

6.5830 Lecture 10 – Column Stores ctd

10/07/2024

LukeDangler.com/shop

Where are we

Steps:

- 1. Estimate sizes of relations
- **2. Estimate selectivities**
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations

Selinger Selectivities

F(pred) = Selectivity of predicate = Fraction of records that a predicate does not filter

5. Find best overall plan

1. $col = val$

Predicate types

F = 1/ICARD(col) *(if index available)* $F = 1/10$ otherwise

NCARD(R) - "relation cardinality" - number of records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index 1

NINDX(I) - pages occupied by index I

Min and max keys in indexes

2. $col > val$ (max key - value) / (max key - min key) *(if index available)* 1/3 otherwise Modern DBs use fancier stats!

3. $\text{col1} = \text{col2}$ 1/MAX(ICARD(col1), ICARD(col2)) *(if index available)* 1/10 otherwise

Assumes key-foreign key join Note a better estimate is 1/ICARD(PK table) **We use 1/ICARD(PK table) going forward**

Important: not all joins are FK to PK equation on the left is still important Product (Pid, Name, Price) Order(Oid, CName, Address) Customer(CName, Name) Orderline (Pid, Oid, Amount) Special Products (Pid)

Column Stores

A different way to build a database system

Linearizing a Table – Row store

Linearizing a Table – Column Store

Tables Often Super Wide

Data warehouse at Cambridge Mobile **Telematics**

Query Processing Example

Query Processing Example

Query Processing Example

Column-Oriented Compression

- ◆Query engine processes compressed data ◆Transfers load from disk to CPU ◆Multiple compression types
	- Run-Length Encoding (RLE), LZ, Delta Value, Block Dictionary Bitmaps, Null Suppression
- System chooses which to apply
- ◆ Typically see 50% 90% compression
- **NULLs take virtually no space**

Columns contain similar data, which makes compression easy

Run Length Encoding

- **• Replace repeated values with a count and a value**
- **• For single values, use a run length of 1**
	- **• Naively, can increase storage space**
	- **• Can use a shorter bit sequence for 1s, at the cost of more expensive decompression**
- **• E.g., 1110002** \rightarrow 3x1, 3x0, 1x2
- **• Works well for mostly-sorted, few-valued columns**

Dictionary Encoding

- **• Many variants; simplest is to replace string values with integers and maintain a dictionary**
- \bullet **I.e., AAPL, AAPL, IBM, MSFT** \rightarrow
	- **1,1,2,3 + 1:AAPL, 2:IBM, 3:MSFT**
- **• Works well for few-valued string columns**
	- **• Choice of dictionary not obvious**
	- **• Words? Records?**

Lempel Ziv Encoding

- **• LZ ("Lempel Ziv") Compression**
- **• General purpose lossless data compression**
- **• Builds data dictionary dynamically as it runs**
	- **• Add new bit strings to the dictionary as they are encountered**
- **• Treat entire column as a document**

Bit Packing

- **• Encode values with fewest possible bits**
- **• Each value becomes bit-length (e.g., 0-8 or 0-32), followed by value in that many bits**
- **• E.g.,: 1 2 37 7**
	- **• Need 1, 2, 6, and 3 bits respectively**
	- **• Each number becomes 3 bit header and encoded value**
		- 1: 0x001, 0x1
		- 2: 0x010, 0x10
		- 37: 0x110, 0x100101
		- 7: 0x011, 0x111
	- **• 3 x 4 + 12 = 24 bits to encode, vs e.g., 8x4 = 32**

Delta Encoding

- **• Consecutive values encoding as difference to previous values**
- 1.1, 1.2, 1.3 \rightarrow 1.1, +.1, +.1
	- After encoding as deltas, bit-pack
	- Works if deltas can be represented in fewer bits than whole values

21

• Works well for e.g., floats with small variations

Bitmap Encoding

- **• Encode few valued columns as bitmaps**
- **M M M F F** \rightarrow **11100, 00011**
	- **• If fewer distinct values than bitwidth of field, saves space**
	- **• Bitmaps can be further compressed, e.g., using RLE**

22

• Bitmaps are very good for certain kinds of operations, e.g., filtering

Sorted Data

- **• Delta and RLE work great on sorted data**
- **• Trick: Secondary sorting**

Y is not sorted, but if many duplicates of X, will be "mostly" sorted

Operating on Compressed Data AVG

Direct Operation Optimizations

• Compressed data used directly for position lookup

- **• RLE, Dictionary, Bitmap**
- **• Direct Aggregation and GROUP BY on compressed blocks**
	- **• RLE, Dictionary**
- **• Join runs of compressed blocks**
	- **• RLE, Dictionary**

• Min/max directly extracted from sorted data

Compression + Sorting is a Huge Win

- **How can we get more sorted data?**
- **Store duplicate copies of data Use different physical orderings**
	- **Improves ad-hoc query performance** ▪ **Due to ability to directly operate on sorted, compressed data**

26

▪ **Supports fail-over / redundancy**

Study Break: Compression

• For each of the following columns, what compression method would you recommend?

(Choose any combination of A. RLE, B. Dictionary, C. Bitmap, D. Delta, E:LZ, F: Bit-Packing)

https://clicker.mit.edu/6.5830/

An unsorted column of integers in the range 0-100 A mostly sorted column of integers in the range 0-10 A sorted column of floats Delta/Bit-packing (LZ/dictionary also OK) RLE

27

An unsorted column of strings w/ 3 values Delta Bitmap

Write Performance

Trickle load: Very Fast Inserts

> **Write-optimized Column Store (WOS)**

Memory: mirrored projections in insertion order (uncompressed)

Queries read from both WOS and ROS

Tuple Mover Asynchronous Data Movement Batched

Amortizes seeks

Amortizes recompression Enables continuous load

> **Read-optimized Column Store (ROS)**

Disk: data is sorted and compressed

(A B C | A)

When to Rewrite ROS Objects?

- **• Store multiple ROS objects, instead of just one**
	- **• Each of which must be scanned to answer a query**
- **• Tuple mover writes new objects**
	- **• Avoids rewriting whole ROS on merge**
- **• Periodically merge ROS objects to limit number of distinct objects that must be scanned ("Log structured merge tree")**

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

Column-Oriented Data In Modern Systems

- C-Store commercialized as Vertica
- Although it wasn't the first column-oriented DB, it led to a proliferation of commercial column-oriented systems
- Now the de-facto way that analytic database systems are built, including Snowflake, Redshift, and others.
- One popular open-source option: Parquet

Efficient Data Loading: Parquet

- Parquet is column-oriented file format that is MUCH more efficient than CSV for storing tabular data
- Vs CSV, Parquet is stored in binary representation
	- Uses less space
	- Doesn't require conversion from strings to internal types
	- Doesn't require parsing or error detection
	- Column-oriented, making access to subsets of columns much faster

Parquet Format

- Data is partitioned sets of rows, called "row groups"
- Within each row group, data from different columns is stored separately

Using header, can efficiently read any subset of columns or rows without scanning whole file (unlike CSV)

Within a row group, data for each column is stored together

Predicate Pushdown w/ Parquet & Pandas

pd.read_parquet('file.pq', columns=['Col 1', 'Col 2'])

- Only reads col1 and col2 from disk
- For a wide dataset saves a ton of I/O

Performance Measurement

• Compare reading CSV to parquet to just columns we need

```
t = time.perf counter()df = pd_{r} read \text{csv}("FARS2019 \text{NationalCSV/Person.CSV", encoding = "ISO-8859-1")}print(f''csv \text{ elapsed} = \{time\_perf \text{ counter}() - t:.3\} \text{ seconds}")t = time.perf counter()df = pd. read parquet ("2019.pq")
print(f'') parquet elapsed = {time.perf counter() - t:.3} seconds")
t = time.perf counter()df = pd.read\_parquet("2019.pq", columns = ['STATE', 'ST_CASE', 'DRINKING', 'PER_TYP'])print(f'') parquet subset elapsed = {time.perf_counter() - t:.3} seconds")
```
47x speedup

```
csv elapsed = 1.18 seconds
parquet elapsed = 0.338 seconds
parquet subset elapsed = 0.025 seconds
```
When to Use Parquet?

- Will always be more efficient than CSV
- Converting from Parquet to CSV takes time, so only makes sense to do so if working repeatedly with a file
- Parquet requires a library to access/read it, whereas many tools can work with CSV
- Because CSV is text, it can have mixed types in columns, or other inconsistencies
	- May be useful sometimes, but also very annoying!
	- Parquet does not support mixed types in a column

Summary

- Column oriented databases are a different way to "linearize" data to disk than the row-oriented representation we have studied
- A good fit for "warehousing" workloads that mostly read many records of a few tables
- C-Store system implements many additional ideas:
	- "Late materialization" execution
	- Column-specific compression and direct execution on compressed data
	- Read/write optimized stores
- Ideas have found their way into many modern systems and libraries, e.g., Parquet