30: Clicker
	Slide 31: View vs Conflict Serializable
	Slide 32: Implementing Conflict Serializability
	Slide 33: When to Release Locks
	Slide 34: Solution: Two Phase Locking
	Slide 35: Example, Revisited
	Slide 36: Example, Revisited
	Slide 37: Correctness Intuition
	Slide 38: Two Phase Locking (2PL) Protocol
	Slide 39: Can you think of any potential problems with 2PL?
	Slide 40: Refining 2PL
	Slide 41: Deadlocks
	Slide 42: Complex Deadlocks Are Possible
	Slide 43: Resolving Deadlock
	Slide 44: Cascading Aborts
	Slide 45: Can you think of a 2PL variant which neither requires deadlock detection nor has cascading aborts?
	Slide 46: Strict Two-Phase Locking
	Slide 47: Strict Two-Phase Locking Protocol
	Slide 48: Problem: When is it OK to release?
	Slide 49: Rigorous Two-Phase Locking Protocol
	Slide 50: Next Lectures

