
Spring 2024 6.s079
Review for Quiz 1

Topics Covered

● Relational model
● SQL
● Pandas
● Regular Expression
● Text similarity
● Entity resolution
● Missing values / data cleaning

● Clustering
○ K-Means, Agglomerative, DB Scan, etc.

● Maximum Likelihood Est. (MLE)
● Expectation-Maximization (EM)
● Classifiers

○ KNN, Linear, SVM, etc.
● Feature design (one hot, etc)
● Bias / Variance
● Metrics

○ Precision, Recall, F1, etc
● Embeddings

SQL

Consider the following schemas about a social media platform:

Users(uid, name, email)
Posts(pid, uid, content, date) % uid refs Users.uid
Comments(cid, pid, uid, content, date) % pid refs Posts.pid,

 uid refs Users.uid
Likes(lid, pid, uid) % pid refs Posts.pid, uid refs Users.uid

SQL

Complete the query

SELECT uid, name, _______ as nposts
FROM Users u, Posts p
WHERE __________________
GROUP BY uid

Find the top-5 most active users (user activity is defined by # posts), assuming
there will not be ties and at least 5 users posted.

Users(uid, name, email)
Posts(pid, uid, content, date) % uid refs Users.uid
Comments(cid, pid, uid, content, date) % pid refs Posts.pid,
 uid refs Users.uid
Likes(lid, pid, uid) % pid refs Posts.pid, uid refs Users.uid

SQL

Solution

Users(uid, name, email)
Posts(pid, uid, content, date) % uid refs Users.uid
Comments(cid, pid, uid, content, date) % pid refs Posts.pid,
 uid refs Users.uid
Likes(lid, pid, uid) % pid refs Posts.pid, uid refs Users.uid

SELECT uid, name, count(*) as nposts
FROM Users u, Posts p
WHERE u.uid = p.uid
GROUP BY uid
ORDER BY nposts DESC
LIMIT 5

SQL

Complete the query

SELECT pid, p.content, _______ as ncomments
FROM Posts p _____ Comments c ON ______
GROUP BY pid

Find the number of comments for each post. For posts without comments, their
count should be zero.

Users(uid, name, email)
Posts(pid, uid, content, date) % uid refs Users.uid
Comments(cid, pid, uid, content, date) % pid refs Posts.pid,
 uid refs Users.uid
Likes(lid, pid, uid) % pid refs Posts.pid, uid refs Users.uid

SQL

Solution

Users(uid, name, email)
Posts(pid, uid, content, date) % uid refs Users.uid
Comments(cid, pid, uid, content, date) % pid refs Posts.pid,
 uid refs Users.uid
Likes(lid, pid, uid) % pid refs Posts.pid, uid refs Users.uid

SELECT pid, p.content, COUNT(cid) as ncomments
FROM Posts p LEFT JOIN Comments c ON p.pid=c.pid
GROUP BY pid

pid uid …

1 1 …

2 1 …

cid pid …

1 1 …

2 1 …

Posts Comments

Posts LEFT JOIN Comments on pid

pid cid …

1 1 …

1 2 …

2 NULL …

Note: the following would not work
SELECT pid, p.content, COUNT(*) as ncomments
FROM Posts p LEFT JOIN Comments c ON p.pid=c.pid
GROUP BY pid

SQL

Take-Home practice

1. For each user, find the most popular post (most likes). Break ties by using
post’s date (more recent one wins).

Users(uid, name, email)
Posts(pid, uid, content, date) % uid refs Users.uid
Comments(cid, pid, uid, content, date) % pid refs Posts.pid,
 uid refs Users.uid
Likes(lid, pid, uid) % pid refs Posts.pid, uid refs Users.uid

It also helps to walk through lab1

Pandas

● Anything in SQL can be done in Pandas
● Pandas additionally adds

○ loc - index-based lookup
○ iloc - array-offset-based lookup

●
● print(df.iloc[0, 1], df.loc[“b”, "bandname"])

 bandid bandname genre
a 1 limp bizkit rock
b 2 korn rock
c 3 creed rock
d 4 nickelback rock

index
column

Regex

● Check slides for syntax
● Write a regular expression for matching

○ Posts with valid Hashtags or Mentions: only alphanumerics are allowed after hashtags/mentions
■ "Just saw Tim the Beaver at the #MIT football game! 🏈 #GoBeavers @MITAthletics"
■ "Had an amazing encounter with # Tim the Beaver today! He even posed for a photo 📸"

Regex

● Solution
○ #[a-zA-Z0-9]+|@[a-zA-Z0-9]+

● Take-Home practices
■ Posts where “Tim” shows up at least twice
■ Posts with URLs

● Have a REGEX syntax cheatsheet is helpful.
○ https://cheatography.com/davechild/cheat-sheets/regular-expressions/

● Also helpful to walk through lab 2 on sed/grep/awk

Text Similarity

● Jaccard Similarity for two sets of words
○ Jaccard(S1, S2) = |S1∩S2| / |S1 U S2|

● Cosine Similarity for vectors
○ CosSim(V1, V2) = Cos(Ө) = V1 • V2 / (||V1|| * ||V2||)

● See slides and lab 4

Missing Values

● Types of Missing Values
○ Missing Completely At Random (MCAR)

■ Missingness occur randomly, not correlating to any columns in the dataset
■ e.g., missingness caused by poor internet connections

○ Missing At Random (MAR)
■ Missingness correlates to certain columns in the dataset
■ e.g., Older people less likely to respond to web survey, so records where age

is higher tend to have more missing values in other columns.
○ Missing Not At Random (MNAR)

■ Missingness correlates to the missing values themselves
■ E.g., Rich/poor people tend not to report income

● Missing Value handling
○ Deletion-based
○ Imputation-based

id completed age income YearsOfExp.

Missing Values

● Deletion-based
○ Listwise Deletion: delete records with any missing values
○ Pairwise Deletion: delete records with missing values on columns needed for

analysis
● Comparison

○ Advantages
■ Pairwise deletion keeps as many records as possible
■ Listwise deletion is simple

○ Disadvantages
■ Listwise deletion reduces the sample size more aggressively
■ Pairwise deletion might have different sample size

Missing Values

● Imputation-based
○ Mean substitution

■ + Simple
■ - Reduces variability, weakens correlations, biases data

○ Regression methods
■ + Emphasize correlations present in the data
■ - Complicated and not useful when there is no correlation

○ Sampling from a reasonable distribution
○ Multiple imputation

Clustering

We primarily discussed three clustering algorithms:

- K-Means
- Agglomerative Clustering
- DBScan

Clustering – K-means

K-means clustering is simple and effective at getting an initial clustering

Algorithm:

- The user chooses some integer value K (the number of clusters)
- Initialize K cluster centers at random

- Can be random points in d-dimensional space (where d is the data dimensionality)
- Iterate:

- Assign each data point to the nearest cluster center
- Compute each cluster’s centroid
- Update each cluster center to be the centroid

- Terminate on some condition (e.g. when cluster centers stay mostly static)

Clustering – Agglomerative Clustering

Agglomerative Clustering naturally creates a (nested) hierarchy of clusters

Algorithm:

- Start with each point as its own cluster (i.e. you have k = |D| clusters)
- Iterate:

- Compute which two clusters are the closest
- E.g., using single, complete, or average linkage

- Merge the two closest clusters into a single cluster
- Terminate:

- on some condition
- e.g. when you have k’ clusters
- e.g. when min. cluster distance > some value

Clustering – DBScan

Algorithm: Epsilon-neighborhood: all points within a radius ε
from a given point

High Density (point): epsilon-neighborhood of point
contains at least MinPts points

Core Point: a high density point

Border Point: a non-core point in the
epsilon-neighborhood of a core point

Outlier (Noise) Point: a point that is not a core point
nor a border point

Clustering – DBScan (cont.)

Algorithm: Directly Density-Reachable: a point q is directly
density-reachable from a point p iff q is within p’s
epsilon-neighborhood (and p is a core point)

Density-Reachable: a point q is density-reachable
from p if there is a chain of points p, q1, q2, …, q such
that q_(i+1) is directly density-reachable from q_i

Note that density-reachability is not symmetric

Clustering – Overview

K-means:

- Pros/Cons: easy to implement, requires user to set K
- Works well when: you have spherical clusters of same size and roughly equal number of points

Agglomerative Clustering:

- Pros/Cons: linkage provides some control over cluster shapes, requires user to set K (or equivalent)
- Works well when: your choice of linkage can map well to some intuition about the dataset

DBScan

- Pros/Cons: does better job of identifying clusters of varying shapes and sizes, don’t need to specify k,
requires tuning hyperparameters, still sensitive to varying densities

- Works well when: you don’t know # of clusters ahead of time; clusters have contiguous shapes of
similar density

Clustering – Self-Test Ideas

- Walk yourself through K-means / Agg. Clustering / DBScan on a small
hand-crafted dataset

- Create a small dataset where K-means / Agg. Clustering / DBScan will not
work well

Maximum Likelihood Estimation (MLE)

- MLE Key Idea: Given a model L(𝛳, X) and dataset X = {x1, …, xn}, learn the model
parameters 𝛳’ which maximize the (log) likelihood of observing the dataset X

- L is a likelihood function, i.e.:

- If we assume X is sampled i.i.d., then:

- The maximum likelihood estimator is:

Note: L(𝛳|x) is often written
as L(𝛳,x) or L(𝛳; x)

Maximum Likelihood Estimation (MLE) – TMI

- Suppose we have a coin with an unknown probability 𝛳 of coming up heads
- We flip the coin N times and observe N_h heads and N_t tails (N = N_h + N_t)
- If we assume L(𝛳, X) is a binomial distribution, i.e.:

Example problem from Prof. Kilian Weinberger’s excellent course notes for CS 4780: https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote04.html

https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote04.html

Expectation-Maximization (EM) Example

Maximum Likelihood Estimation (MLE) for EM

- MLE Key Idea: Given a model L(𝛳, X) a dataset X = {x1, …, xn}, and a set of
latent data or missing values Z, learn the model parameters 𝛳’ which maximize
the (log) marginal likelihood of the observed dataset X

- L is a likelihood function, i.e.:

- If we assume X is sampled i.i.d., then:

- The maximum likelihood estimator is:

Expectation-Maximization (EM) Algorithm

Expectation-Maximization (EM) Example

X (observed data)

𝛳 (unknown params)

Z (latents; or missing values)

L(𝛳,X,Z)

Z
(la

te
nt

s)
L(
𝛳,

X
,Z

)

E[log(L(𝛳,X,Z))]

Expectation-Maximization (EM) Algorithm

EM Algorithm – Self-Test Ideas

- Walk yourself through the example shown in lecture

Classifiers

We primarily discussed five classifiers:

- K-Nearest Neighbor (KNN)
- Support Vector Machines
- Decision Trees
- Random Forest
- (Gradient) Boosted Decision Trees

Assume we have a dataset D = {(x1, y1), (x2, y2), …, (xn, yn)}

Classifiers – KNN

Classifier: h(x) = max_freq({y_i : x_i is one of k-nearest points to x})

Notes:

- Easy to code and interpret
- O(|D|) inference time (requires evaluating distance

function dist(x, x_i) on every sample in D)
- O(|D|) memory
- Does not scale well

K = 3

Classifiers – Support Vector Machines (SVMs)

Classifier: h(x) = sign(w^T ᐧ x + b)

Notes:

- (L)SVM is the maximum margin linear classifier
- If data is not linearly separable, we can:

- Use the “kernel trick” to project our data
into higher-dim. space where it is linearly
separable (i.e. Kernel SVM)

- Regularize with a soft-margin classifier

Classifiers – Decision Trees

Classifier: h(x) = (traverse tree to leaf node based on x’s feature values)

Classifiers – Random Forest

Classifier (classification): h(x) = max_freq({h_i(x) : ∀i ϵ [1, n]})

Notes:

- Sample subsets S_1, S_2, …, S_n from
D with replacement

- For each subset S_i:
- Sample k <= d features (w/out replacement)
- Train a full decision tree h_i(x) on only those k

features
- Final classifier is majority vote (or avg. for

regression) over outputs from h_i(x)
- Works great out-of-the-box

Classifiers – Knowledge Check

Q: Under KNN w/K=3, what is the
color label for each rhombus (star)

Q: Draw the classification boundary
for the decision tree on the right

x1

x2x2

x1

1

0
0

0.5

0.25

0.75

10.50.25 0.75

x1 > 0.5

orange

y

x2 < 0.5

n

x1 < 0.25

y

blue

n

orange blue

ny

Classifiers – Knowledge Check (answer)

Q: Under KNN w/K=3, what is the
color label for each rhombus (star)

Q: Draw the classification boundary
for the decision tree on the right

x1

x2x2

x1

1

0
0

0.5

0.25

0.75

10.50.25 0.75

x1 > 0.5

orange

y

x2 < 0.5

n

x1 < 0.25

y

blue

n

orange blue

ny

Feature Design

- Review slides 38-45 in Lecture 8 (Machine Learning II)
- Use slide 43 as a self-test to see if you can feature engineer / vectorize the

data in the table

Bias and Variance

Bias: the error often associated with your choice of model

- E.g. choosing a linear model to fit quadratic data will suffer from high bias
- No matter how much data you sample from the quadratic curve, your model’s

predictions will still be generally bad, and your error will be high

Variance: the error from your model being too sensitive to training data

- In practice, large variance is often a result of overfitting, which can be
remedied with effective regularization

- (Can also be a symptom of underfitting, although models that underfit are
usually a victim of high-bias)

Bias and Variance (extra)

Note: you do not need to know the bias-variance tradeoff / decomposition for the quiz, this is just meant to
supplement your understanding of the discussion in class.

[1] Content from Prof. Kilian Weinberger’s course notes for CS 4780: https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote12.html

https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote12.html

Bias and Variance (cont.)

[1] Content from Prof. Kilian Weinberger’s course notes for CS 4780: https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote12.html

https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote12.html

Bias and Variance (cont.)

[1] Content from Prof. Kilian Weinberger’s course notes for CS 4780: https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote12.html

https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote12.html

Bias and Variance – Knowledge Check

[1] Content from Prof. Kilian Weinberger’s course notes for CS 4780: https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote12.html

- Does Regime #1 suffer from high bias or high variance?
- Does Regime #2 suffer from high bias or high variance?

https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote12.html

Bias and Variance – Self-Test Ideas
- Review slides 38-46 from Lecture 9 and try to answer the questions yourself
- You can check your work by watching the lecture recording

Metrics

- Precision: tp/(tp + fp)
- What pct. of the time your model is correct when it makes a prediction

- Recall: tp/(tp + fn)
- What pct. of “true” examples your model makes a (correct) prediction for

- F1: the harmonic mean of precision and recall
- A metric which averages

- Kendall’s Tau: a measurement of how accurate a sort order is (see slides)
- ROC / Precision-Recall Curves: measures model performance across a

range of thresholds
- Area under the curve (AUC) for both plots can measure which model performs better across

all thresholds
- Typically you care more about Precision @ Fixed Recall or Recall @ Fixed precision and

evaluate multiple models accordingly

Metrics – Knowledge Check

- Q: on which category does the model
have the lowest recall?

- Q: on which category does the model
have the highest precision?

- Q: what is the model’s F1 score for
predicting category B?

Groundtruth Label Model Prediction

A A

A B

B C

B A

B B

C C

C A

C B

C C

C A

Metrics – Self-Test Ideas

- Create small fake datasets and test your ability to compute these metrics
(or reason about their ROC / precision-recall curves) correctly

- You can use Python libraries like sklearn, scipy, etc. to check your work

Embeddings

Key topics include:

- Word embeddings
- RAG
- Approx. Nearest Neighbour Search / Vector DBs

Word Embeddings

Goal: to learn a transformation W which can map any word in a vocabulary to a
high-dimensional representation (i.e. W(word) → word embedding)

- CBOW: compute sum of vector embeddings of n words before and after
target and try to predict the missing word

- n is the “window size”
- SkipGram: inverse of the idea in CBOW – use representation of word to try

to predict its context
- Also uses a window size to create input/output training pairs

- Both techniques learn (one or more) large parameter matrices which can be
used to perform embedding lookups

- Issues: large param space even for 10k words; poor perf. on rare words
- Improvements: word pairs / phrases, subsampling, selective updates

Retrieval Augmented Generation (RAG)

Problem: LLMs have limited context(s), but their generation performance can be
substantially improved with higher quality context

- Higher quality == more relevant, more up-to-date, includes information not
seen during training

Idea: Let’s improve (i.e. augment) the context we provide LLMs by retrieving high
quality context from external data source(s)

- Allows system to leverage dataset larger than context length
- Can avoid re-training LLM by retrieving new information
- Extends LLM “memory”
- And more…

Approximate Nearest Neighbour Search / Vector DBs

- Problem: performing naive linear search for nearest neighbor embedding in a
vector store is computationally expensive (O(nd))

- Idea: trading accuracy for speed with ANNS
- We covered

- Vector Compression - reduce dimensionality of vectors
- Locality Sensitive Hashing - Maximize hash collision of similar objects!
- NSW - Navigable graph with greedy search

- Make sure you understand the tradeoffs implied by the parameters of these
algorithms:

- LSH
- L and k controls the probability of finding a “close” point

- NSW
- w: number of greedy searches per query
- f: number of neighbors per vertex

Embeddings – Self-Test Ideas

- Given some small vocabulary and small weight matrices W, W’, compute the
forward pass of CBOW

- Walk yourself through the NSW for some small graph

