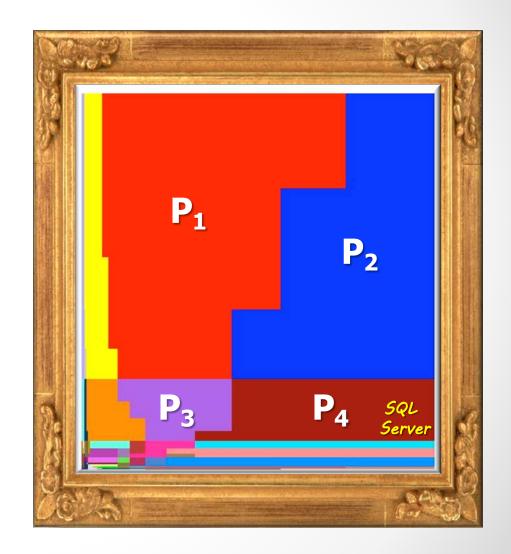
SQL Query Optimization: Why Is It So Hard To Get Right?

David J. DeWitt MIT

Download slides and donate to a great cause: BrentOzar.com/go/dewitt

How About a Quiz to Start!

- Who painted this picture?
 - o Mondrian?
 - o Picasso?
 - o Ingres?
- Actually it was the SQL
 Server query optimizer!!
 - Plan space for TPC-H query 8
 as the parameter values for
 Acct-Bal and ExtendedPrice
 are varied
 - Each color represents a different query plan
 - o Yikes!



Today ...

I am going to talk about SQL query optimization

Starting with the fundamental principals

My hope is that you will leave understanding why all database systems sometimes produce really bad plans

And why the move to the Cloud could be be a game changer

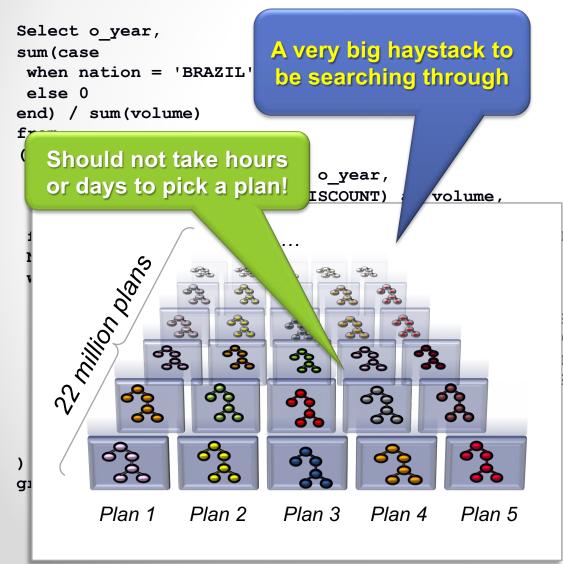
Anonymous Quote

"Query optimization is not rocket science. When you flunk out of query optimization, we make you go build rockets."

The Role of the Query Optimizer (100,000 ft view)

What's the Magic?

Consider Query 8 of the TPC-H benchmark:



ION

There about <u>22 million</u> alternative ways of executing this query!

TKE: XEY = R REGIONKEY

CONKEY

2-31

The QO must select a plan that runs in seconds or minutes, not days or weeks!

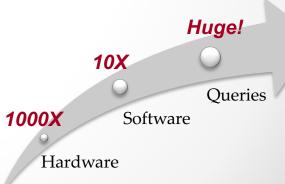
Some Historical Background

 Cost-based query optimization was invented by Pat Selinger as part of the IBM System R project in the late 1970s (System R became DB2)

- Remains the hardest part of building a DBMS 30+ years later
 - Progress is hindered by fear of regressions
 - Far too frequently the QO picks an inefficient plan

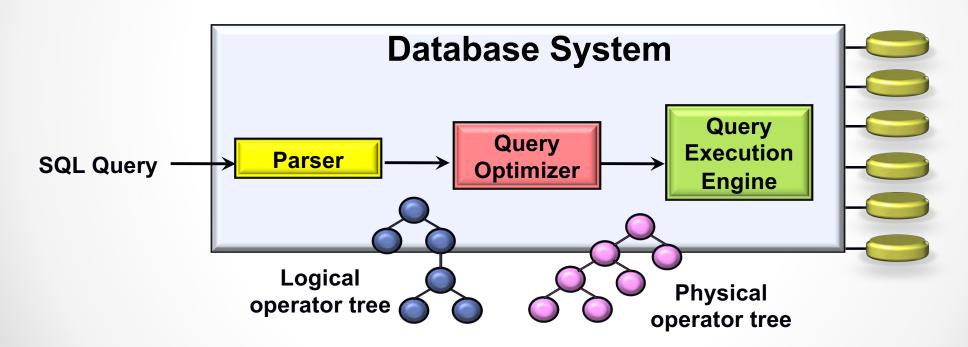


- Hardware is 1000X bigger and faster
- DB software is 10X faster
- Queries over huge amounts of data are possible IF the QO picks the right plan



More Precisely: The Role of the Query Optimizer

Transform SQL queries into an efficient execution plan

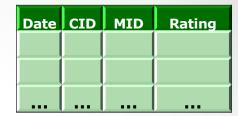


Logical operators: <u>what</u> they do e.g., union, selection, project, join, grouping

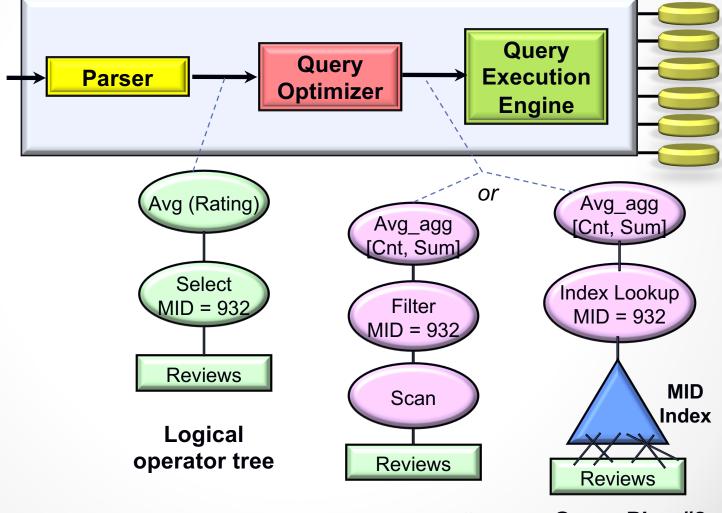
Physical operators: <u>how</u> they do it e.g., nested loop join, sort-merge join, hash join, index join

A First Example

Reviews

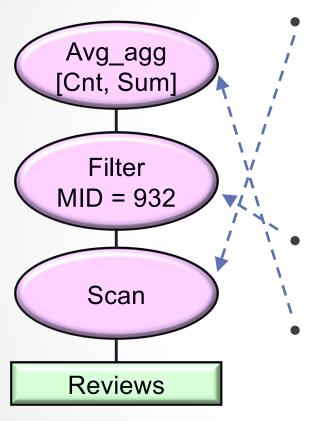


SELECT Average (Rating) FROM Reviews WHERE MID = 932



Query Plan #2

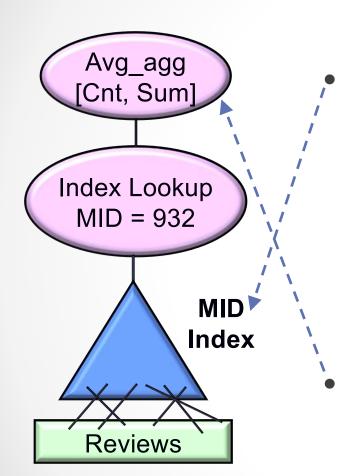
Query Plan #1



Plan starts by scanning the entire **Reviews** table

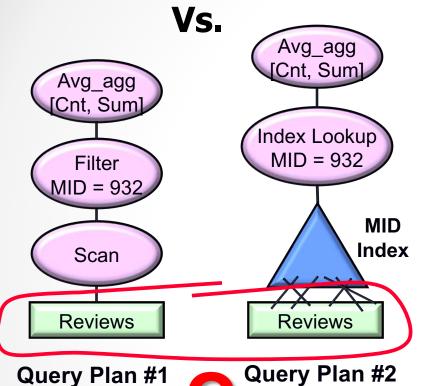
- # of disk I/Os will be equal to the # of pages in the *Reviews* table
- I/Os will be sequential. Each I/O will require about 0.1 milliseconds (0.0001 seconds)
- Filter predicate "MID = 932" is applied to <u>all</u> rows
- Only rows that satisfy the predicate are passed on to the average computation

Query Plan #2



- MID index is used to retrieve <u>only</u> those rows whose *MID* field (attribute) is equal to 932
 - Since index is not "clustered", about one disk I/O will be performed for each row
 - Each disk I/O will require a random seek and will take about 3 milliseconds (ms)
- Retrieved rows will be passed to the average computation

Which Plan Will be Faster?



- Query optimizer must pick between the two plans by <u>estimating the cost</u> of each
- To estimate the cost of a plan, the QO must:
 - Estimate the <u>selectivity</u> of the predicate MID=932
 - Calculate the <u>cost</u> of both plans in terms of CPU time and I/O time
- The QO uses <u>statistics</u> about each table to make these estimates
- The "best" plan depends on how many reviews there are for movie with *MID* = 932

many reviews for the movie with MID = 932 will there be?

A Slightly More Complex Query

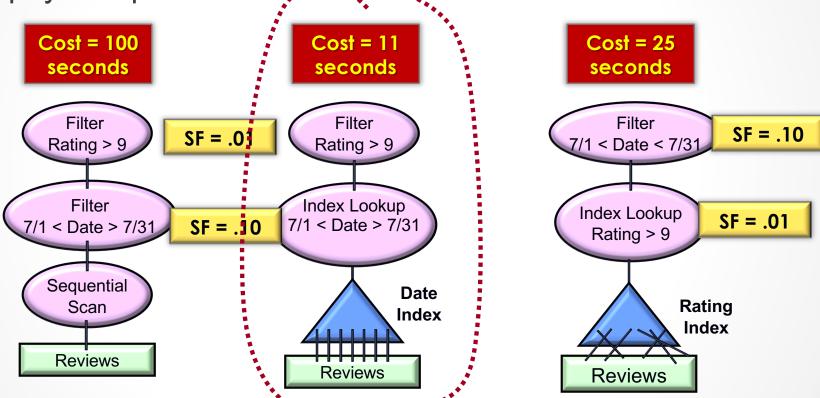
Consider the query:

SELECT * FROM Reviews WHERE 7/1 < date < 7/31 AND

rating > 9

Optimizer might first enumerate

three physical plans:



- Then, estimate selectivity factors
- Then, calculate total cost
- Finally, pick the plan with the lowest cost

Query Optimization: The Main Steps

Enumerate logically equivalent plans by applying equivalence rules

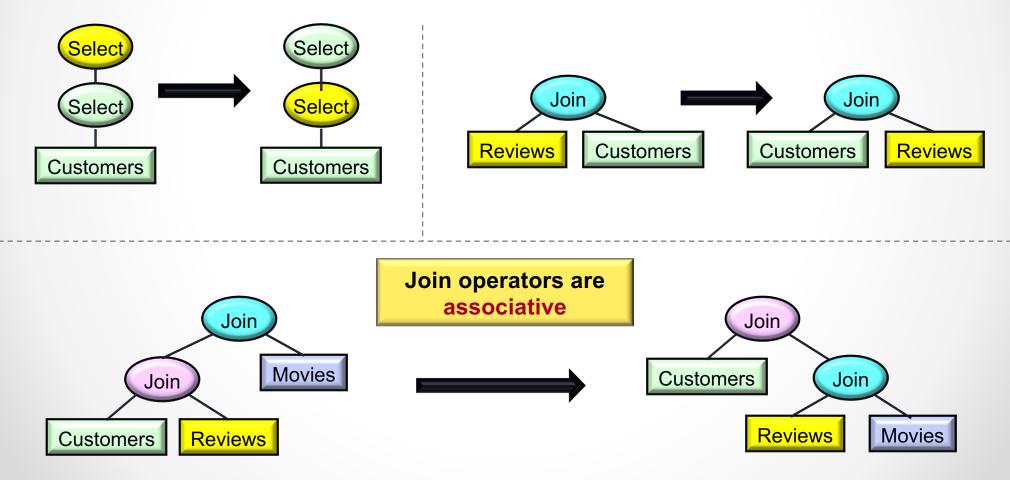
For each logically equivalent plan, enumerate all alternative physical query plans

Estimate the cost of each of the alternative physical query plans

Run the plan with lowest estimated overall cost

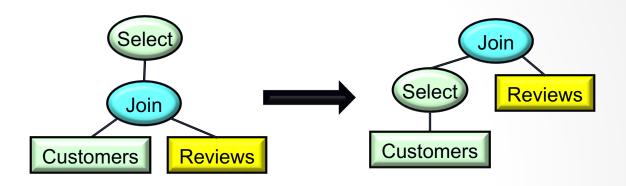
Equivalence Rules

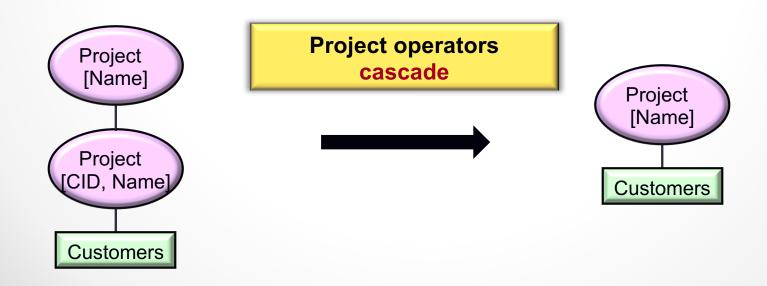
Select and join operators commute with each other



Equivalence Rules (cont.)

Select operator distributes over joins



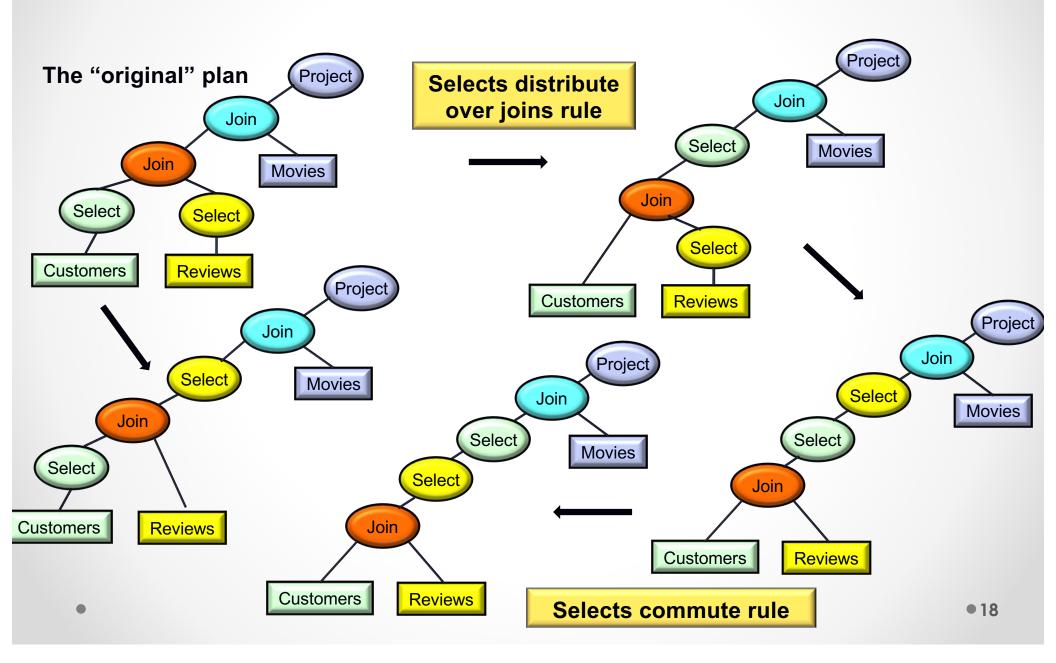


Example of Equivalent Logical Plans

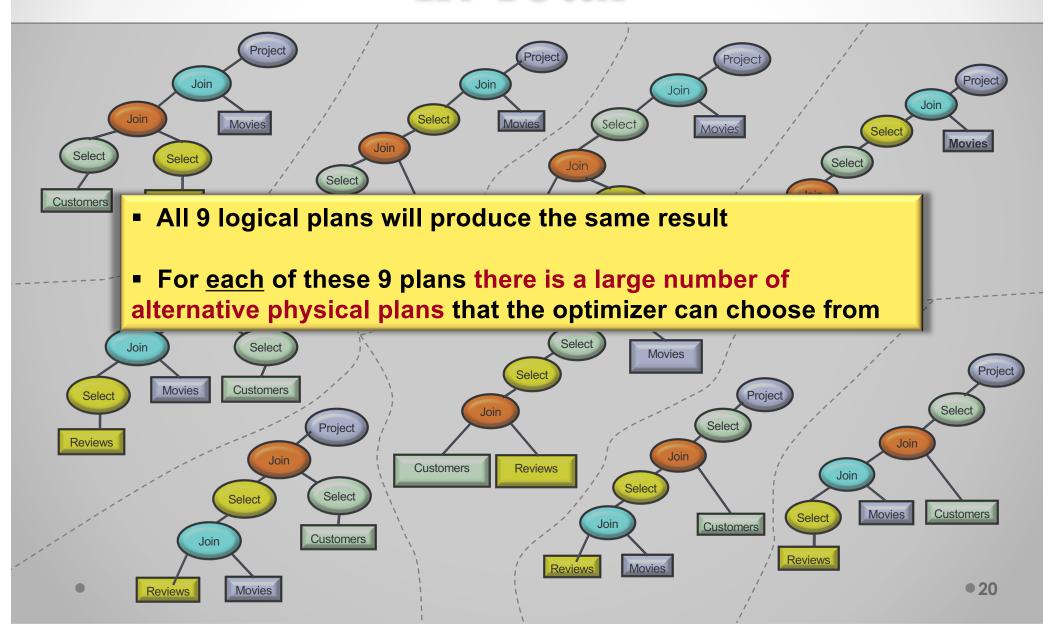
SELECT M. Title, M. Director Find titles and director names of FROM Movies M, Reviews R, Customers C movies with a rating > 7 from WHERE C.City = "N.Y." AND R.Rating > 7 customers residing in NYC AND M.MID = R.MID AND C.CID = R.CIDOne possible logical plan: M.Title, M.Director Project Join R.MID = M.MID**Movies** C.CID = R.CIDJoin **Movies Title** Director MID **Earnings** 1 C.City = "N.Y"Select Select) R.Rating > 7 **Customers** Reviews **Reviews Customers** Name Address CID Date **MID** Rating City 7/3 11 8 11 7/3

5

Five Logically "Equivalent" Plans



9 Logically Equivalent Plans, In Total



Query Optimization: The Main Steps

Enumerate logically equivalent plans by applying equivalence rules

For each logically equivalent plan, enumerate all alternative physical query plans

Estimate the cost of each of the alternative physical query plans

Run the plan with lowest estimated overall cost

Physical Plan Example

- Assume that the optimizer has:
 - Three join strategies that it can select from:
 - nested loops (NL), sort-merge join (SMJ), and hash join (HJ)
 - Two selection strategies:
 - sequential scan (SS) and index scan (IS)
- Consider JUST ONE of the 9 logical plans

- There are actually **36** possible physical alternatives for this single logical plan. (*I was too lazy to draw pictures of all 36*).
- With 9 equivalent logical plans, there are **324** = **(9 * 36)** physical plans that the optimizer must enumerate and cost as part of the search for the best execution plan for the query

And this was a VERY simple query!

 Later we will look at how dynamic programming is used to explore the space of logical and physical plans w/o enumerating the entire plan space

Query Optimization: The Main Steps

Enumerate logically equivalent plans by applying equivalence rules

For each logically equivalent plan, enumerate all alternative physical query plans

Estimate the cost of each of the alternative physical query plans.

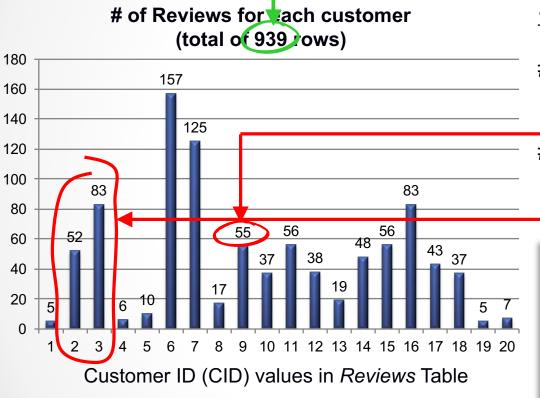
- Estimate the selectivity factor and output cardinality of each predicate
- Estimate the cost of each operator

Run the plan with lowest estimated overall cost

Selectivity Estimation

- Task of estimating how many rows will satisfy a predicate such as *Movies.MID*=932
- Plan quality is highly dependent on <u>quality of the</u> estimates that the query optimizer makes
- Histograms are the standard technique used to estimate selectivity factors for predicates on a single table
- Many different flavors:
 - Equi-Width
 - o Equi-Height
 - o Max-Diff
 - 0 ...

Histogram Motivation



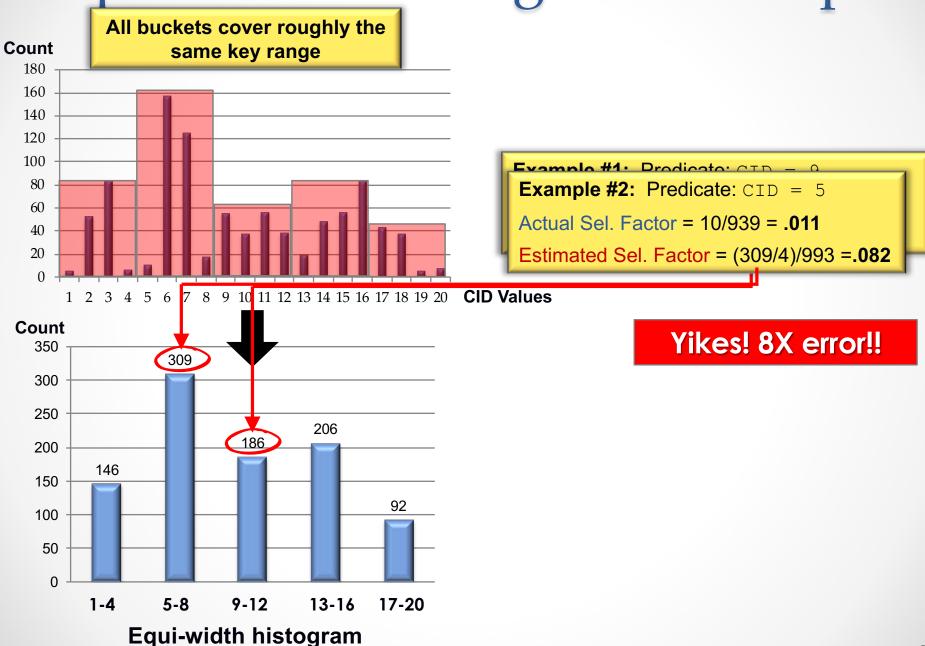
Some examples:

- #1) Predicate: CID = 9
 Actual Sel. Factor = 55/939 = .059
- #2) Predicate: 2 <= CID <= 3
 Actual Sel. Factor = 135/939 = .144

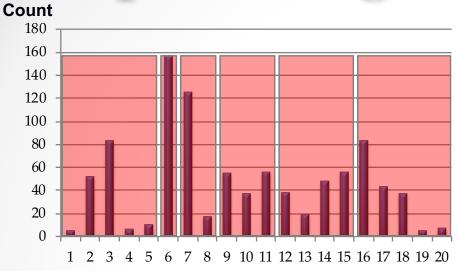
In general, there is not enough space in the catalogs to store summary statistics for each distinct attribute value

The solution: *histograms*

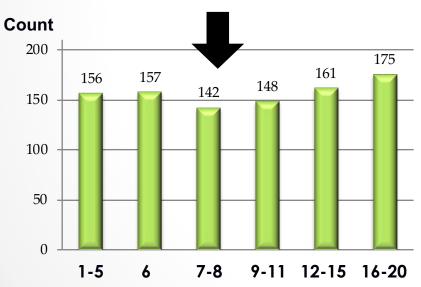
Equi-Width Histogram Example



Equi-Height Histograms



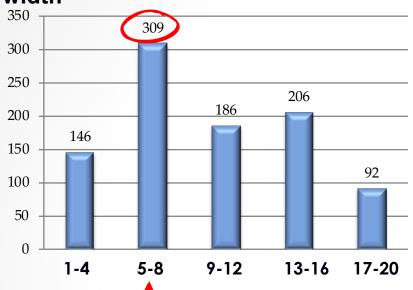
Divide ranges so that all buckets contain roughly the same number of values



Equi-height histogram

Equi-width vs. Equi-Height

Equi-width

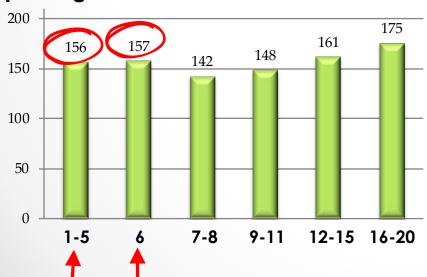


Example #1: Predicate: CID = 5

Actual Sel. Factor = 10/939 = .011

Estimated Sel. Factor = (309/4)/993 = .082

Equi-height



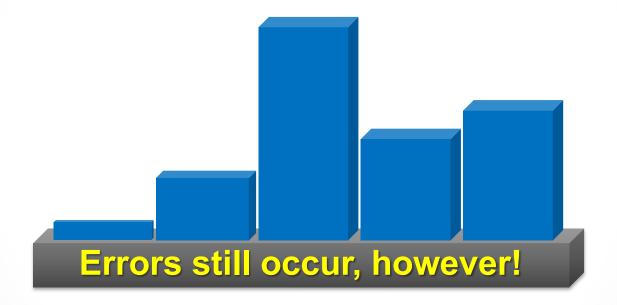
Example #1: Predicate: CID = 5

Actual Sel. Factor = 10/939 = .011

Estimated Sel. Factor = (156/5)/993 = .033

Histogram Summary

 Histograms are a critical tool for estimating selectivity factors for selection predicates



 Other statistics stored by the DBMS for each table include # of rows, # of pages, ...

Query Optimization: The Main Steps

Enumerate logically equivalent plans by applying equivalence rules

For each logically equivalent plan, enumerate all alternative physical query plans

Estimate the cost of each of the alternative physical query plans.

- Estimate the selectivity factor and output cardinality of each predicate
- Estimate the cost of each operator

Run the plan with lowest estimated overall cost

Estimating Costs

- Two key costs that the optimizer considers:
 - I/O time cost of reading pages from mass storage
 - CPU time cost of applying predicates and operating on tuples in memory

 Actual values are highly dependent o CPU and I/O subsystem on which the query will be run

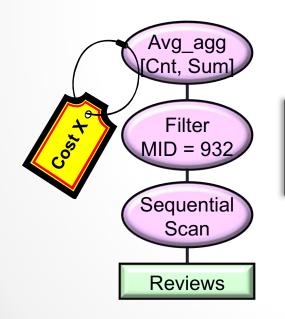
VS.

- Further complicating the job of the query optimizer
- For a parallel database system such as SQL DW, the cost of redistributing/shuffling rows must also be considered

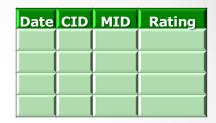
An Example

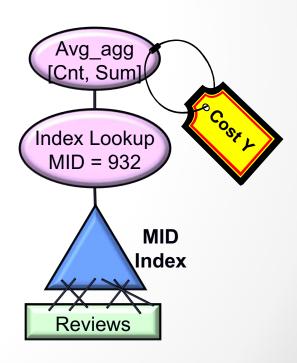
Query:

- o SELECT Avg(Rating)
 FROM Reviews
 WHERE MID = 932
- Two physical query plans:



Which plan is cheaper ???





Plan #2

Plan #1

Optimizer estimates total execution time of 9 seconds

Avg_agg [Cnt, Sum]

 Average computation is applied to 100 rows

• At **0.1 microseconds/row**, avg consumes .00001 seconds of CPU time

Filter

MID = 932

Scan

 Filter is applied to 10M rows

 The optimizer estimates that 100 rows will satisfy the predicate

• At **0.1 microseconds/row**, filter consumes 1 second of CPU time

 Table is 100K pages with 100 rows/page

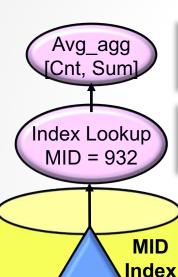
Sorted on date

- Reviews is scanned sequentially at 100 MB/second
- I/O time of scan is 8 seconds

Reviews

Plan #2

Optimizer estimates total execution time of **0.3 seconds**



Reviews

 Average computation is applied to 100 rows

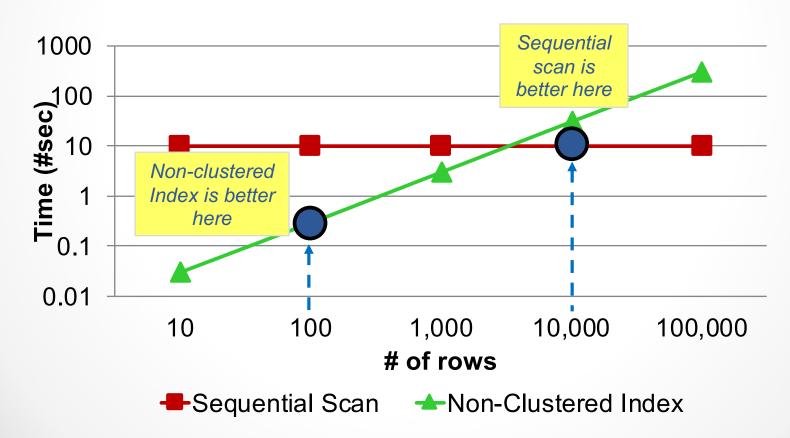
• 100 rows are estimated to satisfy the predicate

- At 0.1 microseconds/row, average consumes .00001
 seconds of CPU time
- 100 rows are retrieved using the MID index
- Since table is sorted on date field (and not MID field), each I/O requires a random disk I/O – about .003 seconds per disk I/O
- I/O time will be .3 seconds

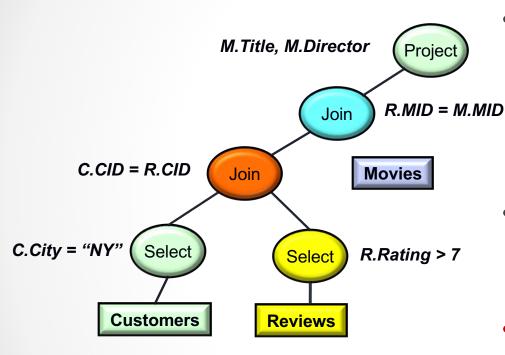
The estimate for Plan #1 was 9 seconds, so Plan #2 is clearly the better choice

But ...

- What if the estimate of the number of rows that satisfy the predicate MID = 932 is WRONG?
 - E.g. 10,000 rows instead of 100 rows

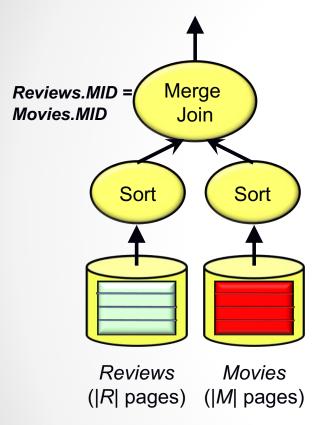


Estimating Join Costs



- Three basic join methods:
 - o 🔃 Nested-loops join
 - o 🛂 Sort-merge join
 - o 🛂 Hash-join
- Very different performance characteristics
- Critical for optimizer to carefully pick which method to use when

Sort-Merge Join Algorithm



```
Sort Reviews on MID column
(unless already sorted)
Sort Movies on MID column
(unless already sorted)

"Merge" two sorted tables:
Scan each table sequential in tandem
{
For current row r of Reviews
For current row m of Movies

if r.MID = m.MID produce output row
Advance r and m cursors
}

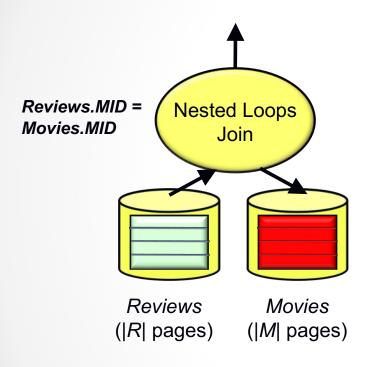
Cost = 4 * |R| I/Os

Cost = 4 * |M| I/Os
```

Main Idea: Sort *R* and *M* on the join column (*MID*), then scan them to do a "merge" (on join column), and output result tuples.

Total I/O cost = 5*|R| + 5*|M| I/Os

Nested-Loops Join

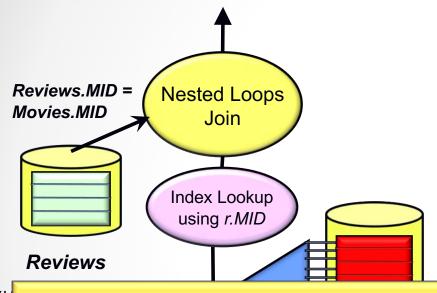


```
For each page R_i, 1 \le i \le |R|, of Reviews
  Read page R_i from disk
  For each M_i, 1 \le j \le |M|, of Movies
      Read page M_i from disk
      For all rows r on page R_i
          For all rows m on page M_i
              if r.MID = m.MID produce output row
```

I/O Cost = |R| + |R| * |M|

Main Idea: Scan R, and for each tuple in R probe tuples in M (by scanning it). Output result tuples.

Index-Nested Loops



Notice that since *Reviews* is ordered on the *Date* column (and not *MID*), so each row of the *Movies* table retrieved incurs two random disk I/Os:

- one to the index and
- one to the table

```
For each page R_i, 1 \le i \le |R|, of Reviews {

Read page R_i from disk

For all rows r on page R_i

{

Use MID index on Movies

to fetch rows with MID attributes = r.MID

Form output row for each returned row
}
```

Cost = |R| + |R| * (||R||/|R|) * 2

- 2 I/Os: 1 index I/O + 1 movie I/O as

 Reviews table is sorted on date column
- ||*R*|| is # of rows in *R*
- ||R||/|R| gives the average number of rows of R per page

Main Idea: Scan R, and for each tuple in R probe tuples in M (by probing its index). Output result tuples.

Estimating Result Cardinalities

Consider the query

```
SELECT *
FROM Reviews
WHERE 7/1 < date < 7/31 AND rating > 9
```

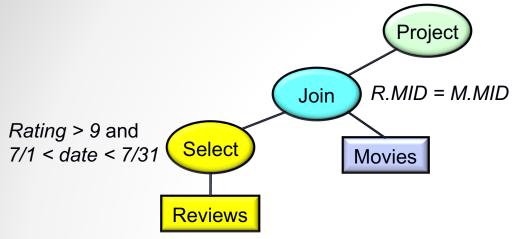
- Assume Reviews has 1M rows
- Assume following selectivity factors:

	Sel. Factor	# of qualifying rows
7/1 < date < 7/31	0.1	100,000
Review > 9	0.01	10,000

- How many output rows will the query produce?
 - If predicates are <u>not correlated</u>
 - .1 * .01 * 1M = **1,000** rows
 - o If predicates are correlated could be as high as
 - .1 * 1M = 100,000 rows

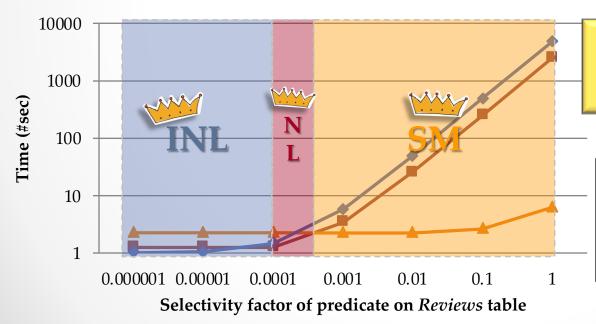
Why does this matter?

This is Why!



Assume that:

- Reviews table is 10,000 pages with 80 rows/page
- Movies table is 2,000 pages
- The primary index on Movies is on the MID column

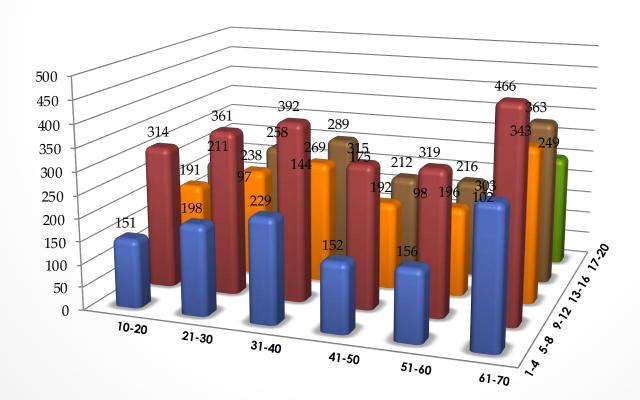


Note that each join algorithm has a region where it provides the best performance

The consequences of incorrectly estimating the selectivity of the predicate on Reviews can be HUGE

Multidimensional Histograms

- Used to capture correlation between attributes
- A 2-D example



A Little Bit About Estimating Join Cardinalities

- Question: Given a join of R and S, what is the range of possible result sizes (in #of tuples)?
 - Suppose the join is on a key for R and S Students(sid, sname, did), Dorm(did,d.addr)

```
Select S.sid, D.address
From Students S, Dorms D
Where S.did = D.did
```

What is the cardinality?

A student can only live in at most 1 dorm:

- each S tuple can match with at most 1 D tuple
- cardinality (S join D) = cardinality of S

Estimating Join Cardinality

- General case: join on {A} (where {A} is key for neither)
 - estimate each tuple r of R generates <u>uniform number of matches</u> in S and each tuple s of S generates <u>uniform number of matches</u> in R, e.g.

```
e.g., SELECT M.title, R.title
FROM Movies M, Reviews R
WHERE M.title = R.title
```

Movies: 100 tuples, 75 unique titles → 1.3 rows for each title *Reviews*: 20 tuples, 10 unique titles → 2 rows for each title

Query Optimization: The Main Steps

Enumerate logically equivalent plans by applying equivalence rules

For each logically equivalent plan, enumerate all alternative physical query plans

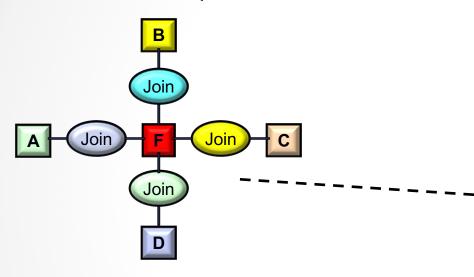
Estimate the cost of each operator

It turns out that the answer depends on the "shape" of the query

rall cost

Two Common Query "Shapes"

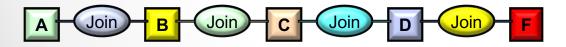
"Star" Join Queries



Number of logically equivalent alternatives

# of Tables	Star	Chain			
2	2	2			
4	48	40			
 -5	-▶ 384	224			
6	3,840	1,344			
8	- 645,120	54,912			
_ 10	18,579,450	2,489,344			

"Chain" Join Queries



In practice, "typical" queries fall somewhere between these two extremes

Pruning the Plan Space

Consider only left-deep query plans to reduce the search space

Solution:

Use some form of dynamic programming (either bottom up or top down) to search the plan space heuristically

Sometimes these heuristics will cause the best plan to be missed!!

	22			
	3,010	210	1,511	- 32
8	645,120	10,080	54,912	128
10	18,579,450	725,760	2,489,344	512

Bottom-Up QO Using Dynamic Programming

Interesting orders include

orders that facilitate the

execution of joins, aggregates,

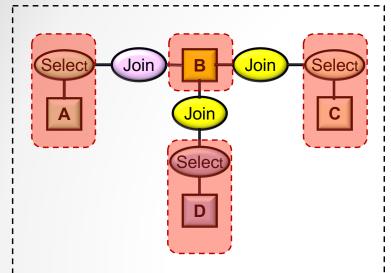
and order by clauses

- Optimization is performed in *N* passes (if *N* relations are joined):
 - Pass 1: Find the best (lowest cost) 1-relation plan for each relation.
 - Pass 2: Find the <u>best way</u> to join outer/left table) to another relatior all 2-relation plans.
 - Pass N: Find best way to join res N'th relation to generate all N-rela
- subsequently by the query At each pass, for each subset of re-
 - Lowest cost plan overall, plus
 - Lowest cost plan for each interesting order of the rows
- Order by, group by, aggregates etc. handled as the final step

In spite of pruning plan space, this approach is still exponential in the # of tables.

lhe

An Example:



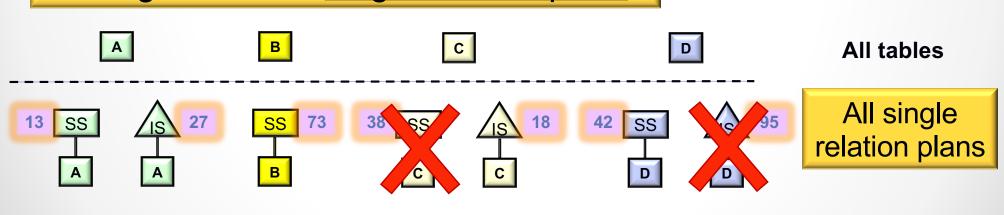
Legend:

SS – sequential scan

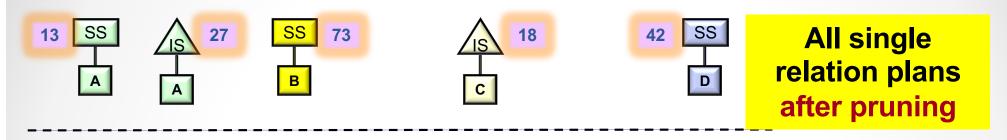
IS – index scan

5 − cost

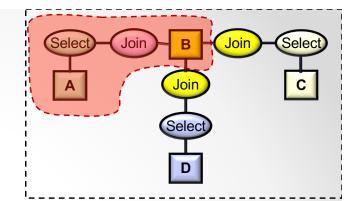
First, generate all single relation plans:

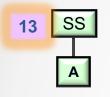


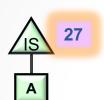
Then, All Two Relation Plans

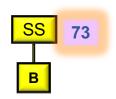


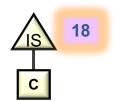
Two Relation Plans Starting With <u>A</u>

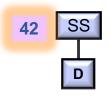




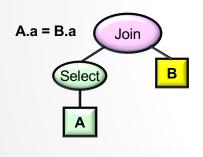


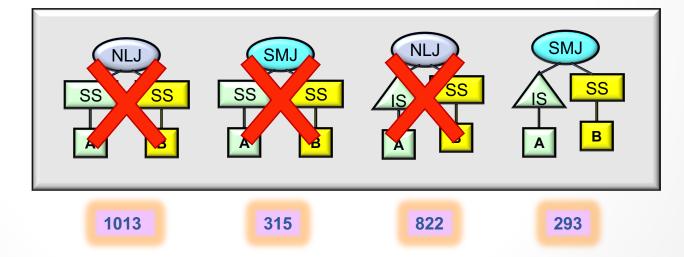






Single relation plans



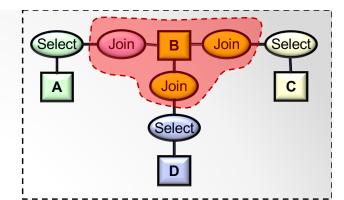


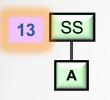
Prune

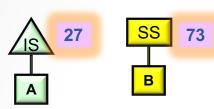
Let's assume there are 2 alternative join methods for the QO to select from:

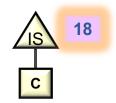
- 1. NLJ = Nested Loops Join
- 2. SMJ = Sort Merge Join

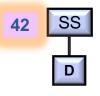
Two Relation Plans Starting With B



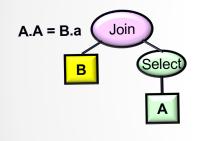


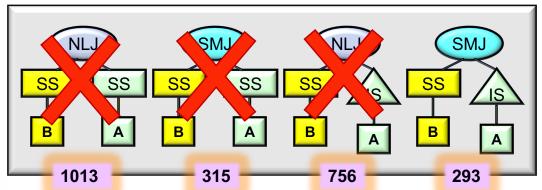


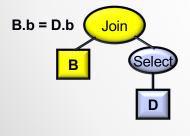


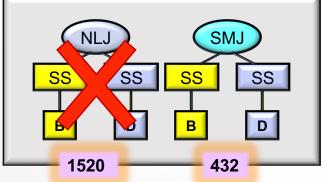


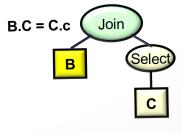
Single relation plans

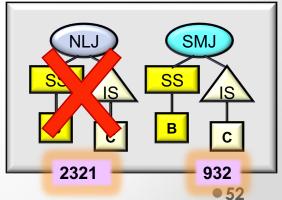




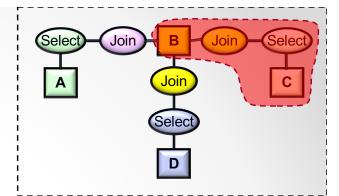


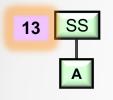


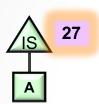


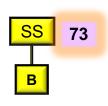


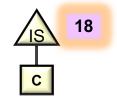
Two Relation Plans Starting With C

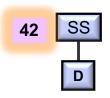




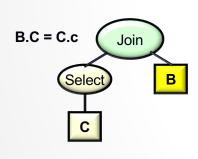


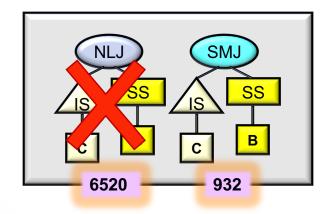




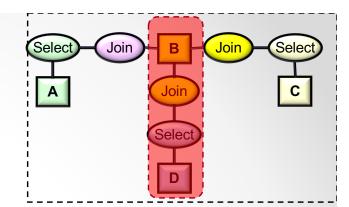


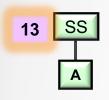
Single relation plans

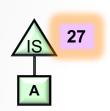


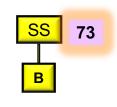


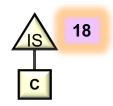
Two Relation Plans Starting With D

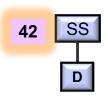




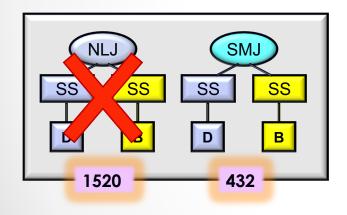


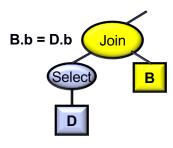




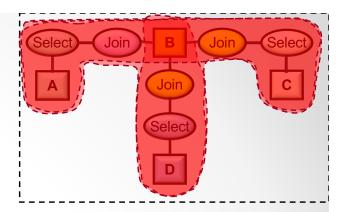


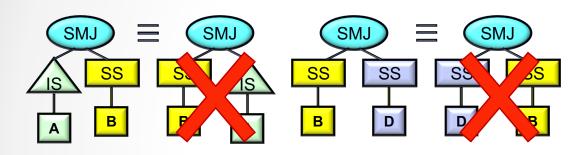
Single relation plans

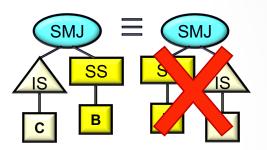




Further Prune Two Relation Plans

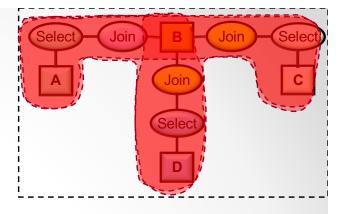


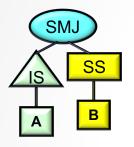


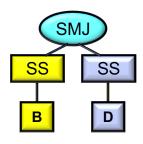


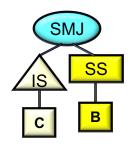
Pruned two relation plans

Next, All Three 1) Consider the Two Relation Plans That Start With A

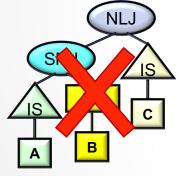


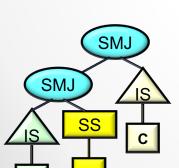


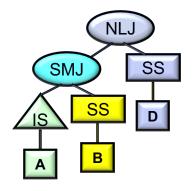


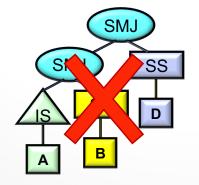


Fully pruned two relation plans

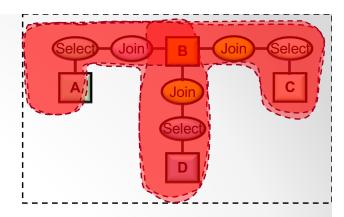


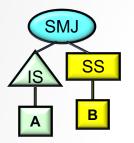


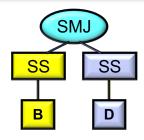


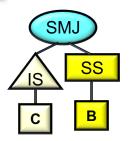


Next, All Three 2) Consider the Two Relation Plans That Start With B

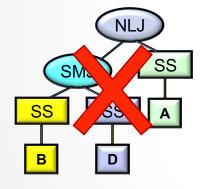


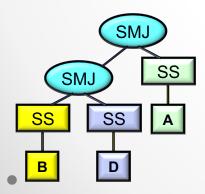


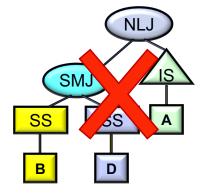


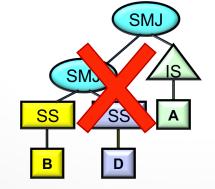


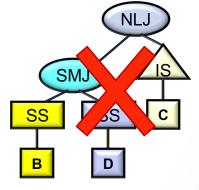
Fully pruned two relation plans

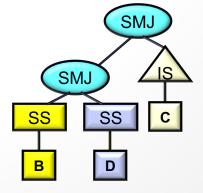






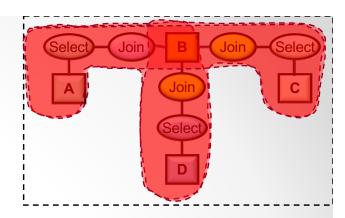


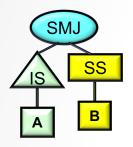


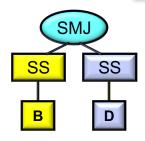


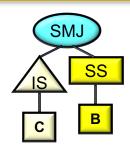
Next, All Three Relation 3) Consider the Two

Relation Plans That Start With C

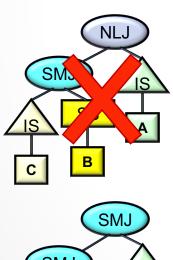


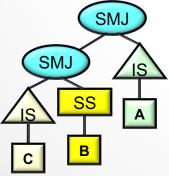


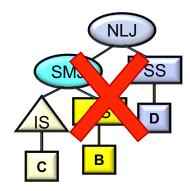


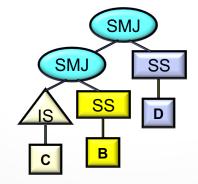


Fully pruned two relation plans









You Have Now Seen the Theory

- But the reality is:
 - Optimizer still pick bad plans too frequently for a variety of reasons:
 - Statistics can be missing, out-of-date, incorrect
 - <u>Cardinality estimates</u> assume uniformly distributed values but data values are skewed
 - Attribute <u>values</u> are <u>correlated</u> with one another:
 - Make = "Honda" and Model = "Accord"
 - Cost estimates are based on formulas that do not take into account the <u>characteristics of the machine</u> on which the query will actually be run
 - Regressions happen due <u>hardware</u> and <u>software upgrades</u>

What can be done to improve the situation?

Opportunities for Improvement

- Develop tools that give us a better understanding of what goes wrong
- Improve plan stability
- Use of feedback from the QE to the QO to improve statistics and cost estimates

Towards a Better Understanding of QO Behavior

- Picasso Project Jayant Haritsa, IIT Bangalore
 - Bing "Picasso Haritsa" to find the project's web site
 - Tool is available for SQL Server, Oracle, PostgreSQL, DB2, Sybase
- Simple but powerful idea:
- For a given query such as

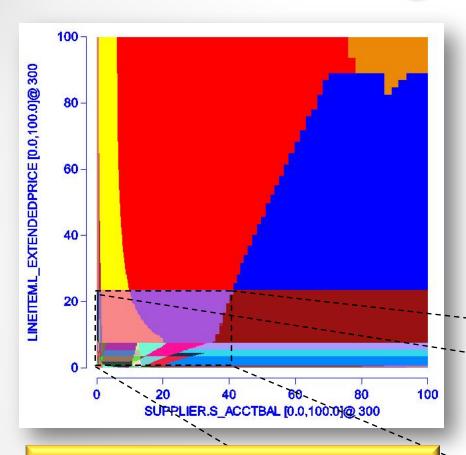
```
SELECT * from A, B
WHERE A.a = B.b and
    A.c <= constant-1 and
    B.d <= constant-2</pre>
```

- Systematically vary constant-1 and constant-2
- Obtain query plan and estimated cost from the query optimizer for each combination of input parameters
- Plot the results

Example: TPC-H Query 8

```
select
          o year,
          sum(case
                    when nation = 'BRAZIL' then volume
                    else 0
          end) / sum(volume)
from
            select YEAR(O ORDERDATE) as o year,
                      L EXTENDEDPRICE * (1 - L DISCOUNT) as volume, n2.N NAME as nation
            from PART, SUPPLIER, LINEITEM, ORDERS, CUSTOMER, NATION n1, NATION n2, REGION
          where
                    P PARTKEY = L PARTKEY and S SUPPKEY = L SUPPKEY
                    and L ORDERKEY = O ORDERKEY and O CUSTKEY = C CUSTKEY
                    and C NATIONKEY = n1.N NATIONKEY and n1.N REGIONKEY = R REGIONKEY
                    and R NAME = 'AMERICA' and S NATIONKEY = n2.N NATIONKEY
                    and O ORDERDATE between '1995-01-01' and '1996-12-31'
                    and P TYPE = 'ECONOMY ANODIZED STEEL'
                    and S ACCTBAL <= constant-1
                    and L EXTENDEDPRICE <= constant-2</pre>
          ) as all nations
group by o year
order by o year
```

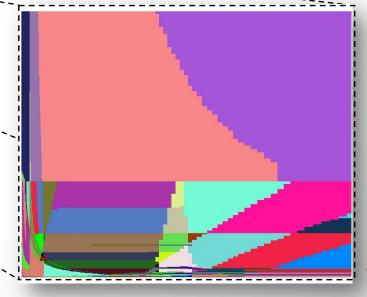
Resulting Plan Space



- SQL Server 2008 R2
- A total of 90,000 queries
 - 300 different values for both *L_ExtendedPrice* and *S_AcctBal*
- 204 different plans!!
 - Each distinct plan is assigned a unique color
- Zooming in to the [0,20:0,40] region:

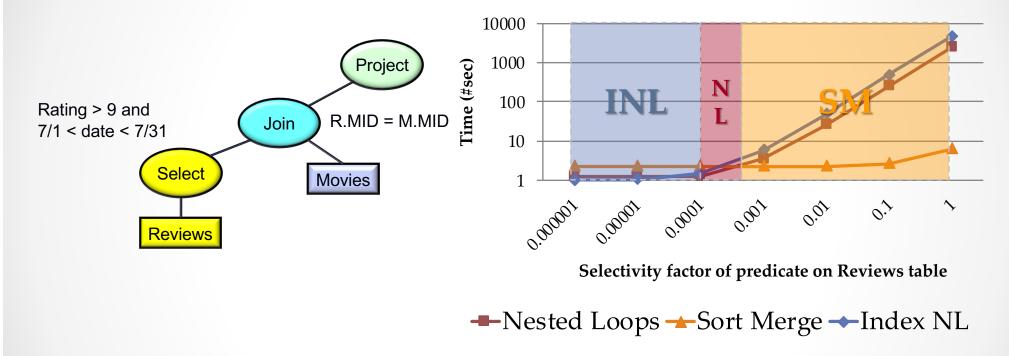
Key takeaway: If plan choice is so sensitive to the constants used, it will undoubtedly be sensitive to errors in statistics and cardinality estimates ☺

Intuitively, this seems very bad!



How Might We Do Better?

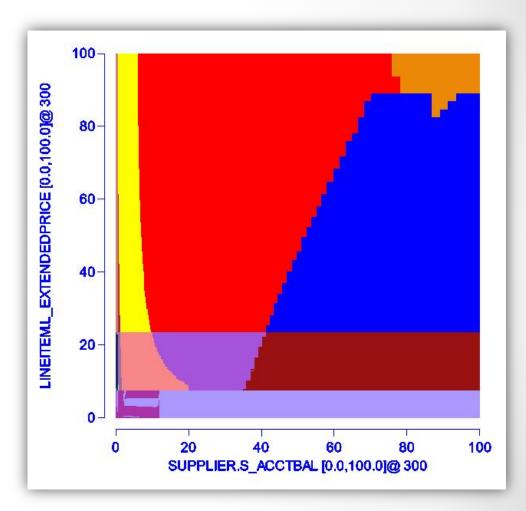
Recall this graph of join algorithm performance



 While the two "nested loops" algorithms are faster at low selectivity factors, they are not as "stable" across the entire range of selectivity factors

"Reduced" Plan Diagrams

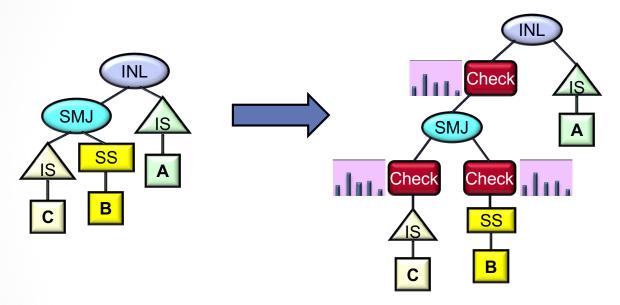
- Robustness is somehow tied to the number of plans
 - Fewer plans => more robust plans
- For TPC-H query 8, it is possible to <u>use only 30 plans</u> (instead of 204) by picking more robust plans that are slightly slower (10% max, 2% avg)
- Since <u>each plan</u> covers a larger region it <u>will be less sensitive</u> to errors in estimating cardinalities and costs



Reduced plan space for TPC-H query 8

How Might We Do Better?

 At QO time, have the QO annotate compiled query plans with statistics (e.g. expected cardinalities) and check operators

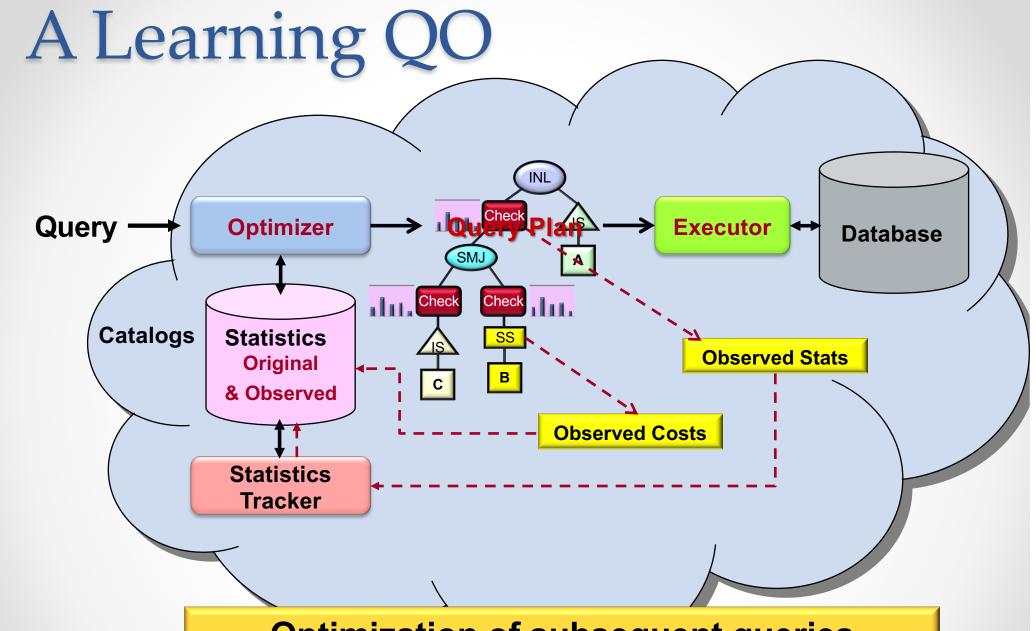


- At runtime, check operators collect the actual statistics and compare actual vs. predicted
- Opens up a number of avenues for improving QO performance

Especially in the CLOUD!

QO In the Cloud

- What is different?
 - On prem, a DB vendor has essentially no insight to how its product is used
 - o In the cloud, vendor knows
 - Schema information (tables, indices, ...)
 - The hardware being used
 - The complete query workload
 - For each query, the optimized plan & its estimated cost, the actually running cost, and the selectivity of each operator
- Use this information to build an optimizer that learns.



Optimization of subsequent queries benefits from the observed statistics and operator costs

Key Points To Remember For The Quiz

- Query optimization is harder than rocket science
 - The other components are trivial in comparison
 - Three key phases of QO
 - Enumeration of logical plan space
 - Enumeration of alternative physical plans
 - Selectivity estimation and costing
 - The QO team of every DB vendor lives in fear of regressions
 - How exactly do you expect them to make forward progress?

