
6.S079 MACHINE
LEARNING 3

MARCH 12, 2024
MIKE CAFARELLA

THANKS TO TIM KRASKA FOR
SLIDES

AGENDA

1. More Supervised Learning

2. Bias/Variance

3. Cross-Validation

4. Quality Metrics

5. Embeddings

AGENDA

1. More Supervised Learning

2. Bias/Variance

3. Cross-Validation

4. Quality Metrics

5. Embeddings

MACHINE LEARNING PROBLEMS

4

classification or
categorization clustering

regression dimensionality reduction

Supervised Learning Unsupervised Learning

Di
sc

re
te

Co
nt

in
uo

us

MAXIMUM MARGIN

Slides from Andrew W. Moore

denotes +1
denotes -1 The maximum

margin linear
classifier is the
linear classifier
with the, um,
maximum margin.
This is the
simplest kind of
SVM (Called an
LSVM)

Support Vectors
are those
datapoints that the
margin pushes up
against

Linear SVM

Slides from Andrew W. Moore

SUPPOSE WE’RE IN 1-DIMENSION

What would
SVMs do with
this data?

x=0

Slides from Andrew W. Moore

SUPPOSE WE’RE IN 1-DIMENSION

Positive “plane” Negative “plane”

x=0

Slides from Andrew W. Moore

HARDER 1-DIMENSIONAL DATASET

x=0

Slides from Andrew W. Moore

HARDER 1-DIMENSIONAL DATASET

Permitting non-
linear basis
functions

x=0),(2
kkk xx=z

THE KERNEL TRICK

10

2 The Kernel Trick

Figure 1: Transforming the data can make it linearly separable

• both x and � are feasible

• 8i �ig(xi) = 0

These conditions make intuitive sense, in particular if we imagine a single constraint. The unconstrained
optimum is either inside the feasible set, or outside. If it is inside, then the constrained and unconstrained
optima are the same. x is atracted to this optimum, therefore there is no need to introduce a force to
convince it to stay in the feasible set, so �i = 0. If it is outside, then x will want to escape the feasible
set. We will need a non-zero �i to retain it, but x will go as far as possible towards the non-feasible set.
Therefore it will be on the boundary, where g(xi) = 0. So one of the two must be zero.

1.3 The Support Vectors

Why does this matter to us ? What do the KKT conditions imply in our case ?
In our case our Lagrange multiplier is ↵, and

g(xi) = 1� yi(!T xi + b)

Now, at the optimum, pick an i such that ↵i > 0. Then the KKT conditions imply g(xi) = 0 so:

yi(!T xi + b) = 1
i.e. b = yi � !T xi

Any i such that ↵i > 0 will do, but in practice it is better (for numerical stability) to average the result
obtained using several of them.
The corresponding xi’s are called the support vectors since they support the hyperplanes on both sides
of the margin. And this is why the max-margin classifier is also called support vector machine (SVM).
However when people refer to SVM, they generally refer to the enhanced and more general version that we
will now describe.

The Kernel Trick 3

2 The Kernel Trick

All the algorithms we have described so far use the data only through inner products. Because of this, they
can be made non-linear in a very general way. Let’s start by an example:

2.1 Example

Clearly, the data on the left in figure 1 is not linearly separable. Yet if we map it to a three-dimensional
space using

� : <2 �! <3

(x1, x2) 7�! (z1, z2, z3) = (x2
1,
p

2x1x2, x
2
2)

and if we try to linearly separate the mapped data, our decision boundaries will be hyperplanes in <3, of
the form !T z + b = 0, i.e. as a function of x they will be of the form

!1x
2
1 + !2

p
2x1x2 + !3x

2
2 = 0

which is the equation of an ellipse. So that’s interesting, we can use our linear algorithm on a transformed
version of the data to get a non-linear algorithm with no e↵ort !
But look more closely at what the algorithm is doing. All we use is the Gram Matrix K of the data, in the
sense that once we know K, we can throw away our original data.

K =

2

664

xT
1 x1 xT

1 x2 · · ·

xT
2 x1

. . .
...

3

775

n⇤n

= XXT

where X =

2

64
xT

1
...

xT
n

3

75

n⇤d

X, containing all the data, is called the design matrix.
What happens in our example when we first map our data via some function � ? The Gram Matrix is now
that of the zi’s:

K =

2

664

�(x1)T �(x1) �(x1)T �(x2) · · ·

�(x2)T �(x1)
. . .

...

3

775

Let’s write these inner products. Let r and s be vectors in <3 corresponding to a and b respectively.

hr, si = r1s1 + r2s2 + r3s3

= a2
1b

2
1 + 2a1a2b1b2 + a2

2b
2
2

= ha, bi2

So instead of mapping our data via � and computing the inner product, we can do it in one operation,
leaving the mapping completely implicit. In fact in the end we don’t even need to know �, all we need to
know is how to compute the modified inner product. And because “modified inner product” is a long name,
we will call it a kernel, K(x, y). We will also call K the kernel matrix because it contains the value of
the kernel for every pair of data points, thus using same letter both for the function and its matrix.
Because the kernel seems to be the object of interest, and not the mapping �, we would like to characterize
kernels without this mere intermediate. Mercer’s Theorem gives us just that.

[http://www.cs.berkeley.edu/~jordan/courses/281B-
spring04/lectures/lec3.pdf]

THE KERNEL TRICK

11

2 The Kernel Trick

Figure 1: Transforming the data can make it linearly separable

• both x and � are feasible

• 8i �ig(xi) = 0

These conditions make intuitive sense, in particular if we imagine a single constraint. The unconstrained
optimum is either inside the feasible set, or outside. If it is inside, then the constrained and unconstrained
optima are the same. x is atracted to this optimum, therefore there is no need to introduce a force to
convince it to stay in the feasible set, so �i = 0. If it is outside, then x will want to escape the feasible
set. We will need a non-zero �i to retain it, but x will go as far as possible towards the non-feasible set.
Therefore it will be on the boundary, where g(xi) = 0. So one of the two must be zero.

1.3 The Support Vectors

Why does this matter to us ? What do the KKT conditions imply in our case ?
In our case our Lagrange multiplier is ↵, and

g(xi) = 1� yi(!T xi + b)

Now, at the optimum, pick an i such that ↵i > 0. Then the KKT conditions imply g(xi) = 0 so:

yi(!T xi + b) = 1
i.e. b = yi � !T xi

Any i such that ↵i > 0 will do, but in practice it is better (for numerical stability) to average the result
obtained using several of them.
The corresponding xi’s are called the support vectors since they support the hyperplanes on both sides
of the margin. And this is why the max-margin classifier is also called support vector machine (SVM).
However when people refer to SVM, they generally refer to the enhanced and more general version that we
will now describe.

The Kernel Trick 3

2 The Kernel Trick

All the algorithms we have described so far use the data only through inner products. Because of this, they
can be made non-linear in a very general way. Let’s start by an example:

2.1 Example

Clearly, the data on the left in figure 1 is not linearly separable. Yet if we map it to a three-dimensional
space using

� : <2 �! <3

(x1, x2) 7�! (z1, z2, z3) = (x2
1,
p

2x1x2, x
2
2)

and if we try to linearly separate the mapped data, our decision boundaries will be hyperplanes in <3, of
the form !T z + b = 0, i.e. as a function of x they will be of the form

!1x
2
1 + !2

p
2x1x2 + !3x

2
2 = 0

which is the equation of an ellipse. So that’s interesting, we can use our linear algorithm on a transformed
version of the data to get a non-linear algorithm with no e↵ort !
But look more closely at what the algorithm is doing. All we use is the Gram Matrix K of the data, in the
sense that once we know K, we can throw away our original data.

K =

2

664

xT
1 x1 xT

1 x2 · · ·

xT
2 x1

. . .
...

3

775

n⇤n

= XXT

where X =

2

64
xT

1
...

xT
n

3

75

n⇤d

X, containing all the data, is called the design matrix.
What happens in our example when we first map our data via some function � ? The Gram Matrix is now
that of the zi’s:

K =

2

664

�(x1)T �(x1) �(x1)T �(x2) · · ·

�(x2)T �(x1)
. . .

...

3

775

Let’s write these inner products. Let r and s be vectors in <3 corresponding to a and b respectively.

hr, si = r1s1 + r2s2 + r3s3

= a2
1b

2
1 + 2a1a2b1b2 + a2

2b
2
2

= ha, bi2

So instead of mapping our data via � and computing the inner product, we can do it in one operation,
leaving the mapping completely implicit. In fact in the end we don’t even need to know �, all we need to
know is how to compute the modified inner product. And because “modified inner product” is a long name,
we will call it a kernel, K(x, y). We will also call K the kernel matrix because it contains the value of
the kernel for every pair of data points, thus using same letter both for the function and its matrix.
Because the kernel seems to be the object of interest, and not the mapping �, we would like to characterize
kernels without this mere intermediate. Mercer’s Theorem gives us just that.

[http://www.cs.berkeley.edu/~jordan/courses/281B-
spring04/lectures/lec3.pdf]

12

https://www.youtube.com/watch?v=3liCbRZPrZA

https://www.youtube.com/watch?v=3liCbRZPrZA

IN-CLASS TASK

How would you draw the expected decision boundary for
• Random Forest
• SVM w/ kernel and regularization
• 1-KNN

WHAT DECISION BOUNDARY IS THIS?

The decision boundary looks like the one of:
a) Random Forest
b) SVM w/ kernel and regularization
c) 1-KNN

WHAT ABOUT THIS ONE?

The decision boundary looks like the one of:
a) Random Forest
b) SVM w/ kernel and regularization
c) 1-KNN

RANDOM FOREST

The decision boundary looks like the one of:
a) Random Forest
b) SVM w/ kernel and regularization
c) 1-KNN

17

SOFT MARGIN CLASSIFICATION

If the training data is not
linearly separable, slack
variables ξi (a regularization
parameter) can be added to
allow misclassification of
difficult or noisy examples.
Still, try to minimize training set
errors, and to place hyperplane
“far” from each class (large
margin)
“Overfitting” means
memorizing the dataset instead
of generalizing
Regularization exists to prevent
overfitting in the face of
difficult/noisy data

ξj

ξi

Sec. 15.2.1

18

THE IMPACT OF REGULARIZATION
Sec. 15.2.1

No regularization

Right amount Too much

MACHINE LEARNING PROBLEMS

19

classification or
categorization clustering

regression dimensionality reduction

Supervised Learning Unsupervised Learning

D
is

cr
et

e
C

on
ti

nu
ou

s

LINEAR REGRESSION

POLYNOMIAL REGRESSION

21

hθ x() = θ0 +θ1x1 hθ x() = θ0 +θ1x1 +θ2x12

hθ x() = θ0 +θ1x1 +θ2x12 +θ3x13 hθ x() = θ0 +θ1x1 +θ2x12 +…+θ7x1
7

DECISION TREE - REGRESSION

AGENDA
1. More Supervised Learning
2. Bias/Variance
3. Cross-Validation
4. Quality Metrics
5. Embeddings

Bias and Variance
• There are technical definitions but also used informally

• Bias measures one kind of error
• Difference between the answer and expected answer
• Your pre-data model is “too strong”
• Often, your model is too simple to capture the target

domain, so you get the answer wrong a lot
• Can be remedied by building a more flexible or

higher-parameter model
• A high bias model reflects strong assumptions about

the domain
• If you don’t have much training data, a high bias

model might be your only option

Bias and Variance
• Variance is another kind of error
• Measures spread of your answers around mean
• Your model is “underfitting” or “overfitting”
• (Put another way, you are not correctly sensitive

to the training data)
• Can be remedied by building a less flexible or lower-

parameter model
• Most variance bugs are due to high variance (that is,

overfitting, which usually means you are too sensitive
to the data)

Bias and Variance

26

Error

Training set M

Bias and Variance

27

training set

Error

Training set M

Training Set (m)

Test-Set (ts)

Training Set Validation Set

Bias and Variance

28

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error

Bias and Variance

29

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error

Bias and Variance

30

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error

Bias and Variance

31

training set

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error

Bias and Variance

32

training set

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error

Bias and Variance

33

training set

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error

Bias and Variance

34

training set

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error

Bias and Variance

35

training set

Error

Training set M

Training Set Validation Set

Training Error

Test Error

Test error
a) decreases with M
b) increases with M
c) stays constant

Training Set (m)

Bias and Variance

36

training set

Error

Training set M

Training Set Validation Set

Training Error

Test Error

Training Set (m)

High Bias

37

training set

Error

Training set M

Training Error

Test Error

Training Set (m)

High Bias

38

training set

Error

Training set M

Training Error

Test Error

Training Set (m)

If you have high-bias, does more data help?
a) No
b) Yes

High Variance

39

training set

Error

Training set M

Training Error

Test Error

Training Set (m)

If you have high-variance, does more data help?
a) No
b) Yes

Ideas for improving quality

40

1. Get more training examples
2. Try smaller sets of features
3. Try getting additional features
4. Try adding polynomial features (kernels)
5. Try increase regularization
6. Try decrease regularization

What would you do?

41

1. Get more training examples
2. Try smaller sets of features
3. Try getting additional features
4. Try adding polynomial features (kernels)
5. Try increase regularization
6. Try decrease regularization

Helps with
A. High Variance
B. High Bias
C. Both
D. None

What would you do?

42

1. Get more training examples
2. Try smaller sets of features
3. Try getting additional features
4. Try adding polynomial features (kernels)
5. Try increase regularization
6. Try decrease regularization

Helps with
A. High Variance
B. High Bias
C. Both
D. None

What would you do?

43

1. Get more training examples
2. Try smaller sets of features
3. Try getting additional features
4. Try adding polynomial features (kernels)
5. Try increase regularization
6. Try decrease regularization

Helps with
A. High Variance
B. High Bias
C. Both
D. None

What would you do?

44

1. Get more training examples
2. Try smaller sets of features
3. Try getting additional features
4. Try adding polynomial features (kernels)
5. Try increase regularization
6. Try decrease regularization

Helps with
A. High Variance
B. High Bias
C. Both
D. None

What would you do?

45

1. Get more training examples
2. Try smaller sets of features
3. Try getting additional features
4. Try adding polynomial features (kernels)
5. Try increase regularization
6. Try decrease regularization

Helps with
A. High Variance
B. High Bias
C. Both
D. None

What would you do?

46

1. Get more training examples
2. Try smaller sets of features
3. Try getting additional features
4. Try adding polynomial features (kernels)
5. Try increase regularization
6. Try decrease regularization

Helps with
A. High Variance
B. High Bias
C. Both
D. None

AGENDA
1. More Supervised Learning
2. Bias/Variance
3. Cross-Validation
4. Quality Metrics
5. Embeddings

Testing, Training, Validation
• Training (~80%): the core data that allows a

learning system to find good parameters. A
typical training procedure may view this data
repeatedly

• Validation (~10%): data that lets you estimate
the success of training. Based on validation
results, you might adjust hyperparameters or
terminate training. Not all procedures use
validation data.

• Test (~10%): data that gives you a “final” and
clean measure of your model’s accuracy

Cross-validation

k-fold: split the data into k groups, train on
every group except for one, which you
test on.

Repeat for all groups

Bitsearch blog

AGENDA
1. More Supervised Learning
2. Bias/Variance
3. Cross-Validation
4. Quality Metrics
5. Embeddings

There are LOTS of error metrics
Classification:
• Accuracy
• F-score
• F1-micro
• F1-macro
• ROC AUC (micro, macro)

Ranking:
• Kendall’s Tau
• Mean Reciprocal Rank

Regression
• Mean-Squared Error
• Root-Mean Squared Error
• Mean absolute Error
• R2

• Cohen Kappa
51

52

PRECISION, RECALL, ACCURACY

• Precision: correctly identified positive cases
 Precision P = tp/(tp + fp)

• Recall: correctly identified positive cases from all the actual
positive cases.

 Recall R = tp/(tp + fn)

• F-Score: is the harmonic mean of precision and recall

 𝐹 = !
!
""

!
#
= #$

#$"!$(&$"&')

True Label

True False

Predicted
Label

True tp fp

False fn tn

Precision and recall
• Generally we trade precision vs. recall

– How to get a system with high recall?

• Recall is a non-decreasing function of the # of
docs retrieved
– Precision usually decreases with more docs retrieved

• Drawbacks
– Binary relevance (for search results)
– Need human judgments
– Must average over large corpus
– Alternatively, skewed by corpus/author selection

53

Exercise
• Consider a search engine that always

returns all documents

• Do you expect high or low precision?

• Do you expect high or low recall?

54

Exercise
• Consider a search engine that always

returns all documents

• Do you expect high or low precision?
– Low. If all docs are returned, then many non-relevant docs are

included, which will decrease the percentage of returned docs
that are relevant.

• Do you expect high or low recall?
– High. If all docs are returned, then all relevant docs must be

returned.

• Do you, personally, want a high-precision or high-recall
search engine?

• Who might want the opposite?

55

Precision-recall curves
• A search engine will create a total

ordering on all documents
• The top k are returned to the user
• We can calculate precision and recall for

several values of k
• This creates a precision-recall curve

56

P/R CURVES

57Thanks https://www.datacamp.com/tutorial/precision-recall-curve-tutorial

Take Ranking Into Account
• Precision at fixed recall
– Precision of top k results, for k=1,10,50,…
– Critical for Web Search

• Use Kendall’s Tau for comparing sort
orders

58

Kendall's Tau
• Use a real ordering of documents, not just

binary "relevant/not relevant"
• The correct document ordering is:

– 1, 2, 3, 4
• Search Engine A outputs:

– 1, 2, 4, 3
• Search Engine B outputs:

– 4, 3, 1, 2
• Intuitively, A is better. How do we capture this

numerically?

59

Measuring Rank Correlation
• Kendall's Tau has some nice properties:
– If agreement between 2 ranks is perfect, then

KT = 1
– If disagreement is perfect,

then KT = -1
– If rankings are uncorrelated, then KT = 0 on

average

• Intuition: Compute fraction of pairwise
orderings that are consistent

60

Kendall's Tau

• The non-normalized version is called
Kendall’s Tau Distance

• Also called bubble-sort distance
61

€

τ =
nc − nd
1
2
n(n −1)

pairs that agree # pairs that disagree

total # pairs

Try it out
• Correct ordering:
– 1, 2, 3, 4

• Search Engine A:
– 1, 2, 4, 3

• Search Engine B:
– 4, 3, 2, 1

€

τ =
5 −1

1
2
4(4 −1)

=
4
6

= 0.666

€

τ =
0 − 6

1
2
4(4 −1)

=
−6
6

= −1

62

ROC AUC
(usually used for models with a threshold)

63

Re
ca

ll
/ T

ru
e

Po
sit

iv
e

Ra
te

: T
P/

(T
P+

FN
)

False Positive Rate: FP / (FP + TN)

What would be the ideal ROC curve?
How would a random guess look like?

Receiver Operating Characteristic curve
(term from the age of radio receivers)

ROC AUC
(usually used for models with a threshold)

64

Re
ca

ll
/ T

ru
e

Po
sit

iv
e

Ra
te

 (T
P/

TP
+F

N
)

False Positive Rate (FP / FP + TN)

AUC: Area under the ROC Curve

ROC vs P/R

65

Very similar, but not quite the same

What’s same? What’s different?

Which one would you prefer to use?

Evaluation:
Accuracy isn’t always enough

• Is 90% accuracy good or bad?

66

Evaluation:
Accuracy isn’t always enough

• Is 90% accuracy good or bad?
– It depends on the problem

• Need a baseline:
– Base Rate

• Accuracy of trivially predicting the most-frequent class
– Random Rate

• Accuracy of making a random class assignment
• Might apply prior knowledge to assign random distribution

– Naïve Rate
• Accuracy of some simple default or pre-existing model
• Ex: “All females survived”

67

Why Baselines?

38/40 = 95%

38/40 = 95%

A
B

A B

AGENDA
1. More Supervised Learning
2. Bias/Variance
3. Cross-Validation
4. Quality Metrics
5. Embeddings

Feature Engineering

70

Error

Class Task: Feature Engineering

71

Error

https://www.washingtonpost.com/news/wonk/wp/2014/04/07/twitter-is-
surprisingly-accurate-at-predicting-unemployment/

How would you predict the unemployment
rate before the official numbers come out?

Feature Engineering
• Dropping features

– Remove duplicates
– Highly correlated values (Zip code, Lon/Lat)

• Feature creation
– Feature crosses: Cost per square feet
– Creating special features (“I lost my job”)
– Row statistics

• Number of 0, nulls, negative value, mean, max, min,…
– Projection to circle

• Turn a single feature (like day_of_week) into two coordinates on a circle
• Ensures that distance between Monday and Sunday etc is the same

– Spatial
• GPS encoding
• Categorized locations (e.g., close to city, rural, nearby hospital, etc.)

– Use embeddings from other models (more on that later)
– Discretization (date à weekend/weekday)
– ...

72

Transformations
• Rounding

– Lossy
– Precision can just be noise -> might improve training
– Log transform before rounding often useful

• Binning
– Removes information
– Can work gracefully with variables outside of ranges seen in the train set

• Scaling
– Sandard (Z) Scaling
– MinMax Scaling
– Root Scaling
– Log Scaling

• Outlier removal
• Imputation (mean, median, …)
• Interaction encoding : Specifically encodes the interaction between two

numerical variables
– Substraction, Addition, Multiplication….
– Polynomial encoding

• Linear algorithms can not solve XOR problem
• A polynomial kernel can solve XOR

73

Encodings
• One-hot

• NaN, null, etc à create explicit encoding

• Hash-encoding (careful might introduce collisions)

• Count encoding: replace categorical value with their count
– Useful for both linear and non-linear algorithms

– Sensitive to outliers

– Might create collisions

• Rank encoding: Rank categorical variables by count in train set
– Useful for both linear and non-linear algorithms

– Not sensitive to outliers

– Won’t give same encoding to different variables

• Target encoding: Encode categorical variables by their ratio of target (binary classification)
in train set
– Be careful to avoid overfit

– Add smoothing to avoid setting variable encoding to 0

– Add random noise?

– Can work extremely well when done right

• Consolidation/expansion encoding: map different categorical variables to the same

– Spelling errors, slightly different job descriptions, abbreviations
74

Text Features

Spam

Not Spam

Bag of Words
𝑈𝑟𝑔𝑒𝑛𝑡: 1
𝑚𝑜𝑛𝑒𝑦: 1
𝐻𝑒𝑟𝑏𝑒𝑙: 2
𝑃𝑖𝑙𝑙𝑠: 2
𝐴𝑟𝑒: 1
…

ℎ𝑒𝑟𝑏𝑒𝑙 𝑝𝑖𝑙𝑙𝑠: 1
𝑝𝑖𝑙𝑙𝑠 𝑓𝑜𝑟: 1
𝑓𝑜𝑟 𝐻𝑎𝑖𝑟: 2

𝐻𝑎𝑖𝑟 𝑔𝑟𝑜𝑤𝑡ℎ: 1
𝑠𝑢𝑟𝑔𝑒𝑟𝑖𝑒𝑠: 2

…

N-Grams

One-Hot Encoding
Bag of Words

𝑈𝑟𝑔𝑒𝑛𝑡
𝑀𝑜𝑛𝑒𝑦
𝐻𝑒𝑟𝑏𝑒𝑙
𝑃𝑖𝑙𝑙𝑠
𝐴𝑟𝑒
…

ID Urgent Money Herbel Pills Are ….

Mail1 0 1 1 0 1 …

Mail2 1 0 0 1 1 …

… … … … … … …

Word embeddings

• Idea: learn a high-dimensional
representation of each word
 Cat: {0.002, 0.244, 0.546, …, 0.345}

• Need to have a function W(word) that
returns a vector encoding that word.

• Applications: ???

Word embeddings: properties
Relationships between words correspond
to difference between vectors.

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

Word embeddings: questions

• How big should the embedding space be?
– Trade-offs like any other machine learning problem – greater

capacity versus efficiency and overfitting.

• How do we find W?
– Often as part of a prediction or classification task involving

neighboring words.

Learning word embeddings

• First attempt:
– Input data is sets of 5 words from a meaningful

sentence. E.g., “one of the best places”. Modify
half of them by replacing middle word with a
random word. “one of function best places”

– W is a map (depending on parameters, Q) from
words to 50 dim’l vectors.

– Feed 5 embeddings into a module R to determine
‘valid’ or ‘invalid’

– Optimize over Q to predict better

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

https://arxiv.org/ftp/arxiv/papers/1102/1102.1808.pdf

