- Project Proposals (March 4)

Last time:
Text manipulation tools:
grep, sed, awk
Text similarity:
Jaccard similarity
Cosine distance
TF/IDF
Embeddings

^X? ${ }^{\wedge}{ }^{\wedge}(X X+?)$ 1+\$

Generates a string of length n , to test if n is prime (match $=$ not prime)
^x?\$ base case: 0 and 1 are not prime
(? matches preceding character 0 or 1 times)
|
^($\mathbf{x x +}$?) two or more xs
(? makes + match smallest substring)

Without ?:

XXXXXX No match
XXXXXX No match
XXXXXX No match
XxXXXX Match! \rightarrow Prime

With ?:

XXXXXX Match!

? does not affect correctness; any match indicates non-prime

Search algorithm is to look for smallest (w ?, largest) match; if none found, backtrack and repeated with one larger (smaller) subsequence

PERFORMANCE

```
import re
import time
def prime(n):
    s = "x" * n
    return re.match("^x?$||^(xx+?)\\1+$", s)
def prime_largest(n):
    s = "x" * n
    return re.match("^x?$|^(xx+)\\1+$", s)
for n in [10000, 100000, 99991, 99999, 100000]:
    print(f"N = {n}")
    start = time.time()
    r1 = prime(n)
    end = time.time()
    print(f"\tsmallest first: {end - start:.2}")
    start = time.time()
    r2 = prime_largest(n)
    end = time.time()
    print(f"\\tlargest first: {end - start:, 2}")
```

$N=10000$
smallest first: 0.00021
largest first: 0.0085
$N=100000$
smallest first: 0.0013
largest first: 0.79
$\mathrm{N}=99991$
smallest first: 3.2
largest first: 3.2
$\mathrm{N}=99999$
smallest first: 0.0026
largest first: 1.4
$N=100000$
smallest first: 0.0015
largest first: 0.79

Clearly, matching smallest first will perform better, since largest first always has to try at least first N/2 before it finds a match

THIS TIME

- Data Integration and Cleaning
- Dealing with tabular data with errors
- Combining tabular datasets
- Handling missing data

EXAMPLE TASK

st+informa

How many people work in the US IT industry? What is the avg revenue per employee in the tech industry?

EXAMPLE TASK

Rank ${ }^{[1]}$		Company	Fiscal Year Ending	Revenue（\＄B）USD	Employees	Headquarters
1	苇	Apple Inc．	30 September 2017 ${ }^{[2]}$	\＄229．2 ${ }^{[1][3]}$	$123,000{ }^{[3]}$	Cupertino，CA，US
2	： 0	Samsung Electronics	31 December 2017 ${ }^{[4]}$	\＄211．9 ${ }^{[1][5][6]}$	320，670 ${ }^{[7][8]}$	Suwon，South Korea
3	$\underline{\underline{\underline{\underline{\underline{\underline{E}}}}}}$	Amazon	31 December 2017 ${ }^{[9][10]}$	\＄177．9 ${ }^{[1][10]}$	$613,300{ }^{[11]}$	Seattle，WA，US
4	\square	Foxconn	31 December 2017 ${ }^{[12][13]}$	\＄154．7－158 ${ }^{[1][13][14]}$	$803,126^{[15]}$	New Taipei City，Taiwan
5	唔	Alphabet Inc．	31 December 2017 ${ }^{[16][17]}$	\＄110．8 $8^{[1][17]}$	$80,110^{[18]}$	Mountain View，CA，US
6		Microsoft	30 June 2017 ${ }^{[19]}$	\＄90．0 $0^{[1]}$	$124,000{ }^{[19]}$	Redmond，WA，US
7		Huawei	31 December 2017 ${ }^{[20][21]}$	\＄89．3－92．5 ${ }^{[1][21]}$	180，000	Shenzhen，China
8	\bullet	Hitachi	31 March 2018 ${ }^{[22]}$	\＄84．6 ${ }^{[1]}$	307，275	Tokyo，Japan
9	䝂	IBM	31 December 2017 ${ }^{[23][24]}$	\＄79．1 ${ }^{[1]}$	397，800	Armonk，NY，US
10	$\underline{\underline{\underline{\underline{\underline{E}}}}}$	Dell Technologies	31 January 2018 ${ }^{[25][26]}$	\＄78．7 $7^{[1][26]}$	$145,000^{[25]}$	Round Rock，TX，US
11	\bullet	Sony	31 March 2018 ${ }^{[27]}$	\＄77．9 $1^{[1][28]}$	$117,300{ }^{[27]}$	Tokyo，Japan
12	\bullet	Panasonic	31 March 2018 ${ }^{[29]}$	\＄72．0 ${ }^{[1]}$	274，143	Osaka，Japan
13	些	Intel	31 December 2017 ${ }^{[30]}$	\＄62．8 ${ }^{[1]}$	102，700	Santa Clara，CA，US
14	\％：	LG Electronics	31 December 2017 ${ }^{[31]}$	\＄54．3 ${ }^{[1]}$	74，000	Seoul，South Korea
15	－	JD．com	31 December 2017 ${ }^{[32]}$	\＄54．0 ${ }^{[1]}$	157，831	Beijing，China
16	坒	HP Inc．	31 October 2017 ${ }^{[33]}$	\＄52．0 ${ }^{[1]}$	49，000	Palo Alto，CA，US

Rank＊	United States Largest Private Employers（as of 2017）${ }^{[1 / 12\|[\mid]\| 3 \mid 4]}$［hide］		
	Employer－	Global number of Employees－	Median annual pay
1	Walmart	2，300，000	\＄19，177
2	Amazon	469，690	\＄36，969
	Deutsche Post DHL	499，018	
3	United Parcel Service	456，415	\＄53，443
4	Yum！Brands	450，000	\＄9，111
5	Kroger	449，000	\＄21，075
6	Home Depot	413，000	\＄20，095
7	Berkshire Hathaway	377，000	\＄53，510（BH directly employs C ． 30 people．All the others are employed by the companies BH purchases．）
8	International Business Machines	366，000	\＄55，088
9	FedEx	357，000	\＄50，017
10	Target Corporation	345，000	\＄20，581
11	General Electric	313，000	\＄57，211
12	Walgreens Boots Alliance	290，000	\＄31，132
13	Starbucks	277，000	\＄12，754
14	Albertsons	273，000	
15	Pepsico	263，000	\＄47，801
16	Wells Fargo	262，700	\＄60，466
17	Cognizant Technology Solutions	260，000	\＄31，998
18	UnitedHealth Group	260，000	\＄58，378
19	Lowe＇s	240，000	\＄23，905
20	AT\＆T	268，540	\＄95，814

，name，domain，year founded，industry，size range，locality，country，linkedin url，current employee estimate，total employee estimate
5872184，ibm，ibm．com，1911，information technology and services，10001＋，＂new york，new york，united states＂，united states，linkedin．com／company／ibm，274047，716906
4425416, tata consultancy services，tcs．com，1968，information technology and
services，10001＋，＂bombay，maharashtra，india＂，india，linkedin．com／company／tata－consultancy－ services，190771，341369
21074，accenture，accenture．com，1989，information technology and services，10001＋，＂dublin，dublin， ireland＂ireland，linkedin．com／company／accenture，190689，455768
2309813，us army，goarmy．com，1800，military，10001＋，＂alexandria，virginia，united states＂，united
states，linkedin．com／company／us－army，162163，445958
1558607，ey，ey．com，1989，accounting，10001＋，＂london，greater london，united kingdom＂，united kingdom，linkedin．com／company／ernstandyoung，158363， 428960
3844889，hewlett－packard，hpe．com，1939，information technology and services，10001＋，＂palo alto， california，united states＂，united states，linkedin．com／company／hewlett－packard－
enterprise，127952，412952
解 services，10001＋，＂teaneck，new jersey，united states＂，united
states，linkedin．com／company／cognizant，122031，210020
5944912，walmart，walmartcareers．com，1962，retail，10001＋，＂withee，wisconsin，united states＂，united states，linkedin．com／company／walmart，120753，272827
3727010，microsoft，microsoft．com，1975，computer software，10001＋，＂redmond，washington，united states＂，united states，linkedin．com／company／microsoft，116196，276983
3300741 ，at\＆t，att．com，1876，telecommunications，10001＋，＂dallas，texas，united states＂，united
states，linkedin．com／company／at\＆t，115188，269659
5412257，united states air force，airforce．com，1947，defense \＆space，10001＋，＂randolph，texas， united states＂，united states，linkedin．com／company／united－states－air－force，113997，316549 2780814，pwc，pwc．com，1998，accounting，10001＋，＂new york，new york，united states＂，united states，linkedin．com／company／pwc，111372， 379447
3972223, wells fargo，wellsfargo．com，，financial services，10001＋，＂san francisco，california， united states＂，united states，linkedin．com／company／wellsfargo，109532， 264101
1454663 ，infosys，infosys．com，1981，information technology and services，10001＋，＂bangalore，
karnataka，india＂，india，linkedin．com／company／infosys，104752，215718
3221953，deloitte，deloitte．com，1900，management consulting，10001＋，＂new york，new york，united

EXAMPLE TASK

On average, what is the revenue per employee in the tech sector in the US?

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60 k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380 k	\$80B	\$12B
International Business Machine 10504; 1 New Orchard Rd	380 k	\$-999B	\$12B	
Microsoft	Albuquerque, Mexico Sableau Seattle, Washington, United States 64 Church St, Cmabridge, MA 02138, United States	-20	120 k	\$85B

What are some errors you see here?

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60 k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380 k		\$80B

MORE?

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60 k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380 k	\$80B	\$12B
International Business Machine Microsoft	10504; 1 New Orchard Rd	380 k	\$-999B	\$12B
Tableau	Albuquerque, Mexico	120 k	\$85B	\$85B
Tamr	Seattle, Washington, United States	-	\$0.9B	\$1B
64 Church St, Cmabridge, MA 02138, United States	20	null	\$-Y	

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380 k	\$80B	\$12B
International Business Machine	10504; 1 New Orchard Rd	380 k	\$-999B	\$12B
Microsoft	Albuquerque, Mexico	120 k	\$85B	\$85B
Tableau	Seattle, Washington, United States	-	\$0.9B	\$1B
Tamr	64 Church St, Cmabridge, MA 02138, United States	20	null	\$-Y
Amazon	$? ?$	$? ?$	$? ?$??
Facebook	$? ?$	$? ?$	$? ?$	
??	$? ?$	$? ?$	$? ?$	
??	$? ?$	$? ?$	$? ?$	

Unknown Unknowns

OUTLINE

Data Integration

- Schema matching
- Entity resolution
- Blocking, etc

Data Cleaning

- Missing values \rightarrow Value imputation
- Missing records \rightarrow Species estimation

OUTLINE

Data Integration

- Schema matching
- Entity resolution
- Blocking, etc

Data Cleaning

- Missing values \rightarrow Value imputation
- Missing records \rightarrow Species estimation

WHY IS SCHEMA MATCHING HARD

SCHEMAS CAN BE REALLY COMPLICATED

SAP (very small fraction)

ORACLE-TO-HANA MIGRATION SCHEMA

8 |edndo

SCHEMA MATCHING

Goal is to match columns from two tables, to produce a single table with the same schema

Complicated because people use different names, types, \#s of columns for attributes
E.g., name vs firstName, lastName addr vs addrNo, addrSt, addrCty, addrState...

Typical approach: find columns with a similar name, the same data type, and high overlap in values

DATA OFTEN HAS MANY CONSTRAINTS

Key, uniqueness, functional dependencies, foreign keys
What do these terms mean?
Students

Takes_Course
Courses

DATA OFTEN HAS MANY CONSTRAINTS

Value range, format, etc.

Students

Takes_Course
Courses

HARMONY

EVERY COMPANY HAS TO DEAL WITH IT

amazon
advertising

Google Ads

HubSp’’̊t
II) Marketo

okta

Azure
Synapse
Analytics

DATA INTEGRATION OPENSOURCE/STARTUPS

SOURCES

(1) Airbyte
destinations

Fivetran

DATA LAKES TO THE RESCUE?

OUTLINE

Data Integration

- Schema matching
- Entity resolution
- Blocking, etc

Data Cleaning

- Missing values \rightarrow Value imputation
- Missing records \rightarrow Species estimation

ENTITY RESOLUTION

"[The] problem of identifying and linking/grouping different manifestations of the same real world object."

Challenges

- Fundamental ambiguity
- Diversity in representations (format, truncation, ambiguity)
- Errors
- Missing data
- Records from different times
- Relationships in addition to equality

TEXT SIMILARITY

Customer

Id	Name	Street	City	State	P-Code	Age
I	J Smith	123 University Ave	Seattle	Washington	98106	42
2	Mary Jones	245 3rd St	Redmond	WA	98052-1234	30
3	Bob Wilson	345 Broadway	Seattle	Washington	98101	19
4	M Jones	245 Third Street	Redmond	NULL	98052	299
5	Robert Wilson	345 Broadway St	Seattle	WA	98101	19
6	James Smith	123 Univ Ave	Seatle	WA	NULL	41
7	JWidom	123 University Ave	Palo Alto	CA	94305	NULL
...	\cdots	...	\cdots	\cdots	\cdots	\ldots

TEXT SIMILARITY

String Similarity function:

- Sim(string, string) \rightarrow numeric value

A "good" similarity function:

- Strings representing the same concept \Rightarrow high similarity
- Strings representing different concepts \Rightarrow low similarity

EDIT DISTANCE

EditDistance(s1, s2):
$>$ Minimum number of edits to transform s1 to s2

Edit:
$>$ Insert a character
>Delete a character
>Substitute a character

Note: EditDistance(s1, s2) = EditDstance(s2, s1)

EDIT DISTANCE

EditDistance ("Provdince", "Providence") = 2
Provdince \longrightarrow Providence \longrightarrow Providence

EditDistance("Seattle", "Redmond") = 6
Seattle \longrightarrow Reattle \longrightarrow Redttle
Redmtle \longrightarrow Redmole \longrightarrow Redmone
\longrightarrow Redmond

EDIT DISTANCE PROBLEMS

115th Waterman St., Providence, RI
EditDistance $=1$
110 th Waterman St., Providence, RI

Waterman Street, Providence, RI
EditDistance $=4$
Waterman St, Providence, RI
Character Level vs. Word Level Similarity?

EDIT DISTANCE PROBLEMS

148th Ave NE, Redmond,WA
\downarrow EditDist $=0$
148th Ave NE, Redmond,WA

148th Ave NE, Redmond,WA

$$
\text { EditDist = } 4
$$

NE I48th Ave, Redmond,WA

Order sensitive Similarity?

JACCARD SIMILARITY

- Saw last time
- Statistical measure
- Originally defined over sets
- String = set of words

$$
\operatorname{Jaccard}(s 1, s 2)=\frac{|s 1 \cap s 2|}{|s 1 \bigcup s 2|}
$$

- Range of values $=[0,1]$

OTHER SIMILARITY FUNCTIONS
> Embedding Distance (BERT, etc)
$>$ Affine edit distance
$>$ Cosine similarity
$>$ Hamming distance
> Generalized edit distance
> Jaro distance

- No universally good similarity function
- Choice of similarity function depends on domains of interest, data instances, etc.
$>$ Monge-Elkan distance
$>$ Q-gram
> Smith-Warerman distance
>Soundex distance
$>$ TF/IDF
> ...many more

RECORD MATCHING PROBLEMS

Customer

COMBINING SIMILARITY FUNCTIONS

LEARNING-BASED APPROACH

Bob Wilson	345 Broadway	Seattle	Washington	98101	19	Match
Robert Wilson	345 Broadway St	Seattle	WA	98101	19	
BWilson	123 Broadway	Boise	Idaho	83712	19	Non-Match
Robert Wilson	345 Broadway St	Seattle	WA	98101	19	
Mary Jones	245 3rd St	Redmond	WA	98052-1234	30	Match
M Jones	245 Third Street	Redmond	NULL	98052	299	
Mary Jones	245 3rd St	Redmond	WA	98052-1234	30	Non-Match
Robert Wilson	345 Broadway St	Seattle	WA	98101	19	

LEARNING BASED APPROACH

LEARNING BASED APPROACH

EMBEDDINGS TO THE RESCUE?

```
def do_bert():
    model = SentenceTransformer('all-mpnet-base-v2')
    sen_embeddings = model.encode(sen)
    from sklearn.metrics.pairwise import cosine_similarity
    cos_sim = cosine_similarity(sen_embeddings)
    plot_sim_matrix(cos_sim, sen)
sen = [
    "Sam Madden",
    "S. Madden",
    "Microsoft Corporation",
    "MSFT",
    "Microsoft Corp.",
    "Big Blue",
    "IBM",
    "46 Newbury St Newton MA",
    "46 Newbury Street Newton Centre MA 02459"
]
```


OUTLINE

Data Integration

- Schema matching
- Entity resolution
- Blocking, etc

Data Cleaning

- Missing values \rightarrow Value imputation
- Missing records \rightarrow Species estimation

SCALING CHALLENGE: BLOCKING

Matching is a quadratic process
Naively, have to compare every record in dataset A to every record in B
Idea: only compare similar records, i.e., by splitting records based on some attribute, either manually (e.g., using intuition) or automatically (e.g., using clustering)

Dataset 1

Name	Address	Dept
Sam	$1^{\text {st }}$ St	EECS
Mike	$2^{\text {nd }}$ Ave	ME
Mary	$1^{\text {st }}$ St	Physics
Yuan	$2^{\text {nd }}$ Ave	Math

Dataset 2

Name	Addr	Income
Samuel	123 1st	50 k
M. Jones	348 1st	80 k
Mikey	246 2nd	30 k
Yuan Yuan	444 2nd	75 k

Yields a set of blocks; only compare records in the same block

DATA FUSION: MULTI-SOURCE INTEGRATION

Voting + source quality + copy detection

- Resolves inconsistency across diversity of sources

DATA FUSION

Data fusion: voting + source quality + copy detection

	S1	S2	S3
Jagadish	UM	ATT	UM
Dewitt	MSR	MSR	UW
Bernstein	MSR	MSR	MSR
Carey	UCI	ATT	BEA
Franklin	UCB	UCB	UMD

DATA FUSION

Data fusion: voting + source quality + copy detection

- Supports difference of opinion

	S1	S2	S3
Jagadish	UM	ATT	UM
Dewitt	MSR	MSR	UW
Bernstein	MSR	MSR	MSR
Carey	UCI	ATT	BEA
Franklin	UCB	UCB	UMD

DATA FUSION

Data fusion: voting + source quality + copy detection

	S1	S2	S3
Jagadish	UM	ATT	UM
Dewitt	MSR	MSR	UW
Bernstein	MSR	MSR	MSR
Carey	UCI	ATT	BEA
Franklin	UCB	UCB	UMD

DATA FUSION

Data fusion: voting + source quality + copy detection

- Gives more weight to knowledgeable sources

	S1	S2	S3
Jagadish	UM	ATT	UM
Dewitt	MSR	MSR	UW
Bernstein	MSR	MSR	MSR
Carey	UCI	ATT	BEA
Franklin	UCB	UCB	UMD

DATA FUSION

Data fusion: voting + source quality + copy detection

	S1	S2	S3	S4	S5
Jagadish	UM	ATT	UM	UM	UI
Dewitt	MSR	MSR	UW	UW	UW
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	ATT	BEA	BEA	BEA
Franklin	UCB	UCB	UMD	UMD	UMD

DATA FUSION

Data fusion: voting + source quality + copy detection

- Reduces weight of copied sources

S1	S2	S3		
Jagadish	UM	ATT	UM	
Bewitt	MSR	MSR	UW	
Carey	UCI	ATT	BEA	
Franklin	UCB	UCB	UMD	

DATA FUSION

Data fusion: voting + source quality + copy detection

- Reduces weight of copied sources

	S1	S2	S3	
Jagadish	UM	ATT	UM	
Dewitt	MSR	MSR	UW	
Bernstein	MSR	MSR	MSR	
Carey	UCI	ATT	BEA	
Franklin	UCB	UCB	UMD	

Copy Detection

OUTLINE

Data Integration

- Different schemas \rightarrow Schema matching
- Duplicates \rightarrow Entity resolution
- Scale \rightarrow Blocking, etc

Data Cleaning

- Missing values \rightarrow Value imputation
- Missing records \rightarrow Species estimation

TYPES OF MISSING VALUES

- Missing Completely at Random (MCAR)
- Includes missing by design. For example: Survey randomly selects questions to reduce load
- Missing at Random (MAR)
- Better name: Missing Conditionally at Random
- Systematic relationship between the propensity of missing values and the observed data, but not the missing data.
--> if we can control for this conditional variable, we can get a random subset.
- Example: older people more likely to respond to telephone survey, thus more data missing from older people
- Missing Not at Random, MNAR
- Relationship between the propensity of a value to be missing and its values.
- Lowest education are missing on education or the sickest people are most likely to drop out of the study.
- MNAR is called "non-ignorable" because the missing data mechanism itself has to be modeled as you deal with the missing data.
Note: null values are often encoded in various ways. Be aware of it!
Null, "null", n/a, "", 0, "empty", 99999, 200.

CLICKER

Where would you reinforce the plane?

HOW DO YOU START ADDRESSING MISSING VALUES?

VISUALIZATIONS TO DETECT BIAS IN MISSING DATA

A lot of tips here: https://github.com/ResidentMario/missingno

VISUALIZATIONS TO DETECT BIAS IN MISSING DATA

VISUALIZATIONS TO DETECT BIAS IN MISSING DATA

FACEBOOK SOCIAL GRAPH: VISUALIZATION THE NODE-LINK DIAGRAM

(a)

FACEBOOK SOCIAL GRAPH: VISUALIZATION THE NODE-LINK DIAGRAM

(b)

[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]

FACEBOOK SOCIAL GRAPH: SORTING BY RAW DATA

(c)

[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]

CLASS TASK: COME UP WITH AT LEAST 5 TECHNIQUES TO DEAL WITH MISSING VALUES

TECHNIQUES TO DEAL WITH MISSING VALUES (ONLY FOR MCAR / MAR)
 Missing Completely at Random

- Two broad choices: Drop or Impute
- Drop Methods
- Pairwise deletion
- Listwise deletion
- Imputation Methods
- Mean Substitution
- Regression Methods
- Random sample from existing values/ reasonable distribution
- Multiple Imputation

PAIRWISE AND LISTWISE DELETION

Pairwise Deletion

```
SELECT SUM(revenue)/
SUM(employees) FROM
us_tech_companies
```

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico, USA	120k	\$85B	\$85B
Fableau	Seattle, Washington, United States		\$5M	\$8M
Jamf	64Chureh St, Cambridge, MAA 02138, USA	20	\$	\$Y

PAIRWISE AND LISTWISE DELETION

Pairwise Deletion

SELECT SUM(revenue)/ SUM (employees) FROM
us_tech_companies

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico, USA	120k	\$85B	\$85B
Fableau	Seattle, Washington, United States		\$5A	\$8M
Jamf	64 Church St, Cambridge, MA O2138,USA	20	\$ x	\$Y

Listwise Deletion

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkw, Mountain View, CA, 94043, USA	60k	\$89B	
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; 10504, USA	380k	\$80B	\$12B
Microsoft	Albuquerque, New Mexico, USA	120k	\$85B	\$85B
Fableau	Seattle, Washington, United States		\$5M	\$8A
Tamf	64-Church St, Cambridge, MA 02138,USA	20	\$ X	\$Y

PAIRWISE AND LISTWISE DELETION

Pairwise Deletion

- Only cases relating to each pair of variables with missing data involved in an analysis are deleted.
- Advantage: keeps as many cases as possible for each analysis, uses all information possible with each analysis
- Disadvantage: cannot compare analyses because sample is different each time, sample size vary for each parameter estimation, can obtain nonsense results

Listwise Deletion

- Only analyze cases with available data on each variable
- Advantage: simplicity and comparability across analyses
- Disadvantage: reduces statistical power (reduced sample size), some information unused, estimates may be biased if data not MCAR

INITIAL CLEANING

Look for fields with very high percentage of missing fields

- It may be necessary to exclude field and use an alternative

Look for records with a high percentage of missing fields

- Consider excluding these
- For example, someone who has started inputting a survey and given up after two questions!

Document deletions!

UNIVARIATE SINGLE IMPUTATION MEAN SUBSTITUTION

Mean Substitution

- Replace missing value with the sample mean or mode. Then, run analyses as if all complete cases

UNIVARIATE SINGLE IMPUTATION MEAN SUBSTITUTION

Mean Substitution (do not use)

- Replace missing value with the sample mean or mode. Then, run analyses as if data is complete
- Advantage: Simple, no missing data
- Disadvantage: Reduces variability, weakens correlations, biases data
- Unless the proportion of missing data is low, do not use this method.
- Inappropriate for categorical variables.

SIMPLE STOCHASTIC IMPUTATION

Randomly sample from existing values:

- Randomly generate an integer from 1 to num. non-missing

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60 k	\$89B	\$10B
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66 k	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380 k	$\$ 80 \mathrm{~B}$	$\$ 12 \mathrm{~B}$
Microsoft	Albuquerque, New Mexico	120 k	$\$ 85 \mathrm{~B}$	\$85B
Tableau	Seattle, Washington, United States		$\$ 5 \mathrm{M}$	$\$ 8 \mathrm{M}$

SIMPLE STOCHASTIC IMPUTATION

Randomly sample from existing values:

- Randomly generate an integer from 1 to num. non-missing
- E.g., Randomly generate number between 1 and 4: Say $2 \rightarrow$ Set Tableau employees to Apple Employees (66k)

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60 k	\$89B	\$10B
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66 k	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380 k	$\$ 80 \mathrm{~B}$	$\$ 12 \mathrm{~B}$
Microsoft	Albuquerque, New Mexico	120 k	$\$ 85 \mathrm{~B}$	\$85B
Tableau	Seattle, Washington, United States	66 k	$\$ 5 \mathrm{M}$	$\$ 8 \mathrm{M}$

SIMPLE STOCHASTIC IMPUTATION

Randomly sample from existing values:

- Randomly generate an integer from 1 to num. non-missing
- E.g., Randomly generate number between 1 and 4: Say $2 \rightarrow$ Set Tableau employees to Apple Employees (66k)

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60 k	\$89B	\$10B
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66 k	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380 k	$\$ 80 \mathrm{~B}$	\$12B
Microsoft	Albuquerque, New Mexico	120 k	$\$ 85 \mathrm{~B}$	\$85B
Tableau	Seattle, Washington, United States	66 k	$\$ 5 \mathrm{M}$	\$8M

Disadvantage: May be very wrong for certain values
Hot-deck approach: draws are made from units with complete data that are 'similar' to the one with missing values (donors).

MULTIVARIATE IMPUTATION

Regression imputation

- Replace missing values with predicted score from regression equation. Use complete cases to regress the variable with incomplete data on the other complete variables.

MULTIVARIATE IMPUTATION

Regression imputation

- Replace missing values with predicted score from regression equation. Use complete cases to regress the variable with incomplete data on the other complete variables.
- Uses information from the observed data, gives better results than previous ones
- Emphasizes correlations present in the available data

Other models, e.g., maximum likelihood estimation, are possible (but we won't cover them)

DEMO

OTHER METHODS

Nearest-neighbors imputation

- KNN defines for each sample or individual a set of K-nearest neighbors and then replaces the missing data for a given variable by averaging (non-missing) values of its neighbors
- Advantage: Simple, uses information from the observed data, experimentally shows good performance
- Disadvantage: not statistically grounded, might over-estimates model fit and correlation

EM (Expectation Maximization)
Fuzzy K-means Clustering
Bayesian Principal Component Analysis
Deep Learning-based approaches

MULTIPLE IMPUTATION (MI)

Multiple imputation (MI) is a common method for general- purpose handling of missing data in multivariate analysis.

1. Impute missing values using an appropriate model that incorporates random variation.
2. Do this M times producing M "complete" data sets.
3. Perform the desired analysis on each data set using standard complete-data methods.
4. Average the values of the parameter estimates across the M samples to produce a single point estimate.
5. Calculate the standard errors by (a) averaging the squared standard errors of the M estimates (b) calculating the variance of the M parameter estimates across samples, and (c) combining the two quantities using a simple formula

OUTLINE

Data Integration

- Different schemas \rightarrow Schema matching
- Duplicates \rightarrow Entity resolution
- Scale \rightarrow Blocking, etc

Data Cleaning

- Missing values \rightarrow Value imputation
- Missing records \rightarrow Species estimation

UNKNOWN UNKNOWNS

IF YOU CAN ESTIMATE THEM DEPENDS ON THE SAMPLING SCENARIO

Name	Address	\#Employees	Revenue	Profit
Google	1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA	60k	\$89B	null
Apple	1 Infinite Loop; Cupertino, CA 95014, USA	66	\$215B	\$45B
IBM	1 New Orchard Rd; New York 10504, USA	380k	\$80B	\$12B
International Business Machine	1 New Orchard Rd; 10504	380k	\$-999B	\$12B
Microsoft	Albuquerque, Mexico	120k	\$85B	\$85B
Tableau	Seattle, Washington, United States	-	\$0.9B	\$1B
Tamr	64 Church St, Cmabridge, MA 02138, United States	20	null	\$-Y
Amazon	??	??	??	??
Facebook	??	??	??	??
??	??	??	??	??
??	??	??	??	??

THE IMPACT OF THE UNKNOWN UNKNOWNS ON QUERY RESULTS

How many people work in the US IT industry

SELECT SUM(employees)
FROM us_tech_companies

Query

Assumption: Enough data sources, Data sources are (semi-) independent

Sampling - Statistic

	Name	Address	\#Employees	Revenue	Profit	Frequency
Google	Google	Address I	60k	\$89B	\$10B	3
	Apple	Address II	66k	\$215B	\$45B	4
	IBM	Address II	380k	\$80B	\$12B	2
[microsoft	Microsoft	Address	120k	\$85B	\$85B	2
節+obleou	Tableau	Address	3.2k	\$500	\$8M	1
\%tamr	Tamr	Address	20	\$-X	\$-Y	1

Frequency (i.e., f-statistic):
$\mathrm{f}_{1}: 2$ Singletons (items which were

$\mathrm{f}_{4}: 1$ Google
$\mathrm{f}_{3}: 1$

$$
\begin{aligned}
& c=6 \text { unique companies } \\
& N=3+4+2+2+1+1=13 \text { observations }
\end{aligned}
$$

MANY WAYS TO ESTIMATE THE NUMBER OF MISSING ITEMS

- Good-Turing Estimate / Chao84
- Chao92
- Pattern Maximum Likelihood
- Linear programming-based solutions (see Valiant brothers)

ESTIMATING THE NUMBER OF DISTINCT BUTTERFLY SPECIES

 Global count estimates Earth has 73,000 tree species -14% more than reported
Second world war codebreaking calculations used at Bletchley Park find 9,000 of those species are yet to be discovered

Researchers collected information on 38 m trees in 90 countries as part of the global count. Photograph: Global Forest Biodiversity Initiative)
There are an estimated 73,300 species of tree on Earth, 9,000 of which have yet to be discovered, according to a global count of tree species by thousands of researchers who used second world war codebreaking techniques created at Bletchley Park to evaluate the number of unknown species.
https://www.theguardian.com/environment/2022/jan/31/gl obal-count-estimates-earth-has-73000-tree-species-bletchley-park-good-turing-frequency-estimation

GOOD-TURING / CHAO84 ESTIMATE

Unique Items

Number of Unknown Unknowns:

$$
M=\widehat{N}-c
$$

Note, we usually prefer Chao92: A. Chao and S. Lee, "Estimating the Number of Classes via Sample Coverage," Journal of the American Statistical Association, vol. 87, no. 417, pp. 210-217, 1992
over Chao84: A. Chao, "Nonparametric Estimation of the Number of Classes in a Population," SJS, vol. 11, no. 4, 1984

A NAÏVE ESTIMATOR FOR THE IMPACT OF THE UNKNOWN UNKNOWNS

SELECT SUM(employees)
FROM us_tech_companies

\sum employees, Δ (employees, fingerprint)

A NAÏVE ESTIMATOR FOR THE IMPACT OF THE UNKNOWN UNKNOWNS

Estimated number of missing records

Value sum over all unique items

Mean value

EXAMPLE

$$
\begin{aligned}
& \mathrm{n}=13 \quad \widehat{N}=\frac{c}{\left(1-f_{1} / n\right)}=6 /(1-2 / 13)=7.09 \\
& \mathrm{c}=6 \\
& \mathrm{f}_{1}=2 \quad \Delta_{\text {Naive }}=\frac{c}{\left(1-f_{1} / n\right)} \cdot \frac{\sum_{\{c\}} v}{c}
\end{aligned}
$$

Naïve estimated revenue = 7.09 * \$469B/6 = \$554B

Name	Address	\#Employees	Revenue	Profit	Frequency
Google	Address I	60 k	\$89B	\$10B	3
Apple	Address II	66 k	\$215B	\$45B	4
IBM	Address II	380 k	\$80B	\$12B	2
Microsoft	Address	120 k	$\$ 85 \mathrm{~B}$	$\$ 85 \mathrm{~B}$	2
Tableau	Address	3.2 k	$\$ 500$	$\$ 8 \mathrm{M}$	1
Tamr	Address	20	$\$-X$	$\$-Y$	1

SUMMARY

Quick survey of data cleaning techniques
Schema Matching
Entity Resolution
Dealing with missing values Imputation
Species Estimation

Things we haven't touched on
Detecting \& repairing violations
Outlier detection
Data evolution and temporal linkage (i.e., data changes)

