
Lecture 16: Parallel and Distributed Databases

Architectural Capriccio with Jephthah and his Daughter, Dirck van Dalen, 1633

Recovery Recap
• What happens during crash:

§ Memory is reset
§ State on disk persists

• After a crash, recovery ensures:
§ Atomicity: partially finished xactions are rolled back
§ Durability: committed xactions are on stable storage (disk)

• Brings database into a transaction consistent state, where
committed transactions are fully reflected, and
uncommitted transactions are completely undone

ARIES/Logging Recap

• NO FORCE, STEAL logging

• Use write ahead logging protocol

• Must FORCE log on COMMIT

• Periodically take (lightweight) checkpoints

• Asynchronously flush disk pages (without logging)

Parallel & Distributed DBs Overview

• Parallel DBs: how to get multiple processors/machines to
execute different parts of a SQL query
§ Especially relevant for big, slow running queries

• Distributed DBs: what happens when these machines are
physically disjoint / fail independently
§ Especially relevant for transaction processing

Today!

Parallel DB Goal

• SQL, but faster by running on multiple processors

• What do we mean by faster?

𝑠𝑝𝑒𝑒𝑑 𝑢𝑝 =
𝑜𝑙𝑑 𝑡𝑖𝑚𝑒
𝑛𝑒𝑤 𝑡𝑖𝑚𝑒 on same problem,with N times more hardware

𝑠𝑐𝑎𝑙𝑒 𝑢𝑝 =
1𝑥 𝑙𝑎𝑟𝑔𝑒𝑟 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑜𝑛 1𝑥 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒
𝑁𝑥 𝑙𝑎𝑟𝑔𝑒𝑟 𝑝𝑟𝑜𝑏𝑒𝑙𝑚 𝑜𝑛 𝑁𝑥 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒

• Not necessarily the same: smaller problem may be harder to parallelize

DB Specific Metrics

• Transaction speedup: fixed set of txns, with 1 vs N machines

• Batch speedup: fixed sized DB, with 1 vs N machines

• Transaction scaleup: N times as many txns for N machines

• Batch scaleup : N times as big a query for N machines

Speedup Goal

• Linear?

Bad

Typical

GoodPossible?

Pe
rf

or
m

an
ce

 (e
.g

.,
TP

S,
 o

r s
ec

on
ds

)

Number of parallel units

Barriers to Linear Scaling

• Startup times
§ e.g., may take time to launch each parallel executor

• Interference
§ processors depend on some shared resource
§ E.g., input or output queue, or other data item

• Skew
§ workload not of equal size on each processor

• Almost all workloads will stop scaling at some point!

• What are some barriers in analytics and transactional workloads?

Properties of Parallelizable Workloads

• Provide linear speedup

• Usually can be decomposed into small units that can be
executed independently
§ "embarrassingly parallel"

• As we will see, relational model generally provides this

Parallel Architectures

• Several different ways we might parallelize databases

• Multiple cores?

• Multiple machines?

Types of
Parallelism –
Shared Everything

• Conventional multicore computer
•Multiple threads for execution

• Each core can access any record
• Difficult to scale beyond a few

cores

•Not fault tolerant

CPU
Core 1

CPU
Core n…

Bus

Memory

Disk

Types of
Parallelism –
Shared Disk

• Several machines
• Each can access any record on

disk
• Requires complex disk-oriented

coherency protocols
• Relies on reliable disk array for

fault tolerance
• Popularized by Oracle, not

common otherwise

CPU
Core 1

CPU
Core n

…Bus

Memory

Disk Array

Bus

Memory

Types of
Parallelism –
Shared Nothing

• Several machines
• Data partitioned across machines

§ Each machine responsible for
processing & modifying its data

• Scales very well
§ Easy to add new machines &

partitions

• Fault tolerance via replication

CPU
Core 1

CPU
Core n

…
Bus

Memory

Disk 1

Bus

Memory

Disk n

High speed interconnect (e.g., 10GB Ethernet, Infiniband, …)

Types of Parallelism –
Shared Nothing on
Distributed File System

• Decouples scaling of storage
from scaling of processing
• Storage layer implements its

own fault tolerance
• Logically data is still partitioned

and operated on by different
processors
• Has become common with rise

of cloud computing
§ E.g., SnowFlake, MapReduce, …

CPU
Core 1

CPU
Core n

…Bus

Memory

Bus

Memory

Distributed File System (E.g., HDFS, S3)

Disk 1 Disk m…
Part 1 Part i Part j Part n… …

Tradeoffs Between Partitioning Methods

Pros Cons

Shared Memory Easy to build Performance / scalability

No changes to concurrency
control / recovery

Poor fault tolerance

Shared Disk Better scalability Complex cache coherency

Better fault tolerance Poor scalability

Relies on expensive disk array

Shared Nothing (partitioned data) Cost New concurrency
control/recovery

Scalability New executor

Fault tolerance

Parallel Query Processing

• Three main ways to parallelize
1. Run multiple queries, each on a different thread
2. Run operators in different threads (“pipeline”)

3. Partition data, process each partition in a different processor

A filter sort

Processor 1 Processor 2

Processor 1

A1 filter sortProcessor 2

A2 filter sort

merge

Runs on 1 of
the processors

Pipelined Parallelism

• Only works when each pipeline stage is about the same speed

• Limited parallelism as most pipelines are short

• Inputs to stage i+1 depend on stage i

• If stage i blocks (i.e., sorts), breaks pipeline

• As a result, partitioned parallelism is the primary way database
systems scale

A filter sort

Processor 1 Processor 2

Partitioning Strategies
• Random / Round Robin

§ Evenly distributes data (no skew)
§ Requires us to repartition for joins

• Range partitioning
§ Allows us to perform joins without repartitioning, when tables are

partitioned on join attributes
§ Subject to skew

• Hash partitioning

§ Allows us to perform joins without repartitioning, when tables are
partitioned on join attributes

§ Only subject to skew when there are many duplicate values

Round Robin Partitioning

Partition 1

Partition 2

Partition n

…

Table

Advantages:

Each partition has
the same number of
records

Disadvantage:

No ability to push
down predicates to
filter out some
partitions

Range Partitioning

Table

Attribute A Partition 1

A < 10

Partition 2
10 < A < 17

…

Partition n

…

98 < A < 109

Advantages:

Easy to push down
predicates (on
partitioning
attribute)

Disadvantage:

Difficult to ensure
equal sized
partitions,
particularly in the
face of inserts and
skewed data

Hash Partitioning

Partition 1

Partition 2

Partition n

…

Table

H(T.A) = 1

H(T.A) = 2

H(T.A) = n

H(T.A) is a hash function mapping from
each record in T to its partition, based
on value of attribute A.

Advantages:

Each partition has
about the same
number of records,
unless one value is
very frequent

Possible to push
down equality
predicates on
partitioning attribute

Disadvantages:

Can’t push down
range predicates

Parallel Operations in a Partitioned DB

• SELECT
§ Trivial to “push down” to each worker
§ Depending on partitioning attribute, may be able to skip some partitions

• PROJECT
§ Assuming all columns are on each node, nothing to be done

• JOIN
§ Depending on data partitioning, may be able to process partitions individually

and then merge, or may need to repartition

• AGGREGATE
§ Partially aggregate data at each node, merge final result

Join Strategies

• If tables are partitioned on same attribute, just run local joins
§Also, if one table is replicated, no need to join

•Otherwise, several options:
1. Collect all tables at one node

o Inferior except in extreme cases, i.e., very small tables

2. Re-partition one or both tables – “shuffle join”
oDepending on initial partitioning

3. Replicate (smaller) table on all nodes

Table Pre-Partitioned on Join Attribute
• Suppose we have hashed A on a, using hash function F to get F(A.a)
à 1..n (n = # machines)

• Also hash B on b using same F

• Query: SELECT * FROM A,B WHERE A.a = B.b

A2 B2

⨝

A1 B1

⨝

An Bn

⨝

Processor 1 Processor 2 Processor n

…

merge

A1 B1

Processor 1

split

A2 B2

Processor 2

split

An Bn

Processor n

split

Repartitioning Example – “Shuffle Join”
• Suppose A pre-partitioned on a, but B needs to be repartitioned

A1 B1

Processor 1

split

A2 B2

Processor 2

split

An Bn

Processor n

split

A1 B1

Processor 1

A2 B2

Processor 2

An Bn

Processor n

B1 B2 Bn

⨝ ⨝ ⨝

merge Generalizes to the case of
repartitioning both tables

Repartitioning Example
• Suppose A pre-partitioned on a, but B needs to be repartitioned

A1 B1

Processor 1

split

A2 B2

Processor 2

split

An Bn

Processor n

split

A1 B1

Processor 1

A2 B2

Processor 2

An Bn

Processor n

B1 B2 Bn

⨝ ⨝ ⨝

merge Generalizes to the case of
repartitioning both tables

Repartitioning Example
• Suppose A pre-partitioned on a, but B needs to be repartitioned

Repartitioning Example
• Suppose A pre-partitioned on a, but B needs to be repartitioned

A1 B1

Processor 1

split

A2 B2

Processor 2

split

An Bn

Processor n

split

A1 B1

Processor 1

A2 B2

Processor 2

An Bn

Processor n

B1 B2 Bn

⨝ ⨝ ⨝

merge Each node sends and receives
(|B|/n) / n * (n-1) bytes

|B|/n/n

|B|/n

Each partition is
|B| / n records
Repartitioned
splits it into n new
chunks, sends n-1
of them

Repartitioning Both Tables

• Suppose both tables, A and B, need to be repartitioned

• Each node sends and receives

(|A|/n)/n * (n-1) + (|B|/n)/n * (n-1) bytes

Replication Example

A1 B1

Processor 1

Send B

A2 B2

Processor 2

Send B

An Bn

Processor n

Send B

A1 B1

Processor 1

A2 B2

Processor 2

An Bn

Processor n

B B B

⨝ ⨝ ⨝

merge |B| / n * (n-1) bytes sent & received
by each node

• Suppose we replicate B to all nodes

Replication vs Repartioning
• Replication requires each node to send smaller table to all other nodes

§ (|T| / n) * (n-1) bytes sent by each node
§ vs ((|T| / n) / n) * (n-1) to repartition one table

• When would replication be preferred over repartitioning for joins?
§ If size of smaller table < data sent to repartition one or both tables
§ Should also account for cost of join: will be higher with replicated table

• Example: |B| = 1 MB, |A|=100 MB, n=3

• Need to repartition A (B distributed on join attr)
§ Data to repartition A is |A|/3 / 3 * 2 = 22.2 MB per node

o Join .33 MB to 33 MB
§ Data to broadcast B is |B| = 1/3 * 2 = .66 MB

o Join 1 MB to 33 MB

Study Break 2

• Suppose we have two tables A and B, partitioned across 3 nodes

• |A| = 9 MB

• |B| = 90 MB

• Join is A.a = B.b
§ B is hash partitioned on b, A is not partitioned on a

• How much data does each node send if we:
1. Repartition A
2. Replicate A

Replication: (|T| / n) * (n-1) bytes sent by each node
Partitioning: ((|T| / n) / n) * (n-1) to repartition one table

9 / 3 * 2 = 6 MB

(9 / 3) / 3 * 2 = 2 MB

Additional Options for Joins

• Pre-replicated small tables
§ If space permits, can be a good option

• ”Semi-join”
§ send list of join attribute values in each partition of B to A,
§ then send list of matching tuples from A to B,
§ then compute join at B

• Good for selective joins of wide tables
§ Pre-filters A with join values that actually occur in B, rather than

sending all of B

Semi-join Example

A D E

3 f g

4 h i

A D E

1 j k

5 l m

A B C

1 x y

3 z a

A B C

2 b c

4 d e

T1
P1

T2
P1

T1
P2

T2
P2

Node 1 Node 2

A

1

5

A

3

4

1 x y

4 d e

A B C D E

1 x y J k

A B C D E

4 d e h i

3 z a f g
Total cost:

Each nodes sends & receives

(|join col| / n) / n * (n-1)

+

(f * |A| / n) / n * (n-1)

Where f is join selectivity

Aggregation

Processor 1

A1 filter aggProcessor 2

A2 filter agg

merge

Runs on 1 of
the processors

In general, each node will have data for the same groups

So merge will need to combine groups, e.g.:

MAX (MAX1, MAX2)
SUM (SUM1, SUM2)

What about average?
Maintain SUMs and COUNTs, combine in merge step

Generalized Parallel Aggregates

• Express aggregates as 3 functions:
§ INIT – create partial aggregate value
§ MERGE – combine 2 partial aggregates
§ FINAL – compute final aggregate

§ E.g., AVG:
o INIT(tuple) à (SUM=tuple.value, COUNT=1)
o MERGE (a1, a2) à (SUM=a1.SUM + a2.SUM, COUNT=a1.count+a2.count)
o FINAL(a) à a.SUM/a.COUNT

What does MERGE do?

• For aggregate queries, receives partial aggregates from each
processor, MERGEs and FINALizes them

• For non-aggregates, just UNIONs results

DB Parallel Processing vs General Parallelism
• Shared nothing partitioned parallelism is the dominant approach
• Hooray for the relational model!

§ Apps don't change when you parallelize system (physical data independence!).
§ Can tune, scale system without changing applications!
§ Can partition records arbitrarily, w/o synchronization

• Essentially no synchronization except setup & teardown
§ No barriers, cache coherence, etc.
§ DB transactions work fine in parallel

• Data updated in place, with 2-phase locking transactions
§ Replicas managed only at EOT via 2-phase commit (next lecture)
§ Coarser grain, higher overhead than cache coherency on processors

• Bandwidth much more important than latency (in analytics at least)
§ Often pump 1-1/n % of a table through the network

o Aggregate net BW should match aggregate disk BW

