
6.5830 Lecture 10 –
Column Stores ctd

10/07/2024

Where are we
Admission Control

Connection Management

Query System

Storage System

Parser

Rewriter

Planner

Executor

– Optimizer (last time and more today)

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

Lec 8/9

Lec 9/10 – Column Stores

Lec 7 – Join Algos

Today’s recap Selinger estimates and
Column Store Compression

We will talk about transactions after
quiz 1.

Selinger Selectivities

NCARD(R) - "relation cardinality" - number of records in
R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan

operations
5. Find best overall plan

Predicate types

1. col = val
F = 1/ICARD(col) (if index available)
F = 1/10 otherwise

2. col > val
(max key - value) / (max key - min key) (if index available)
1/3 otherwise

3. col1 = col2
1/MAX(ICARD(col1), ICARD(col2)) (if index available)
1/10 otherwise

F(pred) = Selectivity of predicate = Fraction of records that a
predicate does not filter

Modern DBs use fancier stats!

Assumes key-foreign key join
Note a better estimate is 1/ICARD(PK table)
We use 1/ICARD(PK table) going forward

Important: not all joins are FK to PK
 equation on the left is still important

Example
Product (Pid, Name, Price)
Order(Oid, CName, Address)
Customer(CName, Name)
Orderline (Pid, Oid, Amount)
Special_Products (Pid)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Oid Cid Address

1 Tim Cambridg
e

2 Tim Arlington

3 Mike Newton

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

3 3 2

SELECT *
FROM Orderline ol
 join Product p on ol.pid = p.pid
WHERE price >= 1

SeqScan
Orderline ol

SeqScan
Product p

HashJoin ol.pid=p.pid

Filter price >= 1C1 = 8

C2 = 6

NCARD(P)=6
ICARDpid(P)=6

NCARD(O)=3
ICARDoid(O)=3

NCARD(OL)=8
ICARDoid,pid(OL)=8
ICARDoid(OL)=3
ICARDpid(OL)=4

ICARDprice(P)3
MINprice(P)=0.5
MAXprice(P)=1.5

Order OrderLineProduct

Clicker (http://clicker.mit.edu/6.5830)
What is the selectivity of F1
(assuming only the Selinger stats)
A) 0.5
B) 0.3333
C) 0.7777
D) 0.83333333333

F1

http://clicker.mit.edu/6.5830

Example
Product (Pid, Name, Price)
Order(Oid, CName, Address)
Customer(CName, Name)
Orderline (Pid, Oid, Amount)
Special_Products (Pid)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Oid Cid Address

1 Tim Cambridg
e

2 Tim Arlington

3 Mike Newton

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

3 3 2

SELECT *
FROM Orderline ol
 join Product p on ol.pid = p.pid
WHERE price >= 1

SeqScan
Orderline ol

SeqScan
Product p

HashJoin ol.pid=p.pid

Filter price >= 1C1 = 8

C3 = 6 * 0.5 = 3

C2 = 6

NCARD(P)=6
ICARDpid(P)=6

NCARD(O)=3
ICARDoid(O)=3

NCARD(OL)=8
ICARDoid,pid(OL)=8
ICARDoid(OL)=3
ICARDpid(OL)=4

F1 = (max key - value) / (max key - min key)
 = (1.5 – 1) / (1.5 – 0.5) = 0.5

ICARDprice(P)3
MINprice(P)=0.75
MAXprice(P)=1.5

Order OrderLineProduct

Clicker (http://clicker.mit.edu/6.5830)
What is the selectivity of F2
(assuming only the Selinger stats)
A) 1/8
B) 1/6
C) 1/3
D) 1

F2

http://clicker.mit.edu/6.5830

Example
Product (Pid, Name, Price)
Order(Oid, CName, Address)
Customer(CName, Name)
Orderline (Pid, Oid, Amount)
Special_Products (Pid)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Oid Cid Address

1 Tim Cambridg
e

2 Tim Arlington

3 Mike Newton

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

3 3 2

SELECT *
FROM Orderline ol
 join Product p on ol.pid = p.pid
WHERE price >= 1

SeqScan
Orderline ol

SeqScan
Product p

HashJoin ol.pid=p.pid

Filter price >= 1

Cjoin w/o predicate
 = 3 * 8 = 24 (cartesian product)

C1 = 8

C3 = 6 * 0.5 = 3

C2 = 6

NCARD(P)=6
ICARDpid(P)=6

NCARD(O)=3
ICARDoid(O)=3

NCARD(OL)=8
ICARDoid,pid(OL)=8
ICARDoid(OL)=3
ICARDpid(OL)=4

F1 = (max key - value) / (max key - min key)
 = (1.5 – 1) / (1.5 – 0.5) = 0.5

F2 = 1 / PK = 1 / 6

C4 = 24 * 1 / 6 = 4

ICARDprice(P)3
MINprice(P)=0.75
MAXprice(P)=1.5

Order OrderLineProduct

Example
Product (Pid, Name, Price)
Order(Oid, CName, Address)
Customer(CName, Name)
Orderline (Pid, Oid, Amount)
Reviews (Pid, Review)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Rid Pid Revie
w

1 1 Good

2 1 Good

3 2 Bad

3 2 OK

SELECT *
FROM Orderline
 join Review r on r.pid = ol.pid
WHERE oid = 1

SeqScan
Review r

SeqScan
Orderline

HashJoin ol.pid=p.pid

Filter oid = 1C1 = 4

C3 = 8 / 4 = 2

C2 = 8

NCARD(O)=3
ICARDrid(O)=3
ICARDpid(O)=2

F1 = 1 / 4

F2

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

4 3 2

NCARD(O)=8
ICARDoid,pid(O)=8
ICARDoid(O)=4
ICARDpid(O)=4

NCARD(P)=6
ICARDpid(P)=6

ICARDprice(P)3
MINprice(P)=0.5
MAXprice(P)=1.5

Reviews OrderLineProduct

Clicker (http://clicker.mit.edu/6.5830)
What is the selectivity of F2
(assuming only the Selinger stats)
A) 1/8
B) 1/4
C) 1/2
D) 1

http://clicker.mit.edu/6.5830

Example
Product (Pid, Name, Price)
Order(Oid, CName, Address)
Customer(CName, Name)
Orderline (Pid, Oid, Amount)
Reviews (Pid, Review)

Pid Name Price

1 Chocolate Donut 1

2 Glazed Donut 1

3 Boston Crème
Donut

1.5

4 Sprinkles Donut 1

5 Cinnamon Donut 0.5

6 MIT special 1.5

Rid Pid Revie
w

1 1 Good

2 1 Good

3 2 Bad

3 2 OK

SELECT *
FROM Orderline
 join Review r on r.pid = ol.pid
WHERE oid = 1

SeqScan
Review r

SeqScan
Orderline

HashJoin ol.pid=p.pid

Filter oid = 1

Cjoin w/o predicate
 = 4 * 2 = 8 (cartesian product)

C1 = 4

C3 = 8 / 4 = 2

C2 = 8

NCARD(O)=3
ICARDrid(O)=3
ICARDpid(O)=2

F1 = 1 / 4

F2 = 1 / max(ICARDpid(O), ICARDpid(O))
 = Max(2, 4) = 1/4

C4 = 8 / 4 = 2

Oid Pid Amount

1 1 1

1 4 1

2 1 3

2 3 2

3 5 3

3 1 3

3 4 2

4 3 2

NCARD(O)=8
ICARDoid,pid(O)=8
ICARDoid(O)=4
ICARDpid(O)=4

NCARD(P)=6
ICARDpid(P)=6

ICARDprice(P)=3
MINprice(P)=0.5
MAXprice(P)=1.5

Reviews OrderLineProduct

Column
Stores
A different way to build a
database system

Linearizing a Table – Row store

C1 C2 C3 C4 C5 C6

R1 C1
R1 C2
R1 C3
R1 C4
R1 C5
R1 C6
R2 C1
R2 C2
R2 C3
R2 C4
R2 C5
R2 C6
R3 C1
R3 C2
R3 C3
R3 C4
R3 C5
R3 C6
R4 C1
R4 C2
R4 C3
R4 C4
R4 C5
R4 C6

Memory/Disk
(Linear Array)

Linearizing a Table –  
Column Store

C1 C2 C3 C4 C5 C6

R1 C1
R2 C1
R3 C1
R4 C1
R5 C1
R6 C1
R1 C2
R2 C2
R3 C2
R4 C2
R5 C2
R6 C2
R1 C3
R2 C3
R3 C3
R4 C3
R5 C3
R6 C3
R1 C4
R2 C4
R3 C4
R4 C4
R5 C4
R6 C4

Memory/Disk
(Linear Array)

Tables Often Super Wide

Data warehouse at Cambridge Mobile
Telematics
Table #columns
t1 | 251

 t2 | 248
 t3 | 134
 t4 | 107
 t5 | 87
 t6 | 83
 t7 | 71
 t8 | 54
 t9 | 52
 t10 | 45

Average query access 4-5 fields

Top 2-3 tables involved in nearly every query

Using a row-store would impose ~200/4 =
50x performance overhead

13

Query Processing Example

• Traditional
Row Store

SELECT avg(price)
FROM tickstore
WHERE symbol = ‘GM’
AND date = ‘1/17/2007’

Disk
GM 30.77 1,000 NYSE 1/17/2007
GM 30.77 10,000 NYSE 1/17/2007
GM 30.78 12,500 NYSE 1/17/2007

AAPL 93.24 9,000 NQDS 1/17/2007

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Complete tuples

Complete tuples

Complete tuples

14

Query Processing Example
• Basic Column Store

• “Early Materialization”

SELECT avg(price)
FROM tickstore
WHERE symbol = ‘GM’
AND date = ‘1/17/2007’

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Disk
30.77
30.77
30.78
93.24

GM
GM
GM

AAPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

1/17/2007
1/17/2007
1/17/2007
1/17/2007

Construct Tuples

GM 30.77 1/17/07

Fields from same
tuple at same index
(position) in each

column file

Row-oriented
plan

Complete tuples

Complete tuples

Complete tuples

15

Query Processing Example

• C-Store

• “Late
Materialization”

Disk
30.77
30.77
30.78
93.24

GM
GM
GM

AAPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

1/17/2007
1/17/2007
1/17/2007
1/17/2007

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND
Position Bitmap

(1,1,1,1)
Position Bitmap

(1,1,1,0)

Position Bitmap
(1,1,1,0)

Position Lookup

Prices

AVG

Much less data
flowing through

memory

See Abadi et al
ICDE 07

16

◆Query engine processes compressed data
◆Transfers load from disk to CPU
◆Multiple compression types

◆ Run-Length Encoding (RLE), LZ, Delta Value,
Block Dictionary Bitmaps, Null Suppression

◆ System chooses which to apply
◆ Typically see 50% - 90% compression

◆ NULLs take virtually no space

Column-Oriented Compression

30.77
+0

+.01
+62.47

GM
GM
GM

AAPL

1,000
10,000
12,500
9,000

3xGM
1XAPPL

30.77
30.77
30.78
93.24

1/17/200
7

1/17/200
7

1/17/200
7

4 x 1/17/2007NYSE
NYSE
NYSE
NQDS

3xNYSE
1XNQDS

1,000
10,000
12,500
9,000

RLE Delta LZ RLE RLE

Columns
contain

similar data,
which makes
compression

easy

Run Length Encoding

• Replace repeated values with a count and a
value

• For single values, use a run length of 1

• Naively, can increase storage space

• Can use a shorter bit sequence for 1s, at
the cost of more expensive
decompression

• E.g., 1110002 3x1, 3x0, 1x2

• Works well for mostly-sorted, few-valued
columns

17

Dictionary Encoding

• Many variants; simplest is to replace string
values with integers and maintain a
dictionary

• I.e., AAPL, AAPL, IBM, MSFT

1,1,2,3 + 1:AAPL, 2:IBM, 3:MSFT

• Works well for few-valued string columns

• Choice of dictionary not obvious

• Words? Records?

18

Lempel Ziv Encoding

• LZ (“Lempel Ziv”) Compression

• General purpose lossless data compression

• Builds data dictionary dynamically as it runs

• Add new bit strings to the dictionary as
they are encountered

• Treat entire column as a document

19

Bit Packing

• Encode values with fewest possible bits
• Each value becomes bit-length (e.g., 0-8 or 0-32),

followed by value in that many bits
• E.g.,: 1 2 37 7

• Need 1, 2, 6, and 3 bits respectively
• Each number becomes 3 bit header and encoded

value
• 1: 0x001, 0x1

• 2: 0x010, 0x10

• 37: 0x110, 0x100101

• 7: 0x011, 0x111

• 3 x 4 + 12 = 24 bits to encode, vs e.g., 8x4 = 32

20

Delta Encoding

• Consecutive values encoding as difference to
previous values

• 1.1, 1.2, 1.3 1.1, +.1, +.1

• After encoding as deltas, bit-pack

• Works if deltas can be represented in fewer
bits than whole values

• Works well for e.g., floats with small variations

21

Bitmap Encoding

• Encode few valued columns as bitmaps

• M M M F F 11100, 00011

• If fewer distinct values than bitwidth of
field, saves space

• Bitmaps can be further compressed, e.g.,
using RLE

• Bitmaps are very good for certain kinds of
operations, e.g., filtering

22

Sorted Data

• Delta and RLE work great on sorted data

• Trick: Secondary sorting

23

X Y
a 2
b 2
a 1
b 1

X Y
a 1
a 2
b 1
b 2

Sort on X,
then Y

Y is not
sorted,
but if
many
duplicates
of X, will
be
“mostly”
sorted

24

Operating on Compressed Data

Disk
30.77

+0
+.01

+62.47

3xGM
1xAPP

L

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

4x1/17/200
7

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND
Position Bitmap

(4x1)
Position Bitmap

(3x1,1x0)

Position Bitmap
(3x1,1x0)

Position Lookup

Prices

AVG

Only possible
with late

materialization
!

Compression
Aware

25

Direct Operation Optimizations

• Compressed data used directly for position lookup
• RLE, Dictionary, Bitmap

• Direct Aggregation and GROUP BY on
compressed blocks
• RLE, Dictionary

• Join runs of compressed blocks
• RLE, Dictionary

• Min/max directly extracted from sorted data

26

Compression + Sorting is a Huge Win

▪ How can we get more sorted data?
▪ Store duplicate copies of data

▪ Use different physical orderings

▪ Improves ad-hoc query performance
▪ Due to ability to directly operate on sorted,

compressed data

▪ Supports fail-over / redundancy

Study Break: Compression

• For each of the following columns, what compression
method would you recommend?

(Choose any combination of A. RLE, B. Dictionary, C.
Bitmap, D. Delta, E:LZ, F: Bit-Packing)

https://clicker.mit.edu/6.5830/

An unsorted column of integers in the range 0-100

A mostly sorted column of integers in the range 0-10

A sorted column of floats

An unsorted column of strings w/ 3 values

27

Delta/Bit-packing (LZ/dictionary also OK)

RLE

Delta

Bitmap

28

Write Performance

Tuple Mover
Asynchronous Data
 Movement

Queries read
from both WOS
and ROS

Batched
Amortizes seeks
Amortizes
recompression
Enables continuous
load

Trickle load: Very
Fast Inserts

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

Memory: mirrored
projections in
insertion order
(uncompressed)

> Write-optimized
Column Store
(WOS)

When to Rewrite ROS Objects?
• Store multiple ROS objects, instead of just one

• Each of which must be scanned to answer a query

• Tuple mover writes new objects
• Avoids rewriting whole ROS on merge

• Periodically merge ROS objects to limit number of
distinct objects that must be scanned (“Log structured
merge tree”)

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B CTuple Mover
Memory: mirrored
projections in
insertion order
(uncompressed)

> Write-optimized
Column Store
(WOS)

WOS ROS

Older objects

Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1 P2 P3

Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1-2
P3 P4 P5

Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1-2 P3-4
P6 P7P5

Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1-2 P3-4 P5-6
P7

Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1-4

P1 has merged 2 times, but won’t merge again until after 8 more
partitions arrive

P5-6
P7

Column-Oriented Data In Modern Systems

• C-Store commercialized as Vertica
• Although it wasn’t the first column-oriented

DB, it led to a proliferation of commercial
column-oriented systems

• Now the de-facto way that analytic database
systems are built, including Snowflake,
Redshift, and others.

• One popular open-source option: Parquet

Efficient Data Loading: Parquet
• Parquet is column-oriented file format that is MUCH

more efficient than CSV for storing tabular data

• Vs CSV, Parquet is stored in binary representation
• Uses less space
• Doesn’t require conversion from strings to internal

types
• Doesn’t require parsing or error detection
• Column-oriented, making access to subsets of

columns much faster

Parquet Format

• Data is partitioned sets of rows, called “row groups”
• Within each row group, data from different columns is stored separately

…

…
Row
Group
1

Row
Group
2

Row
Group N

Col 1 Block 1

Col 1 Block 2

Col 1 Block 3

Col 2 Block 1

Col 2 Block 2

Col 2 Block 3

Col 3 Block 1

Col 3 Block 2

Col 1 Block 4

Col 1 Block 5

Col 1 Block 6

Col 2 Block 4

Col 2 Block 5

Col 3 Block 3

Col 3 Block 4

Col 1 Block i

Col 1 Block i+1

Col 2 Block j

Col 2 Block j+1

Col 3 Block k

Col 3 Block k+1

Header: Offset of start of each row / column group, and ranges of records
in each row group

…

…

Using header, can
efficiently read any
subset of columns or
rows without
scanning whole file
(unlike CSV)

Within a row group,
data for each column
is stored together

Predicate Pushdown w/ Parquet & Pandas

pd.read_parquet(‘file.pq’, columns=[‘Col 1’, ‘Col 2’])

• Only reads col1 and col2 from disk
• For a wide dataset saves a ton of I/O

Performance Measurement

47x speedup

• Compare reading CSV to parquet to just columns we need

When to Use Parquet?

• Will always be more efficient than CSV
• Converting from Parquet to CSV takes time, so only makes sense to do

so if working repeatedly with a file
• Parquet requires a library to access/read it, whereas many tools can

work with CSV
• Because CSV is text, it can have mixed types in columns, or other

inconsistencies
• May be useful sometimes, but also very annoying!
• Parquet does not support mixed types in a column

Summary

• Column oriented databases are a different way to “linearize” data to
disk than the row-oriented representation we have studied

• A good fit for “warehousing” workloads that mostly read many
records of a few tables

• C-Store system implements many additional ideas:
• “Late materialization” execution
• Column-specific compression and direct execution on compressed data
• Read/write optimized stores

• Ideas have found their way into many modern systems and libraries,
e.g., Parquet

