Lab 1 bootcamp

Labl: What is GoDB?

A basic database system implemented in Go
« Asimple storage layer, based on Heap Files (Lab 1)

« A buffer pool for caching pages and implementation page-level locking for
transactions (Labs 1-3)

e A set of operators (Labs 1 & 2): Scan, Filter, Join, Aggregate, Order By, Project ...
« ASQL parser (Lab 2), which we implement for you
« Simple transactions (Lab 3)

« Previous years we included recovery, B+Trees, and query optimization, but have
reduced the labs because this is our second year in Go.

— Students in 6.5831 may implement one of these for their final project

What is GoDB Missing?

Focus is on a simple architecture rather than a complete or
high-performance implementation

Only supports fixed length records with strings and ints
Only supports sequential scan access methods
No NULLs

Uses a simple iterator method, so not super efficient

GoDB Storage Layout

« Each table is stored in one file on disk, called a heap file

— Heap files are an unordered collections of records

— Only way to access records from a heap file is to scan from beginning
to end: “Sequential scan” via an iterator

e Each heap file consists of a number of fixed size heap pages
« Each heap page contains a number of fixed size tuples

« Methods in heap file.go are used to access the contents of the
heap file

Goal: Storage

[

Tuple

* Physical Layout Design

Memory
managed by

Header

Header J

Tuple

Tuple
Tuple P

Tuples and Tuple Descriptors

e |n a given heap file, each tuple has the same layout

o Layout is specified by a TupleDesc object, which
specifies the field names and types in the tuple

// FieldType is the type of a field in a tuple, e.g., its name, table, and [godb.DBType].

/[TableQualifier may or may not be an empty string, depending on whether the table
// was specified in the query
type FieldType struct {

Fname string

TableQualifier string

Ftype DBType

)

// TupleDesc is "type" of the tuple, e.g., the field names and types
type TupleDesc struct {
Fields [JFieldType

)

Tuples and Tuple Descriptors (cont.)

 Tuple objects contain the values of each record in Fields
« Field is an interface, implemented by IntField and StringField

o Allints are 64 bits; all string are StringLength characters, padded
with zeros

// Tuple represents the contents of a tuple read from a database
// It includes the tuple descriptor, and the value of the fields
type Tuple struct {

Desc TupleDesc

Fields [|[DBValue

Rid record|D //used to track the page and position this page was read from

;

Module Diagram

GetPage ()
catalog buffer_pool FlushAllPages ()

GetTable () Reads/writ e 1
findTablesWithColumn () eads/write pages » Buffers pages
from file o 7 A Marks pages as direty

1 N
heap file |————| heap_page

/
readPage (...)

isDirty ()
insertTuple (..) setDirty (..)
deleteTuple (..) insertTuple (..)
flushPage (...) deleteTuple (..)
F Tterator () ©° 777 . tuplelter (..)

Operators All operators return
Parser Scan iterators as closures
//heap _file.lterator
Optimizer Projection

Catalog

Catalog:
Tablename Table Table:
t1 Table1
String name
t2 Table2 desc TupleDesc

=> Stores a list of all tables in the database

buffer pool

Buffer Pool:

age

001 Page
PageNo

003 Page3 TupleDesc/Header
Tuple tuples]]

007 Page’

=> Caches recently accessed database pages in memory
=> Manages read/write locks

heap page

Tuple Descriptor:

Heap Page: Field1 Type |Field2 Type |Field3 Type
__—|Field1 Name |Field2 Name (Field3 Name
desc
numSilots / Slotted Heap Page:
numUsed
dirty 0110011D 11111111 [11101101
tuples
]?IaQeNo \ oo
ile uples:
{Empty Tuple1 Tuple2

Tuple: Field1 Field2 Field3

Fields and Tuples are Fixed Width!

Heap File:

HeapkFile
(Implements DbFile)

File (on disk):

=

backingFile string
td *TupleDesc
lterator

Tuple Descriptor:

Field1 Type
- Field1 Name

Field2 Type

Field3 Type

Field2 Name |Field3 Name

Iterate through Tuples in Heap Pages:

Page"

Page?2

Page3

Storage Layout Diagram

HeapFile (table1)

Bytes

0 Page size Page

NSlots NUsed | age1 dept1 | age2 dept2
32 bits 32 bits | 64 bits 64 bits| 64 bits 64 bits

TupleDesc:
age int
dept int

Note: you need a way to deal with deletes!

Buffer Pool

o Buffer poolis an in-memory cache of pages

e Allows GoDB to control how much memory is used and
support tables larger than memory

e For transactions, will be responsible for implementing page-
level locking and two-phase commit (not until lab 3)

« All iterators and operators should use the buffer pool GetPage
method to access pages from heap files

 Only the heap file readPage method directly reads data from
disk

lterators

Each database operator (filter, project, join, etc) implements an [lterator

type Operator interface {
Descriptor() *TupleDesc

lterator(tid TransactionlD) (func() (*Tuple, error), error)

}
Iterator() returns a function that iterates through the operator’s records

Most operators take a child operator as a part of their constructor

func NewlntFilter(constExpr Expr,

op BoolOp, field Expr, child Operator) (*Filter[int64], error) { ... }
Heap file Iterator iterates through pages on disk; other operators iterate through
their child tuples
— E.g., filter iterates through child tuples, applied the filter to them, and returns satisfying tuples

lterator Implementation

e Returns a function that when called returns the next
tuple

 Needs to keep state of where it was in its child

func (f *Filter[T]) Iterator(tid TransactionlD) (func() (*Tuple, error), error) {
childlter, _ := f.child.lterator(tid) //childlter is current iterator state

return func() (*Tuple, error) {
for {
// get child tuple from childlter
// get tuple fields (e.g., using EvalExpr)

/[apply predicate
/[iIf matches, return tuple
// else go onto next tuple

@ Example

hf:HeapFile bp:BufferPool .

pageCache

hf:HeapFile bp:BufferPool .

i erator() Project(hf)

pageCache
Iterator()

hf:HeapkFile

bp:BufferPool

i erator() Project(hf)

f()

pageCache

Iterator() readPage()

hf:HeapFile bp:BufferPool

P
GetPage()
T

i erator() Project(hf)

pageCache
Iterator()

readPage()
hf:HeapFile bp:BufferPool

P
GetPage
o

Deleting Records and Rids

« Consider a query like:
DELETE FROM x WHERE f > 10

This is translated into a plan like

Delete

Heap File

—

Q: How does the delete
operator know which records to

delete?
A: Each record from the

HeapkFile is annotated with a
record id that is used to identify
the position of the record in the
heap file to be deleted

Deleting Records and Rids

// Remove the provided tuple from the HeapFile. This method should use the
// [Tuple.Rid] field of t to determine which tuple to remove.

// This method is only called with tuples that are read from storage via the

/I [Iterator] method, so you can so you can supply the value of the Rid

// for tuples as they are read via [lterator]. Note that Rid is an empty interface,

// so you can supply any object you wish. You will likely want to identify the
// heap page and slot within the page that the tuple came from.
func (f *HeapFile) delete Tuple(t *Tuple, tid TransactionlD) error {

» deleteTuple will be called by the delete operator

* Using the t.Rid object, you can clear out the position in the heap file containing
the record

* Your heapfile implementation supplies the Rid in the iterator, and so you can
identify this position however you like

* A standard Rid implementation is a page number and a slot within the page
* Recall that all pages have the same number of slots

func computeFieldSum(fileName string, td TupleDesc, sumField string
) (int, error) {

//Create buffer pool
bp := NewBufferPool (10)

hf, err := NewHeapFile("myfile.dat", &td, bp)

err = hf.LoadFromCSV(CSVfile, true, ",", false)

’ ’

//find the column
fieldNo, err := findFieldInTd(FieldType{sumField, "", IntType}, &td)

4

//Start a transaction -> we will do the implementation in another lab
tid := NewTID ()

bp.BeginTransaction (tid)
iter, err := hf.Iterator(tid)

//Iterate through the tuples and sum them up.
sum := 0
for {
tup, err := iter()
f := tup.Fields[fieldNo]. (IntField)
sum += int(f.Value)

bp.CommitTransaction() //commit transaction
return sum, nil //return the wvalue

Bytes.Buffer

e https://pkg.go.dev/bytes#Buffer

Golang interface

e https://go.dev/tour/methods/10

Have Fun!

LVULYEHTIEULIEN « Start early

3"“"%" ASS\-G"MENTS o Let us know what you find

confusing on Piazza!

x G
- Y

n N .

\

RN

Al \ \\\
X o N
| Gl e T P

BUT/IT{IS NOT/THIS DAY

