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classification or 
categorization clustering

regression dimensionality reduction

Supervised Learning Unsupervised Learning
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MAXIMUM MARGIN

Slides from Andrew W. Moore 

denotes +1
denotes -1 The maximum 

margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.
This is the 
simplest kind of 
SVM (Called an 
LSVM)

Support Vectors 
are those 
datapoints that the 
margin pushes up 
against

Linear SVM



Slides from Andrew W. Moore 

SUPPOSE WE’RE IN 1-DIMENSION

What would 
SVMs do with 
this data?

x=0
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SUPPOSE WE’RE IN 1-DIMENSION

Positive “plane” Negative “plane”

x=0
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HARDER 1-DIMENSIONAL DATASET

x=0
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HARDER 1-DIMENSIONAL DATASET

Permitting non-
linear basis 
functions

x=0 ),( 2
kkk xx=z



THE KERNEL TRICK
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2 The Kernel Trick

Figure 1: Transforming the data can make it linearly separable

• both x and � are feasible

• 8i �ig(xi) = 0

These conditions make intuitive sense, in particular if we imagine a single constraint. The unconstrained
optimum is either inside the feasible set, or outside. If it is inside, then the constrained and unconstrained
optima are the same. x is atracted to this optimum, therefore there is no need to introduce a force to
convince it to stay in the feasible set, so �i = 0. If it is outside, then x will want to escape the feasible
set. We will need a non-zero �i to retain it, but x will go as far as possible towards the non-feasible set.
Therefore it will be on the boundary, where g(xi) = 0. So one of the two must be zero.

1.3 The Support Vectors

Why does this matter to us ? What do the KKT conditions imply in our case ?
In our case our Lagrange multiplier is ↵, and

g(xi) = 1� yi(!T xi + b)

Now, at the optimum, pick an i such that ↵i > 0. Then the KKT conditions imply g(xi) = 0 so:

yi(!T xi + b) = 1
i.e. b = yi � !T xi

Any i such that ↵i > 0 will do, but in practice it is better (for numerical stability) to average the result
obtained using several of them.
The corresponding xi’s are called the support vectors since they support the hyperplanes on both sides
of the margin. And this is why the max-margin classifier is also called support vector machine (SVM).
However when people refer to SVM, they generally refer to the enhanced and more general version that we
will now describe.
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2 The Kernel Trick

All the algorithms we have described so far use the data only through inner products. Because of this, they
can be made non-linear in a very general way. Let’s start by an example:

2.1 Example

Clearly, the data on the left in figure 1 is not linearly separable. Yet if we map it to a three-dimensional
space using

� : <2 �! <3

(x1, x2) 7�! (z1, z2, z3) = (x2
1,
p

2x1x2, x
2
2)

and if we try to linearly separate the mapped data, our decision boundaries will be hyperplanes in <3, of
the form !T z + b = 0, i.e. as a function of x they will be of the form

!1x
2
1 + !2

p
2x1x2 + !3x

2
2 = 0

which is the equation of an ellipse. So that’s interesting, we can use our linear algorithm on a transformed
version of the data to get a non-linear algorithm with no e↵ort !
But look more closely at what the algorithm is doing. All we use is the Gram Matrix K of the data, in the
sense that once we know K, we can throw away our original data.

K =

2

664

xT
1 x1 xT

1 x2 · · ·

xT
2 x1

. . .
...

3

775

n⇤n

= XXT

where X =

2

64
xT

1
...

xT
n

3

75

n⇤d

X, containing all the data, is called the design matrix.
What happens in our example when we first map our data via some function � ? The Gram Matrix is now
that of the zi’s:

K =

2

664

�(x1)T �(x1) �(x1)T �(x2) · · ·

�(x2)T �(x1)
. . .

...

3

775

Let’s write these inner products. Let r and s be vectors in <3 corresponding to a and b respectively.

hr, si = r1s1 + r2s2 + r3s3

= a2
1b

2
1 + 2a1a2b1b2 + a2

2b
2
2

= ha, bi2

So instead of mapping our data via � and computing the inner product, we can do it in one operation,
leaving the mapping completely implicit. In fact in the end we don’t even need to know �, all we need to
know is how to compute the modified inner product. And because “modified inner product” is a long name,
we will call it a kernel, K(x, y). We will also call K the kernel matrix because it contains the value of
the kernel for every pair of data points, thus using same letter both for the function and its matrix.
Because the kernel seems to be the object of interest, and not the mapping �, we would like to characterize
kernels without this mere intermediate. Mercer’s Theorem gives us just that.

[http://www.cs.berkeley.edu/~jordan/courses/281B-
spring04/lectures/lec3.pdf]
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https://www.youtube.com/watch?v=3liCbRZPrZA

https://www.youtube.com/watch?v=3liCbRZPrZA


IN-CLASS TASK

How would you draw the expected decision boundary for
• Random Forest
• SVM w/ kernel and regularization
• 1-KNN



WHAT DECISION BOUNDARY IS THIS?

The decision boundary looks like the one of:
a) Random Forest
b) SVM w/ kernel and regularization
c) 1-KNN



WHAT ABOUT THIS ONE?

The decision boundary looks like the one of:
a) Random Forest
b) SVM w/ kernel and regularization
c) 1-KNN



RANDOM FOREST

The decision boundary looks like the one of:
a) Random Forest
b) SVM w/ kernel and regularization
c) 1-KNN



17

SOFT MARGIN CLASSIFICATION  

If the training data is not 
linearly separable, slack 
variables ξi (a regularization 
parameter) can be added to 
allow misclassification of 
difficult or noisy examples.
Still, try to minimize training set 
errors, and to place hyperplane 
“far” from each class (large 
margin)
“Overfitting” means 
memorizing the dataset instead 
of generalizing
Regularization exists to prevent 
overfitting in the face of 
difficult/noisy data

ξj

ξi

Sec. 15.2.1
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THE IMPACT OF REGULARIZATION
Sec. 15.2.1

No regularization

Right amount Too much
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classification or 
categorization clustering

regression dimensionality reduction

Supervised Learning Unsupervised Learning
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LINEAR REGRESSION



POLYNOMIAL REGRESSION

21

hθ x( ) = θ0 +θ1x1 hθ x( ) = θ0 +θ1x1 +θ2x12

hθ x( ) = θ0 +θ1x1 +θ2x12 +θ3x13  hθ x( ) = θ0 +θ1x1 +θ2x12 +…+θ7x1
7



DECISION TREE - REGRESSION
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Bias and Variance
• There are technical definitions but also used informally

• Bias measures one kind of error
• Difference between the answer and expected answer
• Your pre-data model is “too strong”
• Often, your model is too simple to capture the target 

domain, so you get the answer wrong a lot
• Can be remedied by building a more flexible or 

higher-parameter model
• A high bias model reflects strong assumptions about 

the domain
• If you don’t have much training data, a high bias 

model might be your only option



Bias and Variance
• Variance is another kind of error
• Measures spread of your answers around mean
• Your model is “underfitting” or “overfitting”
• (Put another way, you are not correctly sensitive 

to the training data)
• Can be remedied by building a less flexible or lower-

parameter model
• Most variance bugs are due to high variance (that is, 

overfitting, which usually means you are too sensitive 
to the data)



Bias and Variance
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Error

Training set M



Bias and Variance
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training set

Error

Training set M

Training Set (m)

Test-Set (ts)

Training Set Validation Set



Bias and Variance
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Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error
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Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error



Bias and Variance
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Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error
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training set

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error
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training set

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error
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training set

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error



Bias and Variance
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training set

Error

Training set M

Training Set (m)

Training Set Validation Set

Training Error



Bias and Variance
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training set

Error

Training set M

Training Set Validation Set

Training Error

Test Error

Test error
a) decreases with M
b) increases with M
c) stays constant

Training Set (m)



Bias and Variance
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training set

Error

Training set M

Training Set Validation Set

Training Error

Test Error

Training Set (m)



High Bias
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training set

Error

Training set M

Training Error

Test Error

Training Set (m)



High Bias

38

training set

Error

Training set M

Training Error

Test Error

Training Set (m)

If you have high-bias, does more data help? 
a) No
b) Yes



High Variance
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training set

Error

Training set M

Training Error

Test Error

Training Set (m)

If you have high-variance, does more data help? 
a) No
b) Yes



Ideas for improving quality

40

1. Get more training examples
2. Try smaller sets of features
3. Try getting additional features
4. Try adding polynomial features (kernels)
5. Try increase regularization
6. Try decrease regularization



What would you do?
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1. Get more training examples
2. Try smaller sets of features
3. Try getting additional features
4. Try adding polynomial features (kernels)
5. Try increase regularization
6. Try decrease regularization

Helps with
A. High Variance
B. High Bias
C. Both
D. None
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Testing, Training, Validation
• Training (~80%): the core data that allows a 

learning system to find good parameters. A 
typical training procedure may view this data 
repeatedly

• Validation (~10%): data that lets you estimate 
the success of training. Based on validation 
results, you might adjust hyperparameters or 
terminate training. Not all procedures use 
validation data.

• Test (~10%): data that gives you a “final” and 
clean measure of your model’s accuracy



Cross-validation

k-fold:  split the data into k groups, train on 
every group except for one, which you 
test on. 

Repeat for all groups

Bitsearch blog
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There are LOTS of error metrics
Classification:
• Accuracy
• F-score
• F1-micro
• F1-macro
• ROC AUC (micro, macro)

Ranking:
• Kendall’s Tau
• Mean Reciprocal Rank

Regression
• Mean-Squared Error
• Root-Mean Squared Error
• Mean absolute Error 
• R2

• Cohen Kappa
51



52

PRECISION, RECALL, ACCURACY

• Precision: correctly identified positive cases
    Precision P = tp/(tp + fp)

• Recall: correctly identified positive cases from all the actual 
positive cases.

   Recall      R = tp/(tp + fn)

• F-Score: is the harmonic mean of precision and recall

       𝐹 = !
!
""

!
#
= #$

#$"!$(&$"&')

True Label

True False

Predicted 
Label

True tp fp

False fn tn



Precision and recall
• Generally we trade precision vs. recall

– How to get a system with high recall?

• Recall is a non-decreasing function of the # of 
docs retrieved
– Precision usually decreases with more docs retrieved

• Drawbacks
– Binary relevance (for search results)
– Need human judgments
– Must average over large corpus
– Alternatively, skewed by corpus/author selection

53



Exercise
• Consider a search engine that always 

returns all documents

• Do you expect high or low precision?

• Do you expect high or low recall?

54



Exercise
• Consider a search engine that always 

returns all documents

• Do you expect high or low precision?
– Low.  If all docs are returned, then many non-relevant docs are 

included, which will decrease the percentage of returned docs 
that are relevant.

• Do you expect high or low recall?
– High.  If all docs are returned, then all relevant docs must be 

returned.

• Do you, personally, want a high-precision or high-recall 
search engine?

• Who might want the opposite?

55



Precision-recall curves
• A search engine will create a total 

ordering on all documents
• The top k are returned to the user
• We can calculate precision and recall for 

several values of k
• This creates a precision-recall curve

56



P/R CURVES

57Thanks https://www.datacamp.com/tutorial/precision-recall-curve-tutorial



Take Ranking Into Account
• Precision at fixed recall
– Precision of top k results, for k=1,10,50,…
– Critical for Web Search

• Use Kendall’s Tau for comparing sort 
orders

58



Kendall's Tau
• Use a real ordering of documents, not just 

binary "relevant/not relevant"
• The correct document ordering is:

– 1, 2, 3, 4
• Search Engine A outputs:

– 1, 2, 4, 3
• Search Engine B outputs:

– 4, 3, 1, 2
• Intuitively, A is better.  How do we capture this 

numerically?

59



Measuring Rank Correlation
• Kendall's Tau has some nice properties:
– If agreement between 2 ranks is perfect, then 

KT = 1
– If disagreement is perfect,

then KT = -1
– If rankings are uncorrelated, then KT = 0 on 

average

• Intuition: Compute fraction of pairwise 
orderings that are consistent

60



Kendall's Tau

• The non-normalized version is called 
Kendall’s Tau Distance

• Also called bubble-sort distance
61

€ 

τ =
nc − nd
1
2
n(n −1)

# pairs that agree # pairs that disagree

total # pairs



Try it out
• Correct ordering:
– 1, 2, 3, 4

• Search Engine A:
– 1, 2, 4, 3

• Search Engine B:
– 4, 3, 2, 1

€ 

τ =
5 −1

1
2
4(4 −1)

=
4
6

= 0.666

€ 

τ =
0 − 6

1
2
4(4 −1)

=
−6
6

= −1

62



ROC AUC
(usually used for models with a threshold)

63
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False Positive Rate: FP / (FP + TN)

What would be the ideal ROC curve?
How would a random guess look like?

Receiver Operating Characteristic curve 
(term from the age of radio receivers)



ROC AUC
(usually used for models with a threshold)
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False Positive Rate (FP / FP + TN)

AUC: Area under the ROC Curve



ROC vs P/R

65

Very similar, but not quite the same

What’s same? What’s different?

Which one would you prefer to use?



Evaluation: 
Accuracy isn’t always enough

• Is 90% accuracy good or bad?

66



Evaluation: 
Accuracy isn’t always enough

• Is 90% accuracy good or bad?
– It depends on the problem

• Need a baseline:
– Base Rate 

• Accuracy of trivially predicting the most-frequent class
– Random Rate

• Accuracy of making a random class assignment
• Might apply prior knowledge to assign random distribution

– Naïve Rate
• Accuracy of some simple default or pre-existing model
• Ex: “All females survived”

67



Why Baselines?

38/40 = 95%

38/40 = 95%

A
B

A B
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Feature Engineering

70

Error



Class Task: Feature Engineering

71

Error

https://www.washingtonpost.com/news/wonk/wp/2014/04/07/twitter-is-
surprisingly-accurate-at-predicting-unemployment/

How would you predict the unemployment
rate before the official numbers come out?



Feature Engineering
• Dropping features 

– Remove duplicates 
– Highly correlated values (Zip code, Lon/Lat)

• Feature creation
– Feature crosses: Cost per square feet 
– Creating special features (“I lost my job”)
– Row statistics

• Number of 0, nulls, negative value, mean, max, min,…
– Projection to circle

• Turn a single feature (like day_of_week) into two coordinates on a circle
• Ensures that distance between Monday and Sunday etc is the same

– Spatial
• GPS encoding
• Categorized locations (e.g., close to city, rural, nearby hospital, etc. ) 

– Use embeddings from other models (more on that later)
– Discretization (date à weekend/weekday)
– ...

72



Transformations
• Rounding

– Lossy
– Precision can just be noise -> might improve training
– Log transform before rounding often useful

• Binning
– Removes information
– Can work gracefully with variables outside of ranges seen in the train set

• Scaling
– Sandard (Z) Scaling
– MinMax Scaling
– Root Scaling
– Log Scaling

• Outlier removal
• Imputation (mean, median, …)
• Interaction encoding : Specifically encodes the interaction between two 

numerical variables
– Substraction, Addition, Multiplication….
– Polynomial encoding

• Linear algorithms can not solve XOR problem
• A polynomial kernel can solve XOR

73



Encodings
• One-hot

• NaN, null, etc à create explicit encoding

• Hash-encoding (careful might introduce collisions)

• Count encoding: replace categorical value with their count
– Useful for both linear and non-linear algorithms

– Sensitive to outliers

– Might create collisions 

• Rank encoding: Rank categorical variables by count in train set
– Useful for both linear and non-linear algorithms

– Not sensitive to outliers

– Won’t give same encoding to different variables

• Target encoding: Encode categorical variables by their ratio of target (binary classification) 
in train set
– Be careful to avoid overfit

– Add smoothing to avoid setting variable encoding to 0

– Add random noise?

– Can work extremely well when done right

• Consolidation/expansion encoding: map different categorical variables to the same

– Spelling errors, slightly different job descriptions, abbreviations
74



Text Features

Spam

Not Spam

Bag of Words
𝑈𝑟𝑔𝑒𝑛𝑡: 1
𝑚𝑜𝑛𝑒𝑦: 1
𝐻𝑒𝑟𝑏𝑒𝑙: 2
𝑃𝑖𝑙𝑙𝑠: 2
𝐴𝑟𝑒: 1
…

ℎ𝑒𝑟𝑏𝑒𝑙 𝑝𝑖𝑙𝑙𝑠: 1
𝑝𝑖𝑙𝑙𝑠 𝑓𝑜𝑟: 1
𝑓𝑜𝑟 𝐻𝑎𝑖𝑟: 2

𝐻𝑎𝑖𝑟 𝑔𝑟𝑜𝑤𝑡ℎ: 1
𝑠𝑢𝑟𝑔𝑒𝑟𝑖𝑒𝑠: 2

…

N-Grams



One-Hot Encoding
Bag of Words

𝑈𝑟𝑔𝑒𝑛𝑡
𝑀𝑜𝑛𝑒𝑦
𝐻𝑒𝑟𝑏𝑒𝑙
𝑃𝑖𝑙𝑙𝑠
𝐴𝑟𝑒
…

ID Urgent Money Herbel Pills Are ….

Mail1 0 1 1 0 1 …

Mail2 1 0 0 1 1 …

… … … … … … …



Word embeddings

• Idea:  learn a high-dimensional 
representation of each word
  Cat: {0.002, 0.244, 0.546, …, 0.345}

• Need to have a function W(word) that 
returns a vector encoding that word. 

• Applications: ??? 



Word embeddings: properties
Relationships between words correspond 
to difference between vectors. 

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/



Word embeddings: questions

• How big should the embedding space be?  
– Trade-offs like any other machine learning problem – greater 

capacity versus efficiency and overfitting. 

• How do we find W?
– Often as part of a prediction or classification task involving 

neighboring words.  



Learning word embeddings

• First attempt:
– Input data is sets of 5 words from a meaningful 

sentence.  E.g., “one of the best places”.  Modify 
half of them by replacing middle word with a 
random word.  “one of function best places”

– W is a map (depending on parameters, Q) from 
words to 50 dim’l vectors. 

– Feed 5 embeddings into a module R to determine 
‘valid’ or ‘invalid’  

– Optimize over Q to predict better

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

https://arxiv.org/ftp/arxiv/papers/1102/1102.1808.pdf


