
Lab 3 Bootcamp

10/31/2024

Different threads are trying to execute queries
concurrently

Physical query
plan: Operators

Buffer Pool

Storage

Thread Pool Query Planner

Lab 1

Lab 2

Different threads are trying to execute queries
concurrently

Physical query
plan: Operators

Buffer Pool

Storage

Thread Pool Query Planner

Lab 1

Lab 2

Handled by starter
code and test cases

Lab 3

ACID Properties of Transactions

• A tomicity – many actions look like one; “all or nothing”
• C onsistency – database preserves invariants
• I solation – concurrent actions don’t see each other’s results
• D urability – completed actions in effect after crash

(“recoverable”)

• Atomicity – many actions look like one; “all or nothing”
• In reality, actions take time!

• To get atomicity, to prevent multiple actions from interfering with each
other

• I.e., are Isolated – transactions do not interfere with each other

• Durability – recoverable into a state where no partial transactions
are present after a crash
• Usually implemented with Write-ahead Logs. We will not do this for lab 3

but you can try this for lab 4.

Users view: Three transaction operations

• BEGIN TRANSACTION
• Followed by SQL operations that (may or may not) modify database

• COMMIT: make the effects of the transaction durable
• After COMMIT returns database guarantees results present even after

crash
• And results are visible to other transactions

• ABORT: undo all effects of the transaction

Begin and commit

Physical query
plan: Operators

Buffer Pool

Storage

Thread Pool Query Planner

Test cases

Lab 3

Txn
Begin!

Tries to do
things…

Bp.BeginTransaction

Begin and commit

Physical query
plan: Operators

Buffer Pool

Storage

Thread Pool Query Planner

Test cases

Lab 3

Commit!

Ok!

Retrieving data

Physical query
plan: Operators

Buffer Pool

Storage

Thread Pool Query Planner

Test cases

Lab 3

I need this
tuple!

(GetPage)
OK!

Retrieving data

Physical query
plan: Operators

Buffer Pool

Storage

Thread Pool Query Planner

Test cases

Lab 3

I need to
modify this

tuple!

(insert
tuple) OK!

Physical query
plan: Operators

Data structure that records
what the buffer pool needs

to record regarding
transactions and locks

BeginTransactionGetPage

Abort

Physical query
plan: Operators

Buffer Pool

Storage

Thread Pool Query Planner

Test cases

Lab 3

Txn
Begin!

Tries to do
things…

Abort

Physical query
plan: Operators

Buffer Pool

Storage

Thread Pool Query Planner

Test cases

Lab 3

Uh-oh!

Abort

Physical query
plan: Operators

Buffer Pool

Storage

Thread Pool Query Planner

Test cases

Lab 3

Ok. I can
restart the

transaction

I’m
aborting
the txn =(

You can call bp.AbortTransaction in
other (which ones?) bp functions

User can also abort

Deadlocks

• Possible for Txn_i to hold a lock Txn_j needs, and vice versa

T1

 T2

RA

WA

 RB

 WB

RB

WB

 RA

 WA

T1 waits for T2 →

 T2 waits for T1

T1

T2

Waits-for graph
Cycle → Deadlock

Complex Deadlocks Are Possible
T1 T2 T3

RA

WA

 RC

 RB

 WB

 RA

 WA

RB

WB

 RC

 WC

T1 waits for T2 →

 T2 waits for T3

 T3 waits for T1

T1

T2

Waits-for graph
Cycle → Deadlock

T3

Resolving Deadlocks
T1 T2 T3

RA

WA

 RC

 RB

 WB

 RA

 WA

RB

WB

 RC

 WC

T1 waits for T2 →

 T2 waits for T3

 T3 waits for T1

T1

T2

Waits-for graph
Cycle → Deadlock

T3

• Solution: abort one of the transactions
• Recall: users can abort too

• Recall: Strict 2PL avoids cascading
aborts (implement this!)

Strict Two-Phase Locking

• Can avoid cascading aborts by holding exclusive locks until end of
transaction

• Ensures that transactions never read other transaction’s
uncommitted data

Strict Two-Phase Locking Protocol

• Before every read, acquire a shared lock

• Before every write, acquire an exclusive lock (or
"upgrade") a shared to an exclusive lock

• Release locks only after last lock has been acquired,
and ops on that object are finished

• Release shared locks only after last lock has been
acquired, and ops on that object are finished

• Release exclusive locks only after the transaction
commits

• Ensures cascadeless-ness

• You need to maintain a waits-for graph on the buffer pool level in
lab 3 and detect and resolve deadlocks.

• There are also other implementations to resolve deadlocks.
• In any case, it requires you to abort the transaction from within the

system
• Return a non-nil error to signal to the caller that the

transaction was aborted.

Suggested code structure

• Transactions, on request of a buffer pool operation (i.e. calling a
buffer pool API), look at buffer pool level data structure and
decide whether it can proceed (acquiring the necessary page
locks under strict 2L).

• If it cannot, try again later.
• If it can, proceed, make the corresponding changes in the buffer

pool level data structures
• If step 1 detects a deadlock, resolve that.

All these steps need to be protected by necessary mutexes to
avoid race conditions.

Buffer Pool Policy

• If we don’t write back dirty pages, they must be held in memory for
the duration of the txn (We already told you to do this in Lab 1)

• A DB that writes back dirty pages is said to STEAL
• STEAL requires UNDO to remove uncommitted txns in event of

crash
• For Lab 3, implement NO STEAL.

• We assume that the system does not crash and skip recovery for the lab.
• How do you deal with aborted transactions?

Some Committed Changes Not Written Back

• If we wrote back all pages at commit time, it would be slow!
• Many random writes at commit time

• A DB that doesn’t force all writes at commit is NO FORCE
• This is complicated and requires implementing checkpointing and

recovery. (You can do this for lab 4)
• NO FORCE requires REDO to install logged writes to DB in event of

crash
• For lab 3, implement FORCE: dirty pages are written (flushed) back at

commit time!

STEAL/NO FORCE → UNDO/REDO
• If we STEAL pages, we will need to UNDO

• If we don’t FORCE pages, we will need to REDO

• If we FORCE pages, we will need to be able to UNDO if we crash between the FORCE
and the COMMIT

• For aborted transactions, also UNDO. How do you undo?

FORC
E

NO
FORCE

STEAL UNDO UNDO &
REDO

NO
STEAL

?
REDOUNDO

In GoDB, we do
FORCE / NO
STEAL, and
assume DB won’t
crash between
FORCE and
COMMIT

Debugging tips
• Eliminate race conditions first
• Think about and enforce invariants. Modifications to buffer pool level

data structures also need to be atomic!
• For example, when a transaction commits, right before you release the mutexes

and return from the function, waits-for graph should NOT have anything about
this transaction. Think about similar properties that other data structures should
respect at this exact time point.

• Use more assertions, less print statements (unless this stretch of code is
protected by a mutex and is a point of serialization): stdio is not atomic. stdio
operations are also slow which can help ”serialize” your code and hide bugs.

• You should not need to spawn new threads (goroutines). Each
transaction is on one thread.

• Start Early - Debugging concurrency can be hard!!!

	Slide 1: Lab 3 Bootcamp
	Slide 2: Different threads are trying to execute queries concurrently
	Slide 3: Different threads are trying to execute queries concurrently
	Slide 4: ACID Properties of Transactions
	Slide 5
	Slide 6: Users view: Three transaction operations
	Slide 7: Begin and commit
	Slide 8: Begin and commit
	Slide 9: Retrieving data
	Slide 10: Retrieving data
	Slide 11
	Slide 12: Abort
	Slide 13: Abort
	Slide 14: Abort
	Slide 15: Deadlocks
	Slide 16: Complex Deadlocks Are Possible
	Slide 17: Resolving Deadlocks
	Slide 18: Strict Two-Phase Locking
	Slide 19: Strict Two-Phase Locking Protocol
	Slide 20
	Slide 21: Suggested code structure
	Slide 22: Buffer Pool Policy
	Slide 23: Some Committed Changes Not Written Back
	Slide 24: STEAL/NO FORCE  UNDO/REDO
	Slide 25: Debugging tips

