
David J. DeWitt
MIT

Download slides and donate to a great cause:
BrentOzar.com/go/dewitt

SQL Query Optimization:
Why Is It So Hard To Get Right?

How About a Quiz to Start!

2

• Who painted this picture?
o Mondrian?
o Picasso?
o Ingres?

• Actually it was the SQL
Server query optimizer!!
o Plan space for TPC-H query 8

as the parameter values for
Acct-Bal and ExtendedPrice
are varied

o Each color represents a
different query plan

o Yikes!

P1
P2

P3 P4 SQL
Server

Today …
I am going to talk about SQL query
optimization

My hope is that you will leave
understanding why all database systems
sometimes produce really bad plans

Starting with the fundamental principals

And why the move to the Cloud could be
be a game changer

Anonymous Quote

“Query optimization is not rocket
science. When you flunk out of query

optimization, we make you go build
rockets.”

4

The Role of the Query Optimizer
(100,000 ft view)

Query Optimizer

SQL
Statement

Awesome
Query Plan

Magic
Happens

What’s the Magic?

Select o_year,
sum(case
when nation = 'BRAZIL' then volume
else 0
end) / sum(volume)
from
(
select YEAR(O_ORDERDATE) as o_year,
L_EXTENDEDPRICE * (1 - L_DISCOUNT) as volume,
n2.N_NAME as nation
from PART, SUPPLIER, LINEITEM, ORDERS, CUSTOMER, NATION n1,
NATION n2, REGION
where

P_PARTKEY = L_PARTKEY and S_SUPPKEY = L_SUPPKEY
and L_ORDERKEY = O_ORDERKEY and O_CUSTKEY = C_CUSTKEY
and C_NATIONKEY = n1.N_NATIONKEY and n1.N_REGIONKEY = R_REGIONKEY
and R_NAME = 'AMERICA‘ and S_NATIONKEY = n2.N_NATIONKEY
and O_ORDERDATE between '1995-01-01' and '1996-12-31'
and P_TYPE = 'ECONOMY ANODIZED STEEL'
and S_ACCTBAL <= constant-1
and L_EXTENDEDPRICE <= constant-2

) as all_nations
group by o_year order by o_year

Consider Query 8 of the
TPC-H benchmark:

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5

22
 m

illi
on

 p
la

ns

… There about 22 million
alternative ways of executing

this query!

A very big haystack to
be searching through

The QO must select a plan that
runs in seconds or minutes, not
days or weeks!

Should not take hours
or days to pick a plan!

Some Historical Background
• Cost-based query optimization was

invented by Pat Selinger as part of the
IBM System R project in the late 1970s
(System R became DB2)

• Remains the hardest part of building a
DBMS 30+ years later
o Progress is hindered by fear of regressions
o Far too frequently the QO picks an inefficient plan

• Situation further complicated by
advances in hardware and the rest of the
DBMS software
o Hardware is 1000X bigger and faster
o DB software is 10X faster
o Queries over huge amounts of data are possible IF

the QO picks the right plan

7

Hardware

Software
Queries

1000X

10X
Huge!

Database System

More Precisely:
The Role of the Query Optimizer

8

Transform SQL queries into an efficient execution plan

Query
Execution

Engine
Query

OptimizerParserSQL Query

Logical
operator tree Physical

operator tree

Logical operators: what they do
e.g., union, selection, project,
join, grouping

Physical operators: how they do it
e.g., nested loop join, sort-merge
join, hash join, index join

A First Example

9

Query
Execution

Engine

Query
OptimizerParser

SELECT
Average(Rating)
FROM Reviews
WHERE MID = 932

Reviews
Date CID MID Rating

… … … …

Logical
operator tree

Avg (Rating)

Select
MID = 932

Reviews

Query Plan #1

Avg_agg
[Cnt, Sum]

Scan

Reviews

Filter
MID = 932

Avg_agg
[Cnt, Sum]

Index Lookup
MID = 932

MID
Index

Reviews

Query Plan #2

or

Query Plan #1
• Plan starts by scanning the entire
Reviews table
o # of disk I/Os will be equal to the # of pages

in the Reviews table
o I/Os will be sequential. Each I/O will require

about 0.1 milliseconds (0.0001 seconds)

• Filter predicate “MID = 932” is
applied to all rows

• Only rows that satisfy the
predicate are passed on to the
average computation

10

Avg_agg
[Cnt, Sum]

Scan

Reviews

Filter
MID = 932

Query Plan #2
• MID index is used to retrieve only

those rows whose MID field
(attribute) is equal to 932
o Since index is not “clustered”, about one

disk I/O will be performed for each row

o Each disk I/O will require a random seek
and will take about 3 milliseconds (ms)

• Retrieved rows will be passed to
the average computation

11

Avg_agg
[Cnt, Sum]

Index Lookup
MID = 932

MID
Index

Reviews

Which Plan Will be Faster?
• Query optimizer must pick between the two

plans by estimating the cost of each

• To estimate the cost of a plan, the QO must:

o Estimate the selectivity of the predicate

MID=932
o Calculate the cost of both plans in terms

of CPU time and I/O time

• The QO uses statistics about each table to

make these estimates

• The “best” plan depends on how many

reviews there are for movie with MID = 932

12

Query Plan #1

Avg_agg

[Cnt, Sum]

Scan

Reviews

Filter

MID = 932

Avg_agg

[Cnt, Sum]

Index Lookup

MID = 932

MID
Index

Reviews

Query Plan #2

Vs.

How many reviews for the movie
with MID = 932 will there be?

Best
Query
Plan

or? ??

A Slightly More Complex Query
• Consider the query:

• Optimizer might first enumerate
three physical plans:

13

Filter
Rating > 9

Sequential
Scan

Reviews

Filter
7/1 < Date > 7/31

Rating
Index

Filter
7/1 < Date < 7/31

Index Lookup
Rating > 9

Reviews

Filter
Rating > 9

Index Lookup
7/1 < Date > 7/31

Reviews

Date
Index

SF = .01

SF = .01 SF = .10

SF = .10

Cost = 11
seconds

Cost = 100
seconds

Cost = 25
seconds

• Then, estimate selectivity factors
• Then, calculate total cost
• Finally, pick the plan with the lowest cost

SELECT *
FROM Reviews
WHERE 7/1< date < 7/31 AND

rating > 9

Enumerate logically equivalent plans by applying
equivalence rules

For each logically equivalent plan, enumerate all
alternative physical query plans

Estimate the cost of each of the alternative
physical query plans

Run the plan with lowest estimated overall
cost

Query Optimization:
The Main Steps

�

2

1

3

4

Equivalence Rules

15

Select and join operators
commute with each other

Select

Select

Customers

Select

Select

Customers

Join

Customers Reviews

Join

Reviews Customers

Join

Customers Reviews

Join

Movies

Join

Customers Join

Reviews Movies

Join operators are
associative

Equivalence Rules (cont.)

16

Project
[CID, Name]

Customers

Project
[Name]

Project operators
cascade

Project
[Name]

Customers

Select operator
distributes over joins

Select

Join

Customers

Reviews

Select

Join

Customers Reviews

Example of Equivalent Logical Plans
SELECT M.Title, M.Director
FROM Movies M, Reviews R, Customers C
WHERE C.City = “N.Y.” AND R.Rating > 7

AND M.MID = R.MID AND C.CID = R.CID

• One possible logical plan:

17

Join

SelectC.City = “N.Y” Select R.Rating > 7

JoinC.CID = R.CID

R.MID = M.MID

Customers Reviews

Project M.Title, M.Director

Movies
MID Title Director Earnings

1
2
…

CID Name Address City
5

11
…

Date CID MID Rating
7/3 11 2 8
7/3 5 2 4
…

Find titles and director names of
movies with a rating > 7 from
customers residing in NYC

Customers Reviews

Movies

Five Logically “Equivalent” Plans

18

Select Select

Join

Customers Reviews

Project

Join

Movies

Select

Select

Join

Customers Reviews

Project

Join

Movies

Select

Select

Join

Customers Reviews

Project

Join

Movies

Select

Join

Customers Reviews

Join

Movies
Select

Project

The “original” plan Selects distribute
over joins rule

Join

Customers Reviews

Join

Movies
Select

Project

Select

Selects commute rule

Four More!

19

Select Select

Join

Customers Reviews

Project

Join

Movies

The “original” plan

Select

CustomersSelect

Reviews

Project

Join

Movies

Join

Select

Customers

Select

Reviews

Project

Join

Movies

Join

Select

CustomersSelect

Reviews

Project

Join

Movies

Join

Select

Reviews

Join

Movies

Customers

Project

Join

Select

Join commutativity
rule

Select
commutativity rule

9 Logically Equivalent Plans,
In Total

20

Select Select

Join

Customers Reviews

Project

Join

Movies

Select

Select

Join

Customers Reviews

Project

Join

Movies Select

Select

Join

Customers

Reviews

Project

Join

Movies Select

Join

Customers Reviews

Join

Movies
Select

Project

Select

CustomersSelect

Reviews

Project

Join

Movies

Join

Select

Customers

Select

Reviews

Project

Join

Movies

Join

Select

Reviews

Join

Movies

Customers

Project

Join

Select
Select

CustomersSelect

Reviews

Project

Join

Movies

Join

Join

Customers Reviews

Join

Movies
Select

Project

Select

§ All 9 logical plans will produce the same result

§ For each of these 9 plans there is a large number of
alternative physical plans that the optimizer can choose from

Enumerate logically equivalent plans by applying
equivalence rules

For each logically equivalent plan, enumerate all
alternative physical query plans

Estimate the cost of each of the alternative
physical query plans

Run the plan with lowest estimated overall
cost

Query Optimization:
The Main Steps

�

2

1

3

4

�

Physical Plan Example
• Assume that the optimizer has:

o Three join strategies that it can select from:
• nested loops (NL), sort-merge join (SMJ), and hash join (HJ)

o Two selection strategies:
• sequential scan (SS) and index scan (IS)

• Consider JUST ONE of the 9 logical plans

• Here is one possible physical plan

22

Select Select

Join

Customers Reviews

Project

Join

Movies

SS IS

HJ

Customers Reviews

Project

NL

Movies

Sequential Scan Index Scan

Hash Join
Nested loops join

• There are actually 36 possible physical alternatives for this single logical plan.
(I was too lazy to draw pictures of all 36).

• With 9 equivalent logical plans, there are 324 = (9 * 36) physical plans that the
optimizer must enumerate and cost as part of the search for the best
execution plan for the query

And this was a VERY simple query!

• Later we will look at how dynamic programming is used to explore the space
of logical and physical plans w/o enumerating the entire plan space

Enumerate logically equivalent plans by applying
equivalence rules

For each logically equivalent plan, enumerate all
alternative physical query plans

Estimate the cost of each of the alternative
physical query plans.
• Estimate the selectivity factor and output cardinality of each predicate
• Estimate the cost of each operator

Run the plan with lowest estimated overall cost

Query Optimization:
The Main Steps

�

2

1

3

4

�

�

Selectivity Estimation
• Task of estimating how many rows will satisfy a predicate

such as Movies.MID=932

• Plan quality is highly dependent on quality of the
estimates that the query optimizer makes

24

0

1

2

3

4

5

• Histograms are the standard
technique used to estimate
selectivity factors for
predicates on a single table

• Many different flavors:
o Equi-Width
o Equi-Height
o Max-Diff
o …

5

52

83

6
10

157

125

17

55

37

56

38

19

48

56

83

43
37

5 7

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Histogram Motivation

25

of Reviews for each customer
(total of 939 rows)

Customer ID (CID) values in Reviews Table

Some examples:

#1) Predicate: CID = 9
Actual Sel. Factor = 55/939 = .059

#2) Predicate: 2 <= CID <= 3
Actual Sel. Factor = 135/939 = .144

In general, there is not enough

space in the catalogs to store

summary statistics for each

distinct attribute value

The solution: histograms

Equi-Width Histogram Example

26

CID Values

Count

Count

1-4 17-2013-169-125-8

Equi-width histogram

Yikes! 8X error!!

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

146

309

186
206

92

0

50

100

150

200

250

300

350

All buckets cover roughly the
same key range

Example #1: Predicate: CID = 9
Actual Sel. Factor = 55/939= .059
Estimated Sel. Factor = (186/4)/939 = .050

Example #2: Predicate: CID = 5
Actual Sel. Factor = 10/939 = .011
Estimated Sel. Factor = (309/4)/993 =.082

156 157
142 148

161
175

0

50

100

150

200

Equi-Height Histograms

27

Count

Count

Equi-height histogram

Divide ranges so that all
buckets contain roughly the

same number of values

1-5 16-2012-159-117-86

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example #2: Predicate: CID = 6
Actual Sel. Factor = 157/939 = .167
Estimated Sel. Factor = (157/1)/993 = .167

Example #2: Predicate: CID = 6
Actual Sel. Factor = 157/939 = .167
Estimated Sel. Factor = (309/4)/993 = .082

Example #1: Predicate: CID = 5
Actual Sel. Factor = 10/939 = .011
Estimated Sel. Factor = (309/4)/993 =.082

Example #1: Predicate: CID = 5
Actual Sel. Factor = 10/939 = .011
Estimated Sel. Factor = (156/5)/993 = .033

Equi-width vs. Equi-Height

28

1-4 17-2013-169-125-8

Equi-width

Equi-height

156 157
142 148

161
175

0

50

100

150

200

146

309

186
206

92

0

50

100

150

200

250

300

350

1-5 16-2012-159-117-86

Histogram Summary
• Histograms are a critical tool for estimating

selectivity factors for selection predicates

29

Errors still occur, however!

• Other statistics stored by the DBMS for each
table include # of rows, # of pages, …

Enumerate logically equivalent plans by applying
equivalence rules

For each logically equivalent plan, enumerate all
alternative physical query plans

Estimate the cost of each of the alternative
physical query plans.
• Estimate the selectivity factor and output cardinality of each predicate
• Estimate the cost of each operator

Run the plan with lowest estimated overall cost

Query Optimization:
The Main Steps

�

2

1

3

4

�

�

Estimating Costs
• Two key costs that the optimizer

considers:
o I/O time – cost of reading pages from mass

storage
o CPU time – cost of applying predicates and

operating on tuples in memory

• Actual values are highly dependent on
CPU and I/O subsystem on which the
query will be run
o Further complicating the job of the query

optimizer

• For a parallel database system such
as SQL DW, the cost of
redistributing/shuffling rows must also
be considered

31

vs.

An Example
• Query:

o SELECT Avg(Rating)
FROM Reviews
WHERE MID = 932

• Two physical query plans:

32

Reviews
Date CID MID Rating

Plan #1

Avg_agg
[Cnt, Sum]

Sequential
Scan

Reviews

Filter
MID = 932

Avg_agg
[Cnt, Sum]

Index Lookup
MID = 932

MID
Index

Reviews

Plan #2

Which plan is
cheaper ???Co

st
 X

Cost Y

Plan #1

33

Avg_agg
[Cnt, Sum]

Scan

Reviews

Filter
MID = 932

• Filter is applied to 10M
rows
• The optimizer
estimates that 100 rows
will satisfy the predicate

• Table is 100K pages
with 100 rows/page
• Sorted on date

• Average computation
is applied to 100 rows

• Reviews is scanned sequentially at
100 MB/second

• I/O time of scan is 8 seconds

• At 0.1 microseconds/row, filter
consumes 1 second of CPU time

• At 0.1 microseconds/row, avg
consumes .00001 seconds of CPU
time

Optimizer estimates total
execution time of 9 secondsCost of

Plan #1

Plan #2

34

Avg_agg
[Cnt, Sum]

Index Lookup
MID = 932

MID
Index

Reviews

• 100 rows are estimated
to satisfy the predicate

• Average computation is
applied to 100 rows

• At 0.1 microseconds/row,
average consumes .00001
seconds of CPU time

• 100 rows are retrieved using the
MID index

• Since table is sorted on date field
(and not MID field), each I/O
requires a random disk I/O –
about .003 seconds per disk I/O

• I/O time will be .3 seconds

Optimizer estimates total
execution time of 0.3 seconds

The estimate for Plan #1 was 9 seconds,
so Plan #2 is clearly the better choice

Cost of

Plan #2

But …
• What if the estimate of the number of rows that

satisfy the predicate MID = 932 is WRONG?
o E.g. 10,000 rows instead of 100 rows

35

0.01

0.1

1

10

100

1000

10 100 1,000 10,000 100,000

Ti
m

e
(#

se
c)

of rows
Sequential Scan Non-Clustered Index

Non-clustered
Index is better

here

Sequential
scan is

better here

Estimating Join Costs
• Three basic join methods:

o Nested-loops join
o Sort-merge join
o Hash-join

• Very different performance
characteristics

• Critical for optimizer to carefully
pick which method to use when

36

Join

SelectC.City = “NY” Select R.Rating > 7

JoinC.CID = R.CID

R.MID = M.MID

Customers Reviews

ProjectM.Title, M.Director

Movies

Sort-Merge Join Algorithm

Sort Reviews on MID column
(unless already sorted)

Sort Movies on MID column
(unless already sorted)

“Merge” two sorted tables:
Scan each table sequential in tandem
{

For current row r of Reviews
For current row m of Movies
if r.MID = m.MID produce output row
Advance r and m cursors

}

37

Cost = |R| + |M| I/Os

Merge
Join

Sort Sort

Reviews
(|R| pages)

Movies
(|M| pages)

Reviews.MID =
Movies.MID Cost = 4 * |M| I/Os

Total I/O cost = 5*|R| + 5*|M| I/Os

Cost = 4 * |R| I/Os

Main Idea: Sort R and M on the join column (MID), then scan
them to do a ``merge’’ (on join column), and output result tuples.

Nested-Loops Join
For each page Ri, 1≤ i ≤ |R|, of Reviews
{

Read page Ri from disk
For each Mj, 1≤ j ≤ |M|, of Movies
{

Read page Mj from disk
For all rows r on page Ri
{

For all rows m on page Mj
{

if r.MID = m.MID produce output row
}

}
}

}

38

I/O Cost = |R| + |R| * |M|

Nested Loops
Join

Movies
(|M| pages)

Reviews
(|R| pages)

Reviews.MID =
Movies.MID

Main Idea: Scan R, and for each tuple in R probe tuples in M
(by scanning it). Output result tuples.

Main Idea: Scan R, and for each tuple in R probe tuples in M
(by probing its index). Output result tuples.

Index-Nested Loops
For each page Ri, 1≤ i ≤ |R|, of Reviews
{

Read page Ri from disk
For all rows r on page Ri
{

Use MID index on Movies
to fetch rows with MID attributes = r.MID
Form output row for each returned row

}
}

39

Movies
(|M| pages)

Nested Loops
Join

Reviews

Reviews.MID =
Movies.MID

Index Lookup
using r.MID

MID
Index

(|R| pages)
Sorted on date column

Cost = |R| + |R| * (||R||/|R|) * 2
• 2 I/Os: 1 index I/O + 1 movie I/O as
Reviews table is sorted on date column

• ||R|| is # of rows in R

• ||R||/|R| gives the average number of
rows of R per page

Notice that since Reviews is ordered on
the Date column (and not MID), so each
row of the Movies table retrieved incurs
two random disk I/Os:
• one to the index and
• one to the table

Estimating Result Cardinalities
• Consider the query

SELECT *
FROM Reviews
WHERE 7/1 < date < 7/31 AND rating > 9

• Assume Reviews has 1M rows
• Assume following selectivity factors:

40

Sel. Factor # of qualifying rows

7/1 < date < 7/31 0.1 100,000

Review > 9 0.01 10,000

• How many output rows will the query produce?
o If predicates are not correlated

• .1 * .01 * 1M = 1,000 rows
o If predicates are correlated could be as high as

• .1 * 1M = 100,000 rows

Why does this matter?

1

10

100

1000

10000

0.000001 0.00001 0.0001 0.001 0.01 0.1 1

Ti
m

e
(#

se
c)

Selectivity factor of predicate on Reviews table

Nested Loops Sort Merge Index NL

This is Why!
Assume that:
• Reviews table is 10,000 pages

with 80 rows/page
• Movies table is 2,000 pages
• The primary index on Movies is

on the MID column

41

Join R.MID = M.MID

Select

Reviews

Project

Movies
Rating > 9 and
7/1 < date < 7/31

The consequences of
incorrectly estimating the
selectivity of the predicate
on Reviews can be HUGE

INL N
L SM

Note that each join algorithm
has a region where it provides

the best performance

Multidimensional Histograms

• Used to capture correlation between attributes
• A 2-D example

42

0
50

100
150
200
250
300
350
400
450
500

151
198 229

152 156

303

314
361 392

315 319

466

191
238 269

192 196

343
211

258 289

212 216

363

97
144 175

98 102

249

1-
4

 5-
8

 9-
12

 1
3-

16
 1

7-
20

10-20 21-30 31-40 41-50 51-60 61-70

A Little Bit About Estimating
Join Cardinalities

• Question: Given a join of R and S, what is the range of possible
result sizes (in #of tuples)?

o Suppose the join is on a key for R and S
Students(sid, sname, did), Dorm(did,d.addr)

Select S.sid, D.address
From Students S, Dorms D
Where S.did = D.did

What is the cardinality?

43

A student can only live in at most 1 dorm:
• each S tuple can match with at most 1 D tuple
• cardinality (S join D) = cardinality of S

• General case: join on {A} (where {A} is key for neither)
o estimate each tuple r of R generates uniform number of matches in S

and each tuple s of S generates uniform number of matches in R, e.g.
SF = min(||R|| * ||S|| / NKeys(A,S),

||S|| * ||R|| / NKeys(A,R))

e.g., SELECT M.title, R.title
FROM Movies M, Reviews R
WHERE M.title = R.title

Movies: 100 tuples, 75 unique titles à 1.3 rows for each title
Reviews: 20 tuples, 10 unique titles à 2 rows for each title

Estimating Join Cardinality

= 100*20/10 = 200
= 20*100/75 = 26.6

Enumerate logically equivalent plans by applying
equivalence rules

For each logically equivalent plan, enumerate all
alternative physical query plans

Estimate the cost of each of the alternative
physical query plans.
• Estimate the selectivity factor and output cardinality of each predicate
• Estimate the cost of each operator

Run the plan with lowest estimated overall cost

Query Optimization:
The Main Steps

�

2

1

3

4

�

�

Enumerate

How big is the plan space
for a query involving N tables?

enumerate

It turns out that the answer depends
on the “shape” of the query

Two Common Query “Shapes”

46

A

B

Join

Join Join

Join

C

D

F

“Star” Join Queries

A B C D FJoin JoinJoin Join

“Chain” Join Queries

Number of logically
equivalent alternatives

of Tables Star Chain
2 2 2
4 48 40
5 384 224
6 3,840 1,344
8 645,120 54,912

10 18,579,450 2,489,344

In practice, “typical” queries fall somewhere
between these two extremes

Pruning the Plan Space
• Consider only left-deep query plans to reduce the search space

47

A B

C

Join

Join

Join

Join E

D

Left Deep
Join

Join

Join

Join

ED

A B C

Bushy

Star Join Queries Chain Join Queries
of Tables Bushy Left-Deep Bushy Left Deep

2 2 2 2 2
4 48 12 40 8
5 384 48 224 16
6 3,840 240 1,344 32
8 645,120 10,080 54,912 128

10 18,579,450 725,760 2,489,344 512

These are counts of logical
plans only!

With:

i) 3 join methods
ii) n joins in a query

There will be 3n physical
plans for each logical planExample:

For a left-deep, 8 table star join query there will be:

i) 10,080 different logical plans
ii) 22,044,960 different physical plans!!

Solution:
Use some form of dynamic programming

(either bottom up or top down)
to search the plan space heuristically

Sometimes these heuristics will
cause the best plan to be missed!!

• Optimization is performed in N passes (if N relations are joined):
o Pass 1: Find the best (lowest cost) 1-relation plan for each relation.

o Pass 2: Find the best way to join the result of each 1-relation plan (as the
outer/left table) to another relation (as the inner/right table) to generate
all 2-relation plans.

o Pass N: Find best way to join result of a (N-1)-relation plan (as outer) to the
N’th relation to generate all N-relation plans.

• At each pass, for each subset of relations, prune all plans except those
o Lowest cost plan overall, plus

o Lowest cost plan for each interesting order of the rows

• Order by, group by, aggregates etc. handled as the final step

Bottom-Up QO Using
Dynamic Programming

In spite of pruning plan space, this approach is
still exponential in the # of tables.

Interesting orders include
orders that facilitate the

execution of joins, aggregates,
and order by clauses

subsequently by the query

49

A

A

SS

A

IS

B

B

SS

C

C

SS

C

IS

D

D

SS

D

IS27 387313 42 9518 All single
relation plans

All tables

First, generate all single relation plans:

A

Select Join Join

C

Select

Join

D

B

Select

An Example:
Legend:

SS – sequential scan
IS – index scan

– cost5

Prune

50

B

SS 73

A

SS

A

IS 2713

D

SS42

C

IS 18 All single
relation plans
after pruning

Then, All Two Relation Plans

Two Relation Plans
Starting With A

51

B

SS 73

A

IS 27

A

SS13

D

SS42

C

IS 18

A

Select Join Join

C

Select

Join

D

B

Select

A

SS

B

SS

NLJ

A

IS

B

SS

NLJ

A

IS

B

SS

SMJ

A

SS

B

SS

SMJJoin

Select

A

B

A.a = B.a

1013 822315 293

Single
relation
plans

Prune

Let’s assume there are 2 alternative join methods for the QO to select from:
1. NLJ = Nested Loops Join
2. SMJ = Sort Merge Join

Two Relation Plans
Starting With B

52

Select

A

B

JoinA.A = B.a

B

SS

A

SS

NLJ

B

SS

A

SS

SMJ

B

SS

NLJ

A

IS

B

SS

SMJ

A

IS

Select

D

B

JoinB.b = D.b

Select

C

B

JoinB.C = C.c

B

SS

D

SS

NLJ

B

SS

D

SS

SMJ NLJ

B

SS

C

IS

B

SS

SMJ

C

IS

A

Select Join Join

C

Select

Join

D

B

Select

1013 315 756 293

1520 432 2321 932

Single
relation
plansB

SS 73

A

IS 27

A

SS13

D

SS42

C

IS 18

Prune

Two Relation Plans
Starting With C

53

Select

C

B

JoinB.C = C.c NLJ

B

SS

C

IS

B

SS

SMJ

C

IS

A

Select Join Join

C

Select

Join

D

B

Select

6520 932

Single
relation
plansB

SS 73

A

IS 27

A

SS13

D

SS42

C

IS 18

Prune

Two Relation Plans
Starting With D

54

Select

D

B

JoinB.b = D.b

D

SS

B

SS

NLJ

D

SS

B

SS

SMJ

A

Select Join Join

C

Select

Join

D

B

Select

1520 432

Single
relation
plansB

SS 73

A

IS 27

A

SS13

D

SS42

C

IS 18

Prune

Further Prune Two
Relation Plans

55

A

IS

B

SS

SMJ

D

SS

B

SS

SMJ
Pruned

two relation
plans

B

SS

SMJ

C

IS

B

SS

SMJ

A

IS

B

SS

D

SS

SMJ

B

SS

SMJ

C

IS

A

Select Join Join

C

Select

Join

D

B

Select

Next, All Three
Relation Plans

56

A

IS

B

SS

SMJ

Fully pruned two
relation plans

B

SS

SMJ

C

IS

B

SS

D

SS

SMJ

A

Select Join Join

C

Select

Join

D

B

Select

NLJ

C

IS

A

IS

B

SS

SMJ

SMJ

C

IS

A

IS

B

SS

SMJ

D

SS

NLJ

A

IS

B

SS

SMJ

D

SS

SMJ

A

IS

B

SS

SMJ

1) Consider the Two
Relation Plans That

Start With A

Next, All Three
Relation Plans

57

A

IS

B

SS

SMJ Fully pruned
two relation

plans
B

SS

SMJ

C

IS

B

SS

D

SS

SMJ

A

Select Join Join

C

Select

Join

D

B

Select

B

SS

D

SS

SMJ

A

SS

NLJ

B

SS

D

SS

SMJ

A

SS

SMJ

NLJ

A

IS

B

SS

D

SS

SMJ

SMJ

A

IS

B

SS

D

SS

SMJ

NLJ

C

IS

B

SS

D

SS

SMJ

SMJ

C

IS

B

SS

D

SS

SMJ

2) Consider the
Two Relation Plans
That Start With B

Next, All Three
Relation Plans

58

A

IS

B

SS

SMJ

Fully pruned two
relation plansB

SS

SMJ

C

IS

B

SS

D

SS

SMJ

A

Select Join Join

C

Select

Join

D

B

Select

B

SS

SMJ

C

IS

NLJ

A

IS

SMJ

A

IS

B

SS

SMJ

C

IS

D

SS

NLJ

C

IS

B

SS

SMJ

D

SS

SMJ

C

IS

B

SS

SMJ

3) Consider the Two
Relation Plans That

Start With C

You Have Now Seen the Theory
• But the reality is:

o Optimizer still pick bad plans too frequently for a variety of
reasons:

• Statistics can be missing, out-of-date, incorrect
• Cardinality estimates assume uniformly distributed values but

data values are skewed
• Attribute values are correlated with one another:

o Make = “Honda” and Model = “Accord”
• Cost estimates are based on formulas that do not take into

account the characteristics of the machine on which the query
will actually be run

o Regressions happen due hardware and software upgrades

59

What can be done to
improve the situation?

Opportunities for Improvement

• Develop tools that give us a better understanding
of what goes wrong

• Improve plan stability
• Use of feedback from the QE to the QO to

improve statistics and cost estimates

60

Towards a Better
Understanding of QO Behavior
• Picasso Project – Jayant Haritsa, IIT Bangalore

o Bing “Picasso Haritsa” to find the project’s web site

o Tool is available for SQL Server, Oracle, PostgreSQL, DB2, Sybase

• Simple but powerful idea:
• For a given query such as

SELECT * from A, B
WHERE A.a = B.b and

A.c <= constant-1 and
B.d <= constant-2

• Systematically vary constant-1 and constant-2
• Obtain query plan and estimated cost from the query optimizer

for each combination of input parameters
• Plot the results

61

Example: TPC-H Query 8

select
o_year,
sum(case

when nation = 'BRAZIL' then volume
else 0

end) / sum(volume)
from

(
select YEAR(O_ORDERDATE) as o_year,

L_EXTENDEDPRICE * (1 - L_DISCOUNT) as volume, n2.N_NAME as nation
from PART, SUPPLIER, LINEITEM, ORDERS, CUSTOMER, NATION n1, NATION n2, REGION

where
P_PARTKEY = L_PARTKEY and S_SUPPKEY = L_SUPPKEY
and L_ORDERKEY = O_ORDERKEY and O_CUSTKEY = C_CUSTKEY
and C_NATIONKEY = n1.N_NATIONKEY and n1.N_REGIONKEY = R_REGIONKEY
and R_NAME = 'AMERICA‘ and S_NATIONKEY = n2.N_NATIONKEY
and O_ORDERDATE between '1995-01-01' and '1996-12-31'
and P_TYPE = 'ECONOMY ANODIZED STEEL'
and S_ACCTBAL <= constant-1
and L_EXTENDEDPRICE <= constant-2

) as all_nations
group by o_year
order by o_year

Resulting Plan Space
• SQL Server 2008 R2

• A total of 90,000 queries
o 300 different values for both

L_ExtendedPrice and S_AcctBal
• 204 different plans!!

o Each distinct plan is assigned a unique
color

• Zooming in to the [0,20:0,40] region:

63

Key takeaway: If plan choice is so
sensitive to the constants used, it will
undoubtedly be sensitive to errors in
statistics and cardinality estimates L

Intuitively, this seems very bad!

• Recall this graph of join algorithm performance

• While the two “nested loops” algorithms are faster at
low selectivity factors, they are not as “stable”
across the entire range of selectivity factors

How Might We Do Better?

64

1

10

100

1000

10000

0.0
0000

1

0.0
0001

0.0
001

0.0
01

0.0
1 0.1 1

Ti
m

e
(#

se
c)

Selectivity factor of predicate on Reviews table

Nested Loops Sort Merge Index NL

Join R.MID = M.MID

Select

Reviews

Project

Movies

Rating > 9 and
7/1 < date < 7/31

INL N
L SM

“Reduced” Plan Diagrams

• Robustness is somehow tied to
the number of plans
o Fewer plans => more robust

plans
• For TPC-H query 8, it is

possible to use only 30 plans
(instead of 204) by picking more
robust plans that are slightly
slower (10% max, 2% avg)

• Since each plan covers a larger
region it will be less sensitive to
errors in estimating cardinalities
and costs

65

Reduced plan space
for TPC-H query 8

How Might We Do Better?
• At QO time, have the QO annotate compiled query plans with

statistics (e.g. expected cardinalities) and check operators

• At runtime, check operators collect the actual statistics and compare
actual vs. predicted

• Opens up a number of avenues for improving QO performance

Especially in the CLOUD!

INL

A

IS

B

SS

SMJ

C

IS

Check

Check

C

IS

Check

B

SS

SMJ A

IS

INL

66

QO In the Cloud
• What is different?

oOn prem, a DB vendor has essentially no
insight to how its product is used

o In the cloud, vendor knows
• Schema information (tables, indices, …)
• The hardware being used
• The complete query workload
• For each query, the optimized plan & its estimated

cost, the actually running cost, and the selectivity
of each operator

• Use this information to build an optimizer
that learns.

A Learning QO

68

OptimizerQuery

Statistics

Statistics
Tracker

Executor Database
Check

Check

C

IS

Check

B

SS

SMJ A

IS

INL

Catalogs
Observed StatsOriginal

& Observed

Optimization of subsequent queries
benefits from the observed statistics and

operator costs

Query Plan

Observed Costs

Key Points To Remember
For The Quiz

• Query optimization is
harder than rocket science
o The other components are trivial

in comparison
• Three key phases of QO

o Enumeration of logical plan
space

o Enumeration of alternative
physical plans

o Selectivity estimation and costing
• The QO team of every DB

vendor lives in fear of
regressions
o How exactly do you expect them

to make forward progress?

