
6.5830/6.5831 Lab 1 (Fall 2024) 1

Lab 1: Storage

Release Date: September 12, 2024

Checkpoint Due date: September 18, 2024

Due Date: September 25, 2024 by 11:59 pm ET

1 Introduction

In the lab assignments in 6.5830/6.5831 you will implement a basic database management system called GoDB incrementally.
For this lab, you will focus on implementing the core modules required to access stored data on disk; in future labs, you will
add support for various query processing operators, as well as transactions, locking, and concurrent queries. This handout goes
through the set-up steps you will need to complete and the logistics of the lab. You will find detailed instructions on specific
tasks you need to complete in lab1.md in the course GoDB repository.

2 Getting Started

We will be using git, a source code control tool, to distribute labs in 6.5830/6.5831. This will allow you to incrementally
download the code for the labs, and for us to distribute any hot fixes that might be necessary.

You will also be able to use git to commit and backup your progress on the labs as you go. The course git repositories will be
hosted on GitHub, a website that hosts git servers for thousands of open source projects. In our case, your code will be in a
private repository that is visible only to you (and course staff if you elect to).

This section describes what you need to do to get started with git, download 6.5830/6.5831 labs via GitHub, and backup your
progress on GitHub.

If you are not a registered student at MIT, you are welcome to follow along, but we ask you to please keep your solution
PRIVATE and not make it publicly available

2.1 Learning Git

There are numerous guides on using Git. We encourage you to explore then and learn via trial-and-error before using git on
large chunks of your work. GitHub has compiled a list of such resources here.

If you have no experience with git, you may find this Missing Semester lecture helpful. And if you want to build an intuition
with git commands, try this card game.

2.2 Setting Up Git and GitHub

Before you start following the lab-specific instructions, complete the following set-up steps:

1. Install git. (See below for suggestions).

2. If you don’t already have an account, you can sign up for an MIT enterprise account which allows you to host private
repositories with all the features for free. You can also sign up for a personal account on GitHub if you prefer.

2.2.1 Installing Git

On Unix-like environments, installing git should be a simple apt-get install, yum install, or something similar with your
package manager.

https://github.com/MIT-DB-Class/go-db-2024/
https://help.github.com/articles/what-are-other-good-resources-for-learning-git-and-github
https://missing.csail.mit.edu/2020/version-control/
https://ohmygit.org/
https://github.mit.edu
https://github.com


6.5830/6.5831 Lab 1 (Fall 2024) 2

General instructions for installing git on different systems can be found at GitBook: Installing.

If you are using an IDE like IntelliJ/VSCode, it likely comes with git integration. The set-up instructions below may be slightly
different than the command line instructions listed, but will work for any OS. Detailed instructions can be found in IntelliJ
Help, VSCode Version Control Guide, and/or VSCode Github Guide.

2.3 Getting the Lab

You should have Git installed from the previous section. The instructions below use the https protocol remote url for the course
repository. If you are working on a server where you cannot authenticate on GitHub with a browser and 2FA, you may need to
setup SSH authentication (documentation). In that case, use the ssh version of the remote url where applicable.

1. Clone the course lab repository with the following commands from the directory where you’d like the lab to be located
on your local machine:

git clone https://github.com/MIT-DB-Class/go-db-2024.git

This creates a local copy of the code repository that you can work on from the remote repository we are hosting on
GitHub.

If you do not wish to set up your own remote repo to version control, you can stop here and start working on the labs.
In the future, every time a new lab or patch is released, you can git pull to get the updates. That said, we strongly
encourage you to use git for more than just downloading the labs. In the rest of the guide we will walk you through on
how to use git for version-control during your own development. Using or not using version control and backup is at
your own discretion - we will not in general provide grading accommodations for lost progress.

2. Notice that you just cloned from the public course repo, which means that it will be inappropriate for you to push your
code to it. If you want to use git for version control, you will need to create your own repo to write your changes to. Do
so by clicking ’New’ on the left on the GitHub web interface, and make sure to choose Private when creating, so others
cannot see your code! Note the remote url as [your-remote-url] of your new repository as you’ll need it later. Next,
you are going to change the local repository you just cloned to point to your personal remote GitHub repository.

3. By default the remote called origin is set to the location that you cloned the repository from. If you run git remote -v
from the local repository now, you should see the following:

origin https://github.com/MIT-DB-Class/go-db-2024.git (fetch)
origin https://github.com/MIT-DB-Class/go-db-2024.git (push)

We don’t want that remote to be the origin of your local repository. In the local repo, run

git remote rename origin upstream

to set the course public remote repository to be the upstream instead of the origin.

Now running git remote -v should show the following

upstream https://github.com/MIT-DB-Class/go-db-2024.git (fetch)
upstream https://github.com/MIT-DB-Class/go-db-2024.git (push)

4. Now we need to give your local repository a new origin. Issue the following command in the local repo, substituting in
the remote url you obtained from Step 2:

git remote add origin [your-remote-url]

If you have an error that looks like the following:

Could not rename config section ’remote.[old name]’ to ’remote.[new name]’

Or this error:

fatal: remote origin already exists.

This appears to happen to some depending on the version of Git being used. To fix it, just issue the following command:

git remote set-url origin [your-remote-url]

For reference, your git remote -v should now look like the following if everything is setup correctly:

http://git-scm.com/book/en/Getting-Started-Installing-Git
https://www.jetbrains.com/help/idea/version-control-integration.html
https://www.jetbrains.com/help/idea/version-control-integration.html
https://code.visualstudio.com/Docs/editor/versioncontrol#_git-support
https://code.visualstudio.com/docs/editor/github
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent


6.5830/6.5831 Lab 1 (Fall 2024) 3

git remote -v
upstream https://github.com/MIT-DB-Class/go-db-2024.git (fetch)
upstream https://github.com/MIT-DB-Class/go-db-2024.git (push)
origin [your-remote-url] (fetch)
origin [your-remote-url] (push)

5. Push all the current code on the main branch of the course repository to your private GitHub remote repo by issuing the
following:

git push -u origin main

You should see something like the following:

Counting objects: 59, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (53/53), done.
Writing objects: 100% (59/59), 420.46 KiB | 0 bytes/s, done.
Total 59 (delta 2), reused 59 (delta 2) remote: Resolving deltas: 100% (2/2), done.
To git@github.com:[your-repo].git * [new branch] main -> main Branch main set up to track remote
branch main from origin.

You should now also be able to see the code on the GitHub webpage of your own repository. Check again that the
repository is not visible to the public. Now you are good to start working on the lab!

As you work on the lab, staging your changes and making commits allows you to snapshot your code and inspect or roll back
to previous committed versions. Using branches allows you to try different implementations or only have clean, working code
on your main branch. Pushing code to your remote repository backs it up and allows you to pull it from other devices and
continue to work there. checkout allows you to switch between different versions of code, and (caution) to roll back unstaged
(buggy) local changes.

Git is a distributed version control system. This means everything operates offline on your local until you run git pull or
git push to synchronize with the remote. This is a great feature. However, one consequence of this is that you may forget to
git push your changes. This is why we strongly suggest that you check your own GitHub repo to be sure that what you want
to see matches up with what you expect after finishing a batch of work for backup purposes.

Git is in general immensely useful for managing a large, complex piece of code with many moving parts like GoDB, especially
if you are collaborating with someone on the codebase. If you are new to git, please do not hesitate to post questions on Piazza
about what to do when you are unsure.

2.4 Getting Bugfix Patches and Newly Released Labs

Pulling in future labs or any bug fixes we release should be easy as long as you set up your repository based on the instructions
in the last section. All new labs from now on will be posted to the same class repository. Check it periodically as well as
Piazza’s announcements for updates on when the new labs are released. Once a lab or bugfixes are released, pull in the changes
to the main branch of your local repository like this:

git pull upstream main

And sync the changes to your own remote repository:

git push origin main

If you’ve followed the instructions regarding git in each lab, you should have no merge conflicts. If you encounter merge
conflicts and are not sure how to resolve them, please reach out to course staff.

3 Submitting Your Work

After you finish all the exercises, you will need to submit

1. All the code of the lab.



6.5830/6.5831 Lab 1 (Fall 2024) 4

2. A short lab report writeup.

We will be using Gradescope to autograde the code of the labs. Check Piazza for the access code for Gradescope. If you are
still unable to join the course in Gradescope, please reach out the course staff. You may submit your code multiple times before
the deadline; we will grade the latest version as determined by Gradescope. Place the write-up in a file called lab1-writeup.txt
with your submission.

If you are working with a partner, only one person needs to submit to Gradescope. However, make sure to add the other person
to your group. Also note that each member must have their own lab report and work on it individually. Please add your Kerberos
username to the file name and in the writeup itself (e.g., lab1-writeup-username1.txt and lab1-writeup-username2.txt).

The easiest way to submit to Gradescope is uploading .zip files containing both your code and the lab report writeups. On
Linux/MacOS, you can do so by running the following command from the parent directory of your local repository:

zip -r submission.zip godb/ lab1-writeup.txt

If you are working with a partner:

zip -r submission.zip godb/ lab1-writeup-username1.txt lab1-writeup-username2.txt

This year, we also ask you to make a checkpoint submission, detailed in subsection 3.2.

3.1 Lab Report

Your lab report should be brief (maximum of 2 pages) and contain the collowing

• Describe any design decisions you made. These may be minimal for Lab 1.

• Discuss and justify any changes you made to the API.

• Describe any missing or incomplete elements of your code.

• Describe how long you spent on the lab, and whether there was anything you found particularly difficult or confusing.

3.2 Checkpoint submission

This year, to encourage you to start the lab early, we are setting up a checkpoint submission. To complete the checkpoint
submission, upload your progress to the same Gradescope assignment. Your submission should pass 15% of the testcases on
the autograder. Moreover, the checkpoint submission should contain a preliminary lab report writeup. You only need to report
if there is anything you find particulatly difficult or confusing so far in this preliminary writeup (or just say ”everything is good
so far”). A few days after the checkpoint submission, we will host a lab bootcamp to review relevant concepts and address
issues that people commonly have trouble with. This checkpoint submission is so that you can get the most from the bootcamp
and we have plenty of time to help you with the lab.

There will be no grading penalty if you do not complete the checkpoint submission. However, if you do pass 15% of the visible
autograder tests and submit the preliminary lab report, you’ll receive a sweet treat in the next week’s lecture. We’ll also take
this into account as a bonus in the hollistic review portion of your participation grade.

3.3 Submitting a bug

Please submit bug reports to 6.5830-staff@mit.edu or via a private Piazza post. When you do, please try to include:

• A description of the bug.

• A .go file with test functions that we can drop into the ‘godb‘ directory, compile, and run.

• A .txt file with the data that reproduces the bug.

If you are the first person to report a particular bug in GoDB, we will give you a (larger) sweet treat!

mailto:6.5830-staff@mit.edu


6.5830/6.5831 Lab 1 (Fall 2024) 5

4 Grading

75% of your grade will be based on whether or not your code passes the system test suite on autograder. These tests will be a
superset of the tests we have provided. Before handing in your code, you should make sure it produces no errors (passes all of
the local tests) when you run ‘go test‘ in the ‘godb‘ directory.

Before testing, Gradescope will replace the go test files with our version of these files. This means you should make sure that
your code passes the unmodified tests.

You should get immediate feedback and error outputs for failed visible tests (if any) from Gradescope after submission. There
may exist several hidden tests (a small percentage) that will not be visible until after the deadline. The score given will be
your grade for the autograded portion of the assignment. An additional 25% of your grade will be based on the quality of your
writeup and our subjective evaluation of your code. This part will also be published on Gradescope after we finish grading your
assignment.

5 Lab 1

You will need to fill in pieces of code that is not implemented. For this lab, you will need to implement database tuples, heap
pages, heap files, and complete the buffer pool implementation so that the buffer pool can get heap pages. You may find the
lecture and reading material on database internals particularly useful. lab1.md in the course repository walks you through the
code and the tasks you will need to complete.

6 Getting Help

If at any point you need help with with lab, feel free to post on Piazza or reach out to one of the TAs or the instructor. Their
contact information can be found on the course homepage. There will be office hours throughout the next two weeks and a
bootcamp session where we review the concepts covered in the lab and common problems people run into together. Look out
on Piazza and the course website for these plans.

http://dsg.csail.mit.edu/6.5830/

	Introduction
	Getting Started
	Learning Git
	Setting Up Git and GitHub
	Installing Git

	Getting the Lab
	Getting Bugfix Patches and Newly Released Labs

	Submitting Your Work
	Lab Report
	Checkpoint submission
	Submitting a bug

	Grading
	Lab 1
	Getting Help

