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Where are we
Admission Control

Connection Management

Query System

Storage System

Parser

Rewriter

Planner

Executor

– Optimizer (last time and more today)

Access 
Methods

Buffer 
Manager

Lock 
Manager

Log 
Manager

Lec 8/9

Lec 9/10 –  Column Stores

Lec 7 – Join Algos

Today’s recap Selinger estimates and 
Column Store Compression 

We will talk about transactions after 
quiz 1. 



Selinger Selectivities

NCARD(R)  - "relation cardinality" -  number of records in 
R 
TCARD(R) - # pages R occupies  
ICARD(I)  - # keys (distinct values) in index  I 
NINDX(I) - pages occupied by index I  
Min and max keys in indexes

Steps: 
1.  Estimate sizes of relations 
2.  Estimate selectivities 
3.  Compute intermediate sizes 
4.  Evaluate cost of plan 

operations 
5.  Find best overall plan

Predicate types

1. col = val 
F = 1/ICARD(col)  (if index available)
F = 1/10 otherwise

2. col > val
(max key - value) / (max key - min key)   (if index available)
1/3 otherwise

3. col1 = col2  
1/MAX(ICARD(col1), ICARD(col2))  (if index available)
1/10 otherwise

F(pred) = Selectivity of predicate = Fraction of records that a 
predicate does not filter

Modern DBs use fancier stats!

Assumes key-foreign key join 
Note a better estimate is 1/ICARD(PK table) 
We use 1/ICARD(PK table) going forward

Important: not all joins are FK to PK  
 equation on the left is still important



Example
Product (Pid, Name, Price) 
Order(Oid, CName, Address) 
Customer(CName, Name) 
Orderline (Pid, Oid, Amount) 
Special_Products (Pid)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème 
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Oid Cid Address

1 Tim Cambridg
e

2 Tim Arlington

3 Mike Newton

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

3 3 2

SELECT *  
FROM Orderline ol  
     join Product p on ol.pid = p.pid 
WHERE price >= 1 

SeqScan  
Orderline ol

SeqScan  
Product p

HashJoin ol.pid=p.pid

Filter price >= 1C1 = 8

C2 = 6

NCARD(P)=6 
ICARDpid(P)=6 

NCARD(O)=3 
ICARDoid(O)=3

NCARD(OL)=8 
ICARDoid,pid(OL)=8 
ICARDoid(OL)=3 
ICARDpid(OL)=4

ICARDprice(P)3 
MINprice(P)=0.5 
MAXprice(P)=1.5

Order OrderLineProduct

Clicker (http://clicker.mit.edu/6.5830 ) 
What is the selectivity of F1  
(assuming only the Selinger stats) 
A) 0.5 
B) 0.3333 
C) 0.7777 
D) 0.83333333333

F1 

http://clicker.mit.edu/6.5830


Example
Product (Pid, Name, Price) 
Order(Oid, CName, Address) 
Customer(CName, Name) 
Orderline (Pid, Oid, Amount) 
Special_Products (Pid)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème 
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Oid Cid Address

1 Tim Cambridg
e

2 Tim Arlington

3 Mike Newton

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

3 3 2

SELECT *  
FROM Orderline ol  
     join Product p on ol.pid = p.pid 
WHERE price >= 1 

SeqScan  
Orderline ol

SeqScan  
Product p

HashJoin ol.pid=p.pid

Filter price >= 1C1 = 8

C3 = 6 * 0.5 = 3 

C2 = 6

NCARD(P)=6 
ICARDpid(P)=6 

NCARD(O)=3 
ICARDoid(O)=3

NCARD(OL)=8 
ICARDoid,pid(OL)=8 
ICARDoid(OL)=3 
ICARDpid(OL)=4

F1 = (max key - value) / (max key - min key)
    = (1.5 – 1) / (1.5 – 0.5) = 0.5

ICARDprice(P)3 
MINprice(P)=0.75 
MAXprice(P)=1.5

Order OrderLineProduct

Clicker (http://clicker.mit.edu/6.5830 ) 
What is the selectivity of F2  
(assuming only the Selinger stats) 
A) 1/8 
B) 1/6 
C) 1/3 
D) 1

F2

http://clicker.mit.edu/6.5830


Example
Product (Pid, Name, Price) 
Order(Oid, CName, Address) 
Customer(CName, Name) 
Orderline (Pid, Oid, Amount) 
Special_Products (Pid)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème 
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Oid Cid Address

1 Tim Cambridg
e

2 Tim Arlington

3 Mike Newton

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

3 3 2

SELECT *  
FROM Orderline ol  
     join Product p on ol.pid = p.pid 
WHERE price >= 1 

SeqScan  
Orderline ol

SeqScan  
Product p

HashJoin ol.pid=p.pid

Filter price >= 1

Cjoin w/o predicate  
 = 3 * 8 = 24 (cartesian product)

C1 = 8

C3 = 6 * 0.5 = 3 

C2 = 6

NCARD(P)=6 
ICARDpid(P)=6 

NCARD(O)=3 
ICARDoid(O)=3

NCARD(OL)=8 
ICARDoid,pid(OL)=8 
ICARDoid(OL)=3 
ICARDpid(OL)=4

F1 = (max key - value) / (max key - min key)
    = (1.5 – 1) / (1.5 – 0.5) = 0.5

F2 = 1 / PK = 1 / 6 

C4 = 24 * 1 / 6 = 4

ICARDprice(P)3 
MINprice(P)=0.75 
MAXprice(P)=1.5

Order OrderLineProduct



Example
Product (Pid, Name, Price) 
Order(Oid, CName, Address) 
Customer(CName, Name) 
Orderline (Pid, Oid, Amount) 
Reviews (Pid, Review)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème 
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Rid Pid Revie
w

1 1 Good

2 1 Good

3 2 Bad

3 2 OK

SELECT *  
FROM Orderline 
     join Review r on r.pid = ol.pid 
WHERE oid = 1 

SeqScan  
Review r

SeqScan  
Orderline

HashJoin ol.pid=p.pid

Filter oid = 1C1 = 4

C3 = 8 / 4 = 2

C2 = 8

NCARD(O)=3 
ICARDrid(O)=3 
ICARDpid(O)=2 

F1 = 1 / 4

F2

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

4 3 2

NCARD(O)=8 
ICARDoid,pid(O)=8 
ICARDoid(O)=4 
ICARDpid(O)=4

NCARD(P)=6 
ICARDpid(P)=6 

ICARDprice(P)3 
MINprice(P)=0.5 
MAXprice(P)=1.5

Reviews OrderLineProduct

Clicker (http://clicker.mit.edu/6.5830 ) 
What is the selectivity of F2  
(assuming only the Selinger stats) 
A) 1/8 
B) 1/4 
C) 1/2 
D) 1

http://clicker.mit.edu/6.5830


Example
Product (Pid, Name, Price) 
Order(Oid, CName, Address) 
Customer(CName, Name) 
Orderline (Pid, Oid, Amount) 
Reviews (Pid, Review)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème 
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Rid Pid Revie
w

1 1 Good

2 1 Good

3 2 Bad

3 2 OK

SELECT *  
FROM Orderline 
     join Review r on r.pid = ol.pid 
WHERE oid = 1 

SeqScan  
Review r

SeqScan  
Orderline

HashJoin ol.pid=p.pid

Filter oid = 1

Cjoin w/o predicate  
 = 4 * 2 = 8 (cartesian product)

C1 = 4

C3 = 8 / 4 = 2

C2 = 8

NCARD(O)=3 
ICARDrid(O)=3 
ICARDpid(O)=2 

F1 = 1 / 4

F2 = 1 / max(ICARDpid(O), ICARDpid(O)) 
    = Max(2, 4) = 1/4

C4 = 8 / 4 = 2

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

4 3 2

NCARD(O)=8 
ICARDoid,pid(O)=8 
ICARDoid(O)=4 
ICARDpid(O)=4

NCARD(P)=6 
ICARDpid(P)=6 

ICARDprice(P)=3 
MINprice(P)=0.5 
MAXprice(P)=1.5

Reviews OrderLineProduct



Column 
Stores
A different way to build a 
database system



Linearizing a Table – Row store

C1 C2 C3 C4 C5 C6

R1 C1 
R1 C2 
R1 C3 
R1 C4 
R1 C5 
R1 C6
R2 C1 
R2 C2 
R2 C3 
R2 C4 
R2 C5 
R2 C6
R3 C1 
R3 C2 
R3 C3 
R3 C4 
R3 C5 
R3 C6
R4 C1 
R4 C2 
R4 C3 
R4 C4 
R4 C5 
R4 C6

Memory/Disk 
(Linear Array)



Linearizing a Table –  
Column Store

C1 C2 C3 C4 C5 C6

R1 C1 
R2 C1 
R3 C1 
R4 C1 
R5 C1 
R6 C1
R1 C2 
R2 C2 
R3 C2 
R4 C2 
R5 C2 
R6 C2
R1 C3 
R2 C3 
R3 C3 
R4 C3 
R5 C3 
R6 C3
R1 C4 
R2 C4 
R3 C4 
R4 C4 
R5 C4 
R6 C4

Memory/Disk 
(Linear Array)



Tables Often Super Wide

Data warehouse at Cambridge Mobile 
Telematics
Table #columns 
t1 |   251

 t2 |   248
 t3 |   134
 t4 |   107
 t5 |    87
 t6 |    83
 t7 |    71
 t8 |    54
 t9 |    52
 t10 |    45

Average query access 4-5 fields 

Top 2-3 tables involved in nearly every query 

Using a row-store would impose ~200/4 = 
50x performance overhead
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Query Processing Example

• Traditional 
Row Store

SELECT avg(price) 
FROM tickstore  
WHERE symbol = ‘GM’  
AND date = ‘1/17/2007’

Disk
GM 30.77 1,000 NYSE 1/17/2007
GM 30.77 10,000 NYSE 1/17/2007
GM 30.78 12,500 NYSE 1/17/2007

AAPL 93.24 9,000 NQDS 1/17/2007

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Complete tuples

Complete tuples

Complete tuples
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Query Processing Example
• Basic Column  Store

• “Early Materialization”

SELECT avg(price) 
FROM tickstore  
WHERE symbol = ‘GM’  
AND date = ‘1/17/2007’

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Disk
30.77
30.77
30.78
93.24

GM
GM
GM

AAPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

1/17/2007
1/17/2007
1/17/2007
1/17/2007

Construct Tuples

GM 30.77 1/17/07

Fields from same 
tuple at same index 
(position) in each 

column file

Row-oriented 
plan

Complete tuples

Complete tuples

Complete tuples
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Query Processing Example

• C-Store 

• “Late 
Materialization”

Disk
30.77
30.77
30.78
93.24

GM
GM
GM

AAPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

1/17/2007
1/17/2007
1/17/2007
1/17/2007

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND
Position Bitmap

(1,1,1,1)
Position Bitmap

(1,1,1,0)

Position Bitmap
(1,1,1,0)

Position Lookup

Prices

AVG

Much less data 
flowing through 

memory

See Abadi et al 
ICDE 07
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◆Query engine processes compressed data
◆Transfers load from disk to CPU
◆Multiple compression types

◆ Run-Length Encoding (RLE), LZ, Delta Value, 
Block Dictionary Bitmaps, Null Suppression

◆ System chooses which to apply
◆ Typically see 50% - 90% compression

◆ NULLs take virtually no space

Column-Oriented Compression

30.77
+0

+.01
+62.47

GM
GM
GM

AAPL

1,000
10,000
12,500
9,000

3xGM
1XAPPL

30.77
30.77
30.78
93.24

1/17/200
7

1/17/200
7

1/17/200
7

4 x 1/17/2007NYSE
NYSE
NYSE
NQDS

3xNYSE
1XNQDS

1,000
10,000
12,500
9,000

RLE Delta LZ RLE RLE

Columns 
contain 

similar data, 
which makes 
compression 

easy



Run Length Encoding

• Replace repeated values with a count and a 
value 

• For single values, use a run length of 1 

• Naively, can increase storage space 

• Can use a shorter bit sequence for 1s, at 
the cost of more expensive 
decompression 

• E.g., 1110002  3x1, 3x0, 1x2 

• Works well for mostly-sorted, few-valued 
columns

17



Dictionary Encoding

• Many variants;  simplest is to replace string 
values with integers and maintain a 
dictionary 

• I.e., AAPL, AAPL, IBM, MSFT   

1,1,2,3   +   1:AAPL, 2:IBM, 3:MSFT 

• Works well for few-valued string columns 

• Choice of dictionary not obvious 

• Words?  Records? 

18



Lempel Ziv Encoding

• LZ (“Lempel Ziv”) Compression 

• General purpose lossless data compression 

• Builds data dictionary dynamically as it runs 

• Add new bit strings to the dictionary as 
they are encountered 

• Treat entire column as a document

19



Bit Packing

• Encode values with fewest possible bits 
• Each value becomes bit-length (e.g., 0-8 or 0-32), 

followed by value in that many bits 
• E.g.,: 1 2 37 7 

• Need 1, 2, 6, and 3 bits respectively 
• Each number becomes 3 bit header and encoded 

value 
• 1:  0x001, 0x1

• 2: 0x010, 0x10

• 37: 0x110, 0x100101

• 7: 0x011, 0x111

• 3 x 4 + 12 = 24 bits to encode, vs e.g., 8x4 = 32

20



Delta Encoding

• Consecutive values encoding as difference to 
previous values 

• 1.1, 1.2, 1.3  1.1, +.1, +.1

• After encoding as deltas, bit-pack

• Works if deltas can be represented in fewer 
bits than whole values

• Works well for e.g., floats with small variations

21



Bitmap Encoding

• Encode few valued columns as bitmaps 

• M M M F F  11100, 00011 

• If fewer distinct values than bitwidth of 
field, saves space 

• Bitmaps can be further compressed, e.g., 
using RLE 

• Bitmaps are very good for certain kinds of 
operations, e.g., filtering

22



Sorted Data

• Delta and RLE work great on sorted data 

• Trick: Secondary sorting

23

X Y
a 2
b 2
a 1
b 1

X Y
a 1
a 2
b 1
b 2

Sort on X, 
then Y

Y is not 
sorted, 
but if 
many 
duplicates 
of X, will 
be 
“mostly” 
sorted
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Operating on Compressed Data

Disk
30.77

+0
+.01

+62.47

3xGM
1xAPP

L

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

4x1/17/200
7

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND
Position Bitmap

(4x1)
Position Bitmap

(3x1,1x0)

Position Bitmap
(3x1,1x0)

Position Lookup

Prices

AVG

Only possible 
with late 

materialization
!

Compression 
Aware
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Direct Operation Optimizations

• Compressed data used directly for position lookup 
• RLE, Dictionary, Bitmap 

• Direct Aggregation and GROUP BY on 
compressed blocks 
• RLE, Dictionary 

• Join runs of compressed blocks 
• RLE, Dictionary 

• Min/max directly extracted from sorted data



26

Compression + Sorting is a Huge Win

▪ How can we get more sorted data? 
▪ Store duplicate copies of data 

▪ Use different physical orderings 

▪ Improves ad-hoc query performance 
▪ Due to ability to directly operate on sorted, 

compressed data 

▪ Supports fail-over / redundancy



Study Break: Compression

• For each of the following columns, what compression 
method would you recommend? 

(Choose any combination of A. RLE, B. Dictionary, C. 
Bitmap, D. Delta, E:LZ, F: Bit-Packing) 

https://clicker.mit.edu/6.5830/ 

An unsorted column of integers in the range 0-100 

A mostly sorted column of integers in the range 0-10 

A sorted column of floats 

An unsorted column of strings w/ 3 values

27

Delta/Bit-packing (LZ/dictionary also OK)

RLE

Delta

Bitmap
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Write Performance

Tuple Mover
Asynchronous Data
 Movement

Queries read 
from both WOS 
and ROS

Batched
Amortizes seeks
Amortizes 
recompression
Enables continuous 
load

Trickle load: Very 
Fast Inserts

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

Memory: mirrored
projections in
insertion order
(uncompressed)

> Write-optimized
Column Store
(WOS)



When to Rewrite ROS Objects?
• Store multiple ROS objects, instead of just one 

• Each of which must be scanned to answer a query 

• Tuple mover writes new objects 
• Avoids rewriting whole ROS on merge 

• Periodically merge ROS objects to limit number of 
distinct objects that must be scanned (“Log structured 
merge tree”)

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B CTuple Mover
Memory: mirrored
projections in
insertion order
(uncompressed)

> Write-optimized
Column Store
(WOS)

WOS ROS

Older objects



Problem: Lots of Partitions

• Performance will degrade as you get many partitions 
• Idea:  merge some partitions together, but how? 

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1 P2 P3



Problem: Lots of Partitions

• Performance will degrade as you get many partitions 
• Idea:  merge some partitions together, but how? 

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1-2
P3 P4 P5



Problem: Lots of Partitions

• Performance will degrade as you get many partitions 
• Idea:  merge some partitions together, but how? 

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1-2 P3-4
P6 P7P5



Problem: Lots of Partitions

• Performance will degrade as you get many partitions 
• Idea:  merge some partitions together, but how? 

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1-2 P3-4 P5-6
P7



Problem: Lots of Partitions

• Performance will degrade as you get many partitions 
• Idea:  merge some partitions together, but how? 

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1-4

P1 has merged 2 times, but won’t merge again until after 8 more 
partitions arrive

P5-6
P7



Column-Oriented Data In Modern Systems

• C-Store commercialized as Vertica 
• Although it wasn’t the first column-oriented 

DB, it led to a proliferation of commercial 
column-oriented systems 

• Now the de-facto way that analytic database 
systems are built, including Snowflake, 
Redshift, and others. 

• One popular open-source option: Parquet



Efficient Data Loading: Parquet
• Parquet is column-oriented file format that is MUCH 

more efficient than CSV for storing tabular data 

• Vs CSV, Parquet is stored in binary representation 
• Uses less space 
• Doesn’t require conversion from strings to internal 

types 
• Doesn’t require parsing or error detection  
• Column-oriented, making access to subsets of 

columns much faster



Parquet Format

• Data is partitioned sets of rows, called “row groups” 
• Within each row group, data from different columns is stored separately

…

…
Row 
Group 
1

Row 
Group 
2

Row 
Group N

Col 1 Block 1

Col 1 Block 2

Col 1 Block 3

Col 2 Block 1

Col 2 Block 2

Col 2 Block 3

Col 3 Block 1

Col 3 Block 2

Col 1 Block 4

Col 1 Block 5

Col 1 Block 6

Col 2 Block 4

Col 2 Block 5

Col 3 Block 3

Col 3 Block 4

Col 1 Block i

Col 1 Block i+1

Col 2 Block j

Col 2 Block j+1

Col 3 Block k

Col 3 Block k+1

Header:  Offset of start of each row / column group, and ranges of records 
in each row group

…

…

Using header, can 
efficiently read any 
subset of columns or 
rows without 
scanning whole file 
(unlike CSV) 

Within a row group, 
data for each column 
is stored together



Predicate Pushdown w/ Parquet & Pandas

pd.read_parquet(‘file.pq’, columns=[‘Col 1’, ‘Col 2’])

• Only reads col1 and col2 from disk 
• For a wide dataset saves a ton of I/O



Performance Measurement

47x speedup

• Compare reading CSV to parquet to just columns we need



When to Use Parquet?

• Will always be more efficient than CSV 
• Converting from Parquet to CSV takes time, so only makes sense to do 

so if working repeatedly with a file 
• Parquet requires a library to access/read it, whereas many tools can 

work with CSV 
• Because CSV is text, it can have mixed types in columns, or other 

inconsistencies 
• May be useful sometimes, but also very annoying! 
• Parquet does not support mixed types in a column



Summary

• Column oriented databases are a different way to “linearize” data to 
disk than the row-oriented representation we have studied 

• A good fit for “warehousing” workloads that mostly read many 
records of a few tables 

• C-Store system implements many additional ideas: 
• “Late materialization” execution 
• Column-specific compression and direct execution on compressed data 
• Read/write optimized stores 

• Ideas have found their way into many modern systems and libraries, 
e.g., Parquet


