
Lab 1 bootcamp

Lab1: What is GoDB?
A basic database system implemented in Go
• A simple storage layer, based on Heap Files (Lab 1)

• A buffer pool for caching pages and implementation page-level locking for
transactions (Labs 1-3)

• A set of operators (Labs 1 & 2): Scan, Filter, Join, Aggregate, Order By, Project ...

• A SQL parser (Lab 2), which we implement for you

• Simple transactions (Lab 3)

• Previous years we included recovery, B+Trees, and query optimization, but have
reduced the labs because this is our second year in Go.

– Students in 6.5831 may implement one of these for their final project

What is GoDB Missing?

• Focus is on a simple architecture rather than a complete or
high-performance implementation

• Only supports fixed length records with strings and ints
• Only supports sequential scan access methods
• No NULLs
• Uses a simple iterator method, so not super efficient

GoDB Storage Layout

• Each table is stored in one file on disk, called a heap file
– Heap files are an unordered collections of records
– Only way to access records from a heap file is to scan from beginning

to end: “Sequential scan” via an iterator
• Each heap file consists of a number of fixed size heap pages
• Each heap page contains a number of fixed size tuples

• Methods in heap_file.go are used to access the contents of the
heap file

Goal: Storage
• Physical Layout Design Disk

Memory
(managed by
buffer pool)

Header

Tuple

Tuple

Header

Tuple

Tuple

Tuples and Tuple Descriptors

• In a given heap file, each tuple has the same layout
• Layout is specified by a TupleDesc object, which

specifies the field names and types in the tuple

// FieldType is the type of a field in a tuple, e.g., its name, table, and [godb.DBType].
// TableQualifier may or may not be an empty string, depending on whether the table
// was specified in the query
type FieldType struct {

Fname string
TableQualifier string
Ftype DBType

}

// TupleDesc is "type" of the tuple, e.g., the field names and types
type TupleDesc struct {

Fields []FieldType
}

Tuples and Tuple Descriptors (cont.)

• Tuple objects contain the values of each record in Fields
• Field is an interface, implemented by IntField and StringField
• All ints are 64 bits; all string are StringLength characters, padded

with zeros

// Tuple represents the contents of a tuple read from a database
// It includes the tuple descriptor, and the value of the fields
type Tuple struct {

Desc TupleDesc
Fields []DBValue
Rid recordID //used to track the page and position this page was read from

}

Module Diagram

catalog

GetTable()
findTablesWithColumn()
…

buffer_pool
GetPage()
FlushAllPages()
…

heap_file
readPage(…)
insertTuple(…)
deleteTuple(…)
flushPage(…)
Iterator(…)

heap_page

isDirty()
setDirty(…)
insertTuple(…)
deleteTuple(…)
tupleIter(…)

1 n

Reads/write pages
from file

Buffers pages
Marks pages as direty

1

n

Parser All operators return
iterators as closures

Projection

Expr

…

Scan
//heap_file.Iterator

Optimizer

Operators

Catalog

Table:

String name
desc TupleDesc

Tablename Table
t1 Table1

t2 Table2

Catalog:

=> Stores a list of all tables in the database

buffer_pool

Buffer Pool:

Page:

PageNo
TupleDesc/Header
Tuple tuples[]

Page ID Page
001 Page1

003 Page3

007 Page7

=> Caches recently accessed database pages in memory
=> Manages read/write locks

heap_page

Heap Page:

desc TupleDesc
numSlots int32
numUsed int32
dirty bool
tuples []*Tuple
pageNo int
file *HeapFile

Field1 Type
Field1 Name

Field2 Type
Field2 Name

Field3 Type
Field3 Name

…

Tuple Descriptor:

01100110 11111111 11101101 …

Empty Tuple1 Tuple2 …

Field1 Field2 Field3 …

Slotted Heap Page:

Tuples:

Tuple:

Fields and Tuples are Fixed Width!

HeapFile
(Implements DbFile)

Heap File:

backingFile string
td *TupleDesc
Iterator

Field1 Type
Field1 Name

Field2 Type
Field2 Name

Field3 Type
Field3 Name

…

File (on disk):

Tuple Descriptor:

Page1 Page2 Page3 …

Iterate through Tuples in Heap Pages:

Storage Layout Diagram

HeapFile (table1)

Heap
Page 1

…

P1
Hdr

P1
T2

P1
Tn

Bytes
0
	
…	

P2
Hdr

P2
T2

P2
Tn

Pm
Hdr

Pm
T2

Pm
Tn

…

Page

NSlots
32 bits

NUsed
32 bits

TupleDesc:
	 age int
	 dept int

age1
64 bits

dept1
64 bits

age2
64 bits

dept2
64 bits

Header Tuple1 Tuple2
Heap

Page 2

Heap
Page m

Note: you need a way to deal with deletes!

Page size

Buffer Pool

• Buffer pool is an in-memory cache of pages
• Allows GoDB to control how much memory is used and

support tables larger than memory
• For transactions, will be responsible for implementing page-

level locking and two-phase commit (not until lab 3)

• All iterators and operators should use the buffer pool GetPage
method to access pages from heap files

• Only the heap file readPage method directly reads data from
disk

Iterators
• Each database operator (filter, project, join, etc) implements an Iterator

• Iterator() returns a function that iterates through the operator’s records
• Most operators take a child operator as a part of their constructor

• Heap file Iterator iterates through pages on disk; other operators iterate through
their child tuples

– E.g., filter iterates through child tuples, applied the filter to them, and returns satisfying tuples

type Operator interface {
Descriptor() *TupleDesc
Iterator(tid TransactionID) (func() (*Tuple, error), error)

}

func NewIntFilter(constExpr Expr,
	 op BoolOp, field Expr, child Operator) (*Filter[int64], error) { … }

Iterator Implementation

func (f *Filter[T]) Iterator(tid TransactionID) (func() (*Tuple, error), error) {

childIter, _ := f.child.Iterator(tid) //childIter is current iterator state
…
return func() (*Tuple, error) {

for {
	 // get child tuple from childIter
	 // get tuple fields (e.g., using EvalExpr)
	 // apply predicate
	 // if matches, return tuple
	 // else go onto next tuple
}, _

}

• Returns a function that when called returns the next
tuple

• Needs to keep state of where it was in its child

Example
Client

hf:HeapFile bp:BufferPool

pageCache

Project(hf)

f()

Iterator()Client

hf:HeapFile bp:BufferPool

pageCache

Project(hf)

f()

Iterator()

Iterator()

f2()

hf:HeapFile bp:BufferPool

pageCache

Client

hf:HeapFile bp:BufferPool

pageCache

Project(hf)

f()

Iterator()

Iterator()

f2()

GetPage()

readPage() p

p

p

&
p

Client

Project(hf)

f()

Iterator()

Iterator()

f2()

GetPage()

readPage()

p

p

Iterator()

f3()

t

t

t’

hf:HeapFile bp:BufferPool

pageCache

p

&
p

Client

Deleting Records and Rids

• Consider a query like:
	 DELETE FROM x WHERE f > 10
This is translated into a plan like

Heap File

Filter

Delete
Q: How does the delete
operator know which records to
delete?
A: Each record from the
HeapFile is annotated with a
record id that is used to identify
the position of the record in the
heap file to be deleted

Deleting Records and Rids

// Remove the provided tuple from the HeapFile. This method should use the
// [Tuple.Rid] field of t to determine which tuple to remove.
// This method is only called with tuples that are read from storage via the
// [Iterator] method, so you can so you can supply the value of the Rid
// for tuples as they are read via [Iterator]. Note that Rid is an empty interface,
// so you can supply any object you wish. You will likely want to identify the
// heap page and slot within the page that the tuple came from.
func (f *HeapFile) deleteTuple(t *Tuple, tid TransactionID) error {

• deleteTuple will be called by the delete operator
• Using the t.Rid object, you can clear out the position in the heap file containing

the record
• Your heapfile implementation supplies the Rid in the iterator, and so you can

identify this position however you like
• A standard Rid implementation is a page number and a slot within the page

• Recall that all pages have the same number of slots

func computeFieldSum(fileName string, td TupleDesc, sumField string
) (int, error) {

	 //Create buffer pool
	 bp := NewBufferPool(10)
	 hf, err := NewHeapFile("myfile.dat", &td, bp)
	 …
	 err = hf.LoadFromCSV(CSVfile, true, ",", false)
	 //find the column
	 fieldNo, err := findFieldInTd(FieldType{sumField, "", IntType}, &td)
	 //Start a transaction -> we will do the implementation in another lab
	 tid := NewTID()
	 bp.BeginTransaction(tid)
	 iter, err := hf.Iterator(tid)
	 //Iterate through the tuples and sum them up.
	 sum := 0
	 for {
	 	 tup, err := iter()
	 	 f := tup.Fields[fieldNo].(IntField)
	 	 sum += int(f.Value)
	 }

	 bp.CommitTransaction() //commit transaction
	 return sum, nil //return the value
}

Bytes.Buffer

• https://pkg.go.dev/bytes#Buffer

Golang interface

• https://go.dev/tour/methods/10

Have Fun!

• Start early
• Let us know what you find

confusing on Piazza!

