SQL Query Optimization:
Why Is It So Hard To Get Right?

David J. DeWitt
MIT

Download slides and donate to a great cause:
BrentOzar.com/go/dewitt

How About a Quiz to Start!

* Who painted this picture?
o Mondrian?
o Picasso?
o Ingres?

 Actually it was the SQL
Server query optimizer!!

o Plan space for TPC-H query 8
as the parameter values for
Acct-Bal and ExtendedPrice
are varied

o Each color represents a
different query plan

o Yikes!

Anonymous Quote

The Role of the Query Optimizer

(100,000 ft view)
G
sQL Magic) Awesome
Statement ~ Happens) Query Plan

Query Optimizer

What's the Magic?

Consider Query 8 of the
TPC-H benchmark:

Select o_year,
sum (case A very big haystack to
when nation = 'BRAZIL'SIRCEETIo I [eRIITIIe]y
else 0

end) / sum(volume)

| Should not take hours |
or days to pick a plan!

FLON There about 22 million
alternative ways of executing

(- this query!

{EY = R_REGIONKEY

"IONKEY

2-31¢
The QO must select a plan that
runs in seconds or minutes, not

days or weeks!

Plan 1 Plan 2 Plan3 Plan 4 Plan 5

Some Historical Background

« Cost-based query optimization was
invented by Pat Selinger as part of the

BM System R project in the late 1970s @W@@@m @

(System R became DB2)

 Remains the hardest part of building a
DBMS 30+ years later

o Progress is hindered by fear of regressions
o Fartoo frequently the QO picks an inefficient plan

 Situation further complicated by

advances in hardware and the rest of the Huge!
DBMS software 10X L)
o Hardware is 1000X bigger and faster W Gz
o DB software is 10X faster 1000X Software
o Queries over huge amounts of data are possible IF %
the QO picks the right plan Harcuens

More Precisely:
The Role of the Query Optimizer

Transform SQL queries into an efficient execution plan

Database System
Query
Query I Execution
Optlmlzer Engine

Physical
operator tree

SQL Query > Parser

Logical
operator tree

Logical operators: what they do Physical operators: how they do it
e.g., union, selection, project, e.g., nested loop join, sort-merge
o join, grouping join, hash join, index join o8

A First Example

SELECT

Average (Rating)
FROM Reviews
WHERE MID = 932

Reviews

Query

=> Parser |——> Ql.‘e'.'y —>1 Execution
/ Optimizer \ :

) Engine

Avg (Rating)
Select)
MID = 93

| Reviews I

Logical
/X /SS

operator tree | Reviews I —

Query Plan #1 Query Plan #2

Index Lookup
MID = 932

MID
Index

Filter
ID =93

®9

Query Plan #1

Avg_agg -

" [Cnt, Sum
Filter \

\« MID =932

‘ Reviews I

Plan starts by scanning the entire

Reviews table

o # of disk I/Os will be equal to the # of pages
in the Reviews table

o 1/Os will be sequential. Each I/O will require
about 0.1 milliseconds (0.0001 seconds)

Filter predicate "MID = 932" is
applied to all rows

Only rows that satisfy the
predicate are passed on to the
average computation

®10

Query Plan #2

» MID index is used to retrieve only
those rows whose MID field
(attribute) is equal to 932

o Since index is not “clustered”, about one
disk I/O will be performed for each row

o Each disk I/O will require a random seek
and will take about 3 milliseconds (ms)

\

* Retrieved rows will be passed to
frer— the average computation

Which Plan Will be Faster?

< | Rewews I

Query Plan #1

Query optimizer must pick between the two
plans by estimating the cost of each

To estimate the cost of a plan, the QO must:

o Estimate the selectivity of the predicate
MID=932

o Calculate the cost of both plans in terms
of CPU time and I/O time

The QO uses statistics about each table to
make these estimates

The “best” plan depends on how many
reviews there are for movie with MID = 932

\ay many re views for the movie
[yith MID = 932 will there be?

®12

A Slightly More Complex Query

« Consider the query: SELECT *
FROM Reviews

WHERE 7/1< date < 7/31 AND
* Optimizer might first enumerate rating > 9
three physical plans: weeens, T,

Cost = 100 :' Cost =11
seconds seconds

Cost =25

seconds

Filter ¥ Filter Filter SF=.10
Rating > 9 SF = ~0_§ Rating > 9 1 < Date < 7/3 =
Filter . Index Lookup
SF=.10 |7/1<Date>7/31 SF=.01
Sequential
Scan Rating
Index

. Then, calculate total cost
. * Finally, pick the plan with the lowest cost 13

Query Optimization:
The Main Steps

— Enumerate logically equivalent plans by applying
/n equivalence rules

=7 For each logically equivalent plan, enumerate all
n ~7 alternative physical query plans

B F Estimate the cost of each of the alternative
physical query plans

n % Run the plan with lowest estimated overall
cost

Equivalence Rules

Select and join operators
commute with each other

-8 ©® — @

I . . .
: Reviews | Customersl | Customersl Reviews
Customers | Customersl i |—| |—|

00

Join operators are

@ associative @
Cuoin) | Movies |) [customers] (Join)
| Customersl | Reviewsl | ReviewsI | Moviesl

° ®15

Equivalence Rules (cont.)

Select operator
distributes over joins @
@ ‘ @ | Rewewsl
Customers | Rewewsl Customers

Project
[Name]

Project
CID, Name

| Customers I

" ®16

Project operators

cascade
Project
[Name]

Customers

Example of Equivalent Logical Plans

SELECT M.Title, M.Director
FROM Mov:l.es M, Reviews R, Customers C

Find titles and director names of
movies with a rating > 7 from
customers residing in NYC

Earnings

|Customers| |MI M’l ReviewsI

Date| CID MID Rating
7/3| 11 2 8
7/3| 5 2 4

Five Logically “Equivalent” Plans

The “original” plan

Selects distribute
over joins rule

| Customersl | Reviewsl

| Customersl | Reviewsl
Customers Revi
o I—I le Selects commute rule °18

rule

Join commutativity

@ | Moviesl | Customersl

| Revi:awsl | Moviesl

o) ¢
(Jon)

| Customers I

Select

| Revi:awsl M‘

| Customers I

®19

9 Logically Equivalent Plans,
In Total

= All 9 logical plans will produce the same result

= For each of these 9 plans there is a large number of
alternatlve phyS|caI plans that the optlmlzer can choose from

4

\

\ I/ 4 - /,

\] /7

7 Y 1 U
L | Reviews ' | Movies ' ! 1 Y ®20
\

1 \ /
1 \ '/

Query Optimization:
The Main Steps

— Enumerate logically equivalent plans by applying
‘/n equivalence rules

/ =7 For each logically equivalent plan, enumerate all
n ~7 alternative physical query plans

B F Estimate the cost of each of the alternative
physical query plans

n % Run the plan with lowest estimated overall
cost

Physical Plan Example

« Assume that the optimizer has:
o Three join strategies that it can select from:
* nested loops (NL), sort-merge join (SMJ), and hash join (HJ)
o Two selection strategies:
« sequential scan (SS) and index scan (IS)

« Consider JUST ONE of the 9 logical plans

* There are actually 36 possible physical alternatives for this single logical plan.
(I was too lazy to draw pictures of all 36).

« With 9 equivalent logical plans, there are 324 = (9 * 36) physical plans that the
optimizer must enumerate and cost as part of the search for the best
- execution plan for the query

And this was a VERY simple query!

| « Later we will look at how dynamic programming is used to explore the space
of logical and physical plans w/o enumerating the entire plan space

Query Optimization:
The Main Steps

— Enumerate logically equivalent plans by applying
/II g equivalence rules

/ =7 For each logically equivalent plan, enumerate all
n ~7 alternative physical query plans

./B F Estimate the cost of each of the alternative
physical query plans.

» Estimate the selectivity factor and output cardinality of each predicate
» Estimate the cost of each operator

4 3:} Run the plan with lowest estimated overall cost

Selectivity Estimation

Task of estimating how many rows will satisfy a predicate
such as Movies.MID=932

Plan quality is highly dependent on quality of the
estimates that the query optimizer makes

Histograms are the standard
technique used to estimate
selectivity factors for
predicates on a single table

Many different flavors:
o Equi-Width

o Equi-Height

o Max-Diff

E ...

®24

180
160
140
120
100
80
60
40
20

Histogram Motivation

of Reviews forvfach customer
(total © @ ows)

157

Some examples:

#1) Predicate: CID = 9

Actual Sel. Factor = 55/939 = .059
]

#2) Predicate: 2 <= CID <5 3
Actual Sel. Factor = 135/939 = .144
|

Customer ID (CID) values in Reviews Table

In general, there is not enough
space in the catalogs to store
summary statistics for each
distinct attribute value

The solution: histograms

®25

Equi-Width Histogram Example

All buckets cover roughly the

Count same key range
180 -

160
140
120
100

Example #2: Predicate: CID = 5

80
60
40 Actual Sel. Factor = 10/939 = .011
20 Estimated Sel. Factor = (309/4)/993 =.082
0
2 3 4 5 6 11 1213141516 17 18 19 20 CID Values
Count .
350 Yikes! 8X errorl!!

300
250
(73 206
200 (186,
150
100 92
0

9-12 13-16 17-20

" EqUI-WIdth histogram ®24

Equi-Height Histograms

Count

180
160

140

120

100

Divide ranges so that all
buckets contain roughly the
same number of values

80 '

60 1

40 1 1

20 ' :

0 A i i !
1234567 891011121314151617 1819 20

Count
200

156 157 161
142 148

175

150

100

50

0 -

1-5 6 7-8 9-11 12-15 16-20

Equi-height histogram

®27

Equi-width vs. Equi-Height

Equi-width
350
309

300
250
200
150 Example #1: Predicate: CID =5
100 Actual Sel. Factor = 10/939 = .011
. i: Estimated Sel. Factor = (309/4)/993 =.082

0

13-16 17-20
Equi-height

200

©
161
156 148

150

Example #1: Predicate: CID =5
Actual Sel. Factor = 10/939 = .011
Estimated Sel. Factor = (156/5)/993 = .033

100

50

7-8 9-11 12-15 16-20

® ®28

Histogram Summary

* Histograms are a critical tool for estimating
selectivity factors for selection predicates

Errors still occur, however!

» Other statistics stored by the DBMS for each
table include # of rows, # of pages, ...

(e 29

Query Optimization:
The Main Steps

— Enumerate logically equivalent plans by applying
/II g equivalence rules

/ =7 For each logically equivalent plan, enumerate all
n ~7 alternative physical query plans

./B F Estimate the cost of each of the alternative
physical query plans.

« Estimate the selectivity factor and output cardinality of each predicate
» Estimate the cost of each operator

4 3:} Run the plan with lowest estimated overall cost

Estimating Costs

* Two key costs that the optimizer
considers:

o I/O time — cost of reading pages from mass ‘ U
storage +

o CPU time — cost of applying predicates and
operating on tuples in memory

* Actual values are highly dependent o
CPU and 1I/O subsystem on which the a VS. ‘

query will be run -
o Further complicating the job of the query
optimizer
S
* For a parallel database system such - al
as SQL DW, the cost of J\!H\

redistributing/shuffling rows must also
be considered

° ®31]

Reviews

An Example

Query: T
o SELECT Avg (Rating) ! ! I
FROM Reviews
WHERE MID = 932

Two physical query plans:

Which plan is
cheaper ?7??

A G ANN
|_Reviews |

Plan #1 Plan #2
®32

Plan

#1

Optimizer estimates total
execution time of 9 seconds

» Average computation
is applied to 100 rows

Avg_agg
 [Cnt, Sum

« At 0.1 microseconds/row, avg

consumes .00001 seconds of CPU

time

Filter
MID = 932

* Filter is applied to 10M
rows

* The optimizer
estimates that 100 rows
will satisfy the predicate

At 0.1 microseconds/row, filter
consumes 1 second of CPU time

* Table is 100K pages
with 100 rows/page
» Sorted on date

* Reviews is scanned sequentially at

100 MB/second
e |/O time of scan is 8 seconds

‘ Reviews I

-

®33

Optimizer estimates total
execution time of 0.3 seconds

» Average computation is
applied to 100 rows

At 0.1 microseconds/row,
average consumes .00001
seconds of CPU time

* 100 rows are estimated
to satisfy the predicate

Reviews

* 100 rows are retrieved using the
MID index

» Since table is sorted on date field
(and not MID field), each 1/O
requires a random disk /O —
about .003 seconds per disk 1/O

 |/O time will be .3 seconds

The estimate for Plan #1 was 9 seconds,
so Plan #2 is clearly the better choice

® 34

But...

What if the estimate of the number of rows that
satisfy the predicate MID 932 is WRONG?
o E.g. 10,000 rows instead of 100 rows

1000 Sequential
scan is
better here /‘
,31 00 -
210 = /z/‘/‘/ u
;— Non-clustered 4
1 — Index is better I
i§0 1 e ./ !
5 1 f
e |
0.01 : ,
10 100 1,000 10,000 100,000
of rows

#-Sequential Scan “4Non-Clustered Index

®35

Estimating Join Costs

* Three basic join methods:
o 18 Nested-loops join
0 BIEI Sort-merge join
@ ag Hash-join

M.Title, M.Director

R.MID = M.MID

C.CID=R.CID (

C.City = “NY” @

[Customers | [Reviews | Critical for optimizer to carefully
pick which method to use when

* Very different performance
) R.Rating >7 characteristics

®36

Sort-Merge Join Algorithm

Reviews.MID =
Movies.MID

Reviews
(IRl pages)

Movies
(IM| pages)

Sort Reviews on MID column
(unless already sorted)

Sort Movies on MID column
(unless already sorted)

“Merge” two sorted tables:

Scan each table sequential in tandem

{

For current row r of Reviews
For current row m of Movies

if rMID = m.MID produce output row

Advance r and m cursors

}

1

Cost =4 *|R| I/Os

|

Cost= 4*|M| 1/Os

Cost = |R| + |[M| I/Os

Total I/0 cost = 5*|R| + 5*|M| I/Os

Main Idea: Sort R and M on the join column (MID), then scan
them to do a " "merge” (on join column), and output result tuples.

®37

Nested-Loops Join

For each page R, 1<i < |R|, of Reviews

Reviews.MID =
Movies.MID

Reviews
(IRl pages)

Nested Loops
Join

Movies
(IM| pages)

{

Read page R; from disk
For each M, 1< j < |M|, of Movies

{
Read page M, from disk

For all rows ron page R;

For all rows m on page M,;

if rMID = m.MID produce output row

}

/0 Cost = |R| + |R| * M|

Main Ildea: Scan £, and for each tuple in B probe tuples in I/

(by scanning it). Output result tuples.

®38

Reviews.MID =
Movies.MID

Index-Nested Loops

Nested Loops
Join

Index Lookup
using r.MID

«E

Reviews

Notice that since Reviews is ordered on
the Date column (and not MID), so each
row of the Movies table retrieved incurs
two random disk 1/Os:

« one to the index and

 one to the table

For each page R;, 1<i < |R|, of Reviews

{
Read page R; from disk
For all rows ron page R,

{
Use MID index on Movies
to fetch rows with MID attributes = r.MID
Form output row for each returned row

}

}

Cost =|R| +|R| * (|IR]|/|R]) * 2

*«21/0s: 1index I/O + 1 movie I/O as
Reviews table is sorted on date column

* ||R|| is # of rows in R

* ||R||/|R| gives the average number of
rows of R per page

Main Ildea: Scan £, and for each tuple in A probe tuples in I/
(by probing its index). Output result tuples.

® 39

Estimating Result Cardinalities

« Consider the query

EELECT *
FROM Reviews

WHERE 7/1 < date < 7/31 AND rating > 9

e Assume Reviews has 1M rows

« Assume following selectivity factors:

Sel. Factor # of qualifying rows

71 < date < 7/31

0.1

100,000

Review > 9

0.01

10,000

 How many output rows will the query produce?
o If predicates are not correlated
e 1*.01*1M =1,000 rows
o If predicates are correlated could be as high as
« 1*1M=100,000 rows

Why does this matter?

®40

This is Why!

Assume that:

* Reviews table is 10,000 pages
with 80 rows/page

Movies table is 2,000 pages

The primary index on Movies is
on the MID column

Rating > 9 and
7/1 < date < 7/31

Select

Reviews

10000
Note that each join algorithm

has a region where it provides

= W Wy \M the best performance
100 ——XI-N-L N 3 '
L e
// The consequences of

= / ~ incorrectly estimating the

.‘ '* % selectivity of the predicate

: | | on Reviews can be HUGE

0.000001 0.00001 0.0001 0.001 0.01 0.1 1
Selectivity factor of predicate on Reviews table

Time (#sec)

~<#—Nested Loops =#=Sort Merge =#—Index NL 041

Multidimensional Histograms

« Used to capture correlation between attributes
 A2-D example

) 042

A Little Bit About Estimating
Join Cardinalities

* Question: Given a join of R and S, what is the range of possible
result sizes (in #of tuples)?

o Suppose the joinisonakeyfor Rand S
Students(sid, sname, did), Dorm(did,d.addr)

Select S.sid, D.address
From Students S, Dorms D
Where S.did = D.did

What is the cardinality?

A student can only live in at most 1 dorm:
« each S tuple can match with at most 1 D tuple
« cardinality (S join D) = cardinality of S

o ©43

Estimating Join Cardinality

* General case: join on {A} (where {A} is key for neither)

o estimate each tuple r of R generates uniform number of matches in S
and each tuple s of S generates uniform number of matches in R, e.g.

SF =min(||R|| * ||S]| / NKeys(A,S), |=100%20/10 = 200
IS|| * |IR|| / NKeys(A,R)) [= 20*¥100/75 = 26.6

e.g., SELECT M.title, R.title
FROM Movies M, Reviews R
WHERE M.title = R.title

Movies: 100 tuples, 75 unique titles = 1.3 rows for each title
Reviews: 20 tuples, 10 unique titles - 2 rows for each title

Query Optimization:
The Main Steps

m logically equivalent plans by applying
/B [xe

equivalence rules

z=~ For each logically equivalent plan, B uEeIEE all
vl =% . .
alternative physical query plans

+s;m @ Howbig i§ the !olan space
|for a query involving N tables?

» Estimate the cost of each operator

It turns out that the answer depends
on the “shape” of the query |5/ cost

Two Common Query “Shapes”

“Star”’ Join Queries

Number of logically
equivalent alternatives

of Tables Star Chain
2 2 2
—_——— 4 —48 — ’
---------- et @ AM
6 3840 |
8 _}~ 645,120 54,912
_ .40 18,579,450 | 2,489,344

-

“Chain” Join Queries .-~
AHe>-EH@He e

In practice, “typical” queries fall somewhere

between these two extremes
° 044

Pruning the Plan Space

« Consider only left-deep query plans to reduce the search space

< N

Solution:

Use some form of dynamic programming
(either bottom up or top down)
to search the plan space heuristically

Sometimes these heuristics will
cause the best plan to be missed!!

[1)

£4,U949, 90U UITeTCriIl Priysicdl pidris::

132

J’U‘I'\J

8

645,120

10

18,579,450

-
e T\

10,080
725,760

-I-’J‘l"l'

2,489,344

128
512

®47

Bottom-Up QO Using
Dynamic Programming

Optimization is performed in N passes (if N relations are joined):
o Pass 1: Find the best (lowest cost) 1-relation plan for each relation.

o Pass 2: Find the best way to joi Interesting orders include
outer/left table) to another relatio orders that facilitate the

all 2-relation plans. . o
BEL - Find best o o re: execution of joins, aggregates,
o ass IN. rin esSt way 10 join re and order by clauses

N’th relation to generate all N-rels

At each pass, for each subset of re —————
o Lowest cost plan overall, plus
o Lowest cost plan for each interesting order of the rows

Order by, group by, aggregates etc. handled as the final step

In spite of pruning plan space, this approach is
still exponential in the # of tables.

subsequently by the query

An Example:

Legend:

! SS - sequential scan
: IS -index scan

' 5 — cost

All tables

All single
relation plans

o 049

Then, All Two Relation Plans

13 [ss 4§n ss| 73

48518

42

[ss |

o]

All single
relation plans
after pruning

®50

13

4&27 S

Two Relation Plans
Starting With A

73

18 a2 [ss] Single
relation
= D | plans

SS

1013 315 822 293

Prune

Let’'s assume there are 2 alternative join methods for the QO to select from:

1. NLJ = Nested Loops Join
2. SMJ = Sort Merge Join ®5]

Two Relation Plans
Starting With B

13 [ss 435 27

73

42

A.A=B.a Join

B Selec

1520

432

B.C=C.c

B

Prune

Join

Selec

Cc

Single
relation
plans

Two Relation Plans
Starting With C

13 | SS 27 SS | 73 18 a2 [ss] Single
relation

- A B c B plans

®53

Two Relation Plans
Starting With D

13 [ss & 27 ss | 73 & 18 22 [ss] single
| | relation

A B -
A C —I plans

54

Further Prune Two
Relation Plans

Pruned
two relation

plans

® 55

~ Next, All Three

1) Consider the Two

Relation Plans That bn Plans

Start With A

SS SS SS Fully pruned two
_l A relation plans

(o]

®56

Next, All Three
Rl r2Soumertre Lan S

That Start With B

@ @ @ Fully pruned
/ia\ LSS ss | |_ss | /a\ LSS two relation
L . : il L - plans

® 57

Next, All Three
Relathn 3) ConSIder the Two

Relation Plans That
Start With C

Fully pruned two
relation plans

C
C ® 58

You Have Now Seen the Theory

* But the reality is:

o Optimizer still pick bad plans too frequently for a variety of
reasons:

« Statistics can be missing, out-of-date, incorrect

« Cardinality estimates assume uniformly distributed values but
data values are skewed

o Attribute values are correlated with one another:
o Make = “Honda” and Model = “Accord”

« Cost estimates are based on formulas that do not take into
account the characteristics of the machine on which the query
will actually be run

o Regressions happen due hardware and software upgrades

? What can be done to
& t(improve the situation?

° ® 59

Opportunities for Improvement

* Develop tools that give us a better understanding
of what goes wrong

* Improve plan stability

» Use of feedback from the QE to the QO to
Improve statistics and cost estimates

o ® 40

Towards a Better
Understanding of QO Behavior

Picasso Project — Jayant Haritsa, |[IT Bangalore
o Bing “Picasso Haritsa” to find the project’s web site
o Tool is available for SQL Server, Oracle, PostgreSQL, DB2, Sybase

« Simple but powerful idea:

« For agiven query such as
SELECT * from A, B
WHERE A.a = B.b and
A.c <= constant-1 and
B.d <= constant-2
» Systematically vary constant-1 and constant-2

« Obtain query plan and estimated cost from the query optimizer
for each combination of input parameters

 Plot the results

041

Example: TPC-H Query 8

select
o_year,
sum (case
when nation = 'BRAZIL' then volume
else 0
end) / sum(volume)
from

select YEAR (O _ORDERDATE) as o_year,
L _EXTENDEDPRICE * (1 - L DISCOUNT) as volume, n2.N NAME as nation
from PART, SUPPLIER, LINEITEM, ORDERS, CUSTOMER, NATION nl, NATION n2, REGION
where
P PARTKEY = L PARTKEY and S_SUPPKEY = L SUPPKEY
and L ORDERKEY = O ORDERKEY and O _CUSTKEY = C_CUSTKEY
and C_NATIONKEY = nl.N NATIONKEY and nl.N REGIONKEY = R REGIONKEY
and R NAME = 'AMERICA' and S_NATIONKEY = n2.N NATIONKEY
and O_ORDERDATE between '1995-01-01' and '1996-12-31'
and P_TYPE = 'ECONOMY ANODIZED STEEL'
and S_ACCTBAL <= constant-1
and L EXTENDEDPRICE <= constant-2
) as all nations
group by o_year
order by o_year

Resulting Plan Space

100

80+

[0.0,100.0]@ 300

60+

40-

20

LINEITEM.L_EXTENDEDPRICE

0_ ~ ~

~

T T << | T
0 ~.20 40 9. 80
SUPRLIER.S_ACCTBAL [0.0,100°0i@ 300

~ ~

~ ~

~

Key takeaway: If plan choice is so

sensitive to the constants used, it will
undoubtedly be sensitive to errors in
statistics and cardinality estimates ®

Intuitively, this seems very bad!

SQL Server 2008 R2

A total of 90,000 queries

o 300 different values for both
L _ExtendedPrice and S_AcctBal

204 different plans!!

o [Each distinct plan is assigned a unique
color

Zooming in to the [0,20:0,40] region:

463

How Might We Do Better?

* Recall this graph of join algorithm performance

10000 .
< 1000 f A‘
3 N /
& 1 I ad
Rating > 9 and RMID = MMID & 100 _I'NL | L /L/—'
7/1 < date < 7/31 s 10
Select Movies 1 3
ST RN
Q Q \) @ Q
N S S . &
Reviews QQQ QQQ N N

Selectivity factor of predicate on Reviews table

-#-Nested Loops -#-Sort Merge —+-Index NL

« While the two “nested loops” algorithms are faster at
low selectivity factors, they are not as “stable”
across the entire range of selectivity factors

44

“Reduced” Plan Diagrams

Robustness is somehow tied to
the number of plans

o Fewer plans => more robust
plans
For TPC-H query 8, itis
possible to use only 30 plans
(instead of 204) by picking more
robust plans that are slightly
slower (10% max, 2% avg)

Since each plan covers a larger
region it will be less sensitive to
errors in estimating cardinalities
and costs

[0.0,100.0}@ 300

LINEITEML_EXTENDEDPRICE

100

80—

60

40—

20
—
0 -
[I I I I 1 |
0 20 40 60 80 100
SUPPLIER.S_ACCTBAL [0.0,100.0]@ 300

Reduced plan space
for TPC-H query 8

® 465

How Might We Do Better?

« At QO time, have the QO annotate compiled query plans with
statistics (e.g. expected cardinalities) and check operators

« At runtime, check operators collect the actual statistics and compare
actual vs. predicted

 Opens up a number of avenues for improving QO performance

Especially in the CLOUD!

o .66

QO In the Cloud

 \What is different?

o On prem, a DB vendor has essentially no
iInsight to how its product is used

o In the cloud, vendor knows
« Schema information (tables, indices, ...)
* The hardware being used
* The complete query workload

* For each query, the optimized plan & its estimated
cost, the actually running cost, and the selectivity
of each operator

» Use this information to build an optimizer
that learns.

A Learning QO

Query I

Catalogs

S
: Optimizer | Database
/_1\ ~ @
v
Statistics R
Original |- - Observed Stats |
& Observed

|

Statistics | -
Tracker

Optimization of subsequent queries
benefits from the observed statistics and
operator costs il

Key Points To Remember
For The Quiz

° /Query optimization is
harder than rocket science

o The other components are trivial
in comparison

| Three key phases of QO

o Enumeration of logical plan
space

o Enumeration of alternative
physical plans
o Selectivity estimation and costing
The QO team of every DB
vendor lives in fear of
regressions

o How exactly do you expect them
to make forward progress?

N

