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[Sean Kandel et al: Research directions in data wrangling: Visualizations and transformations for usable and credible data, Information Visualization, 2011]
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1) grep – find text matching a regular expression
Basic syntax:
  grep 'regexp' filename

or equivalently (using UNIX pipelining): 
  cat filename | grep 'regexp’

2) sed – stream editor

3) awk – general purpose text processing language



WHAT IS A REGULAR EXPRESSION?

A regular expression (regex) describes a set of possible input 
strings.

Regular expressions descend from a fundamental concept in 
Computer Science called finite automata theory

Regular expressions are used in many *nix tools
• vi, ed, sed, and emacs
• awk, tcl, perl and Python
• grep, egrep, fgrep
• compilers



REGULAR EXPRESSIONS

The simplest regular expressions are a string of 
literal characters to match.
The string matches the regular expression if it 
contains the substring.



Unix  rocks.

match

UNIX sucks.

match

UNIX is okay.
no match

regular expression c k s



REGULAR EXPRESSIONS

A regular expression can match a string in more than one place.

Scrapple from the apple.

match 1 match 2

regular expression a p p l e



REGULAR EXPRESSIONS

The . regular expression can be used to match any character.

For me to open

match 1 match 2

regular expression o .   



REPETITION
The * is used to define zero or more occurrences of 
the single regular expression preceding it.

+ Matches one or more occurrences



I got mail, yaaaaaaaaaay!

match

regular expression y a * y  

I sat on the stoop

match

regular expression o a * o  



REPETITION RANGES
Ranges can also be specified
•{ } notation can specify a range of repetitions for 

the immediately preceding regex
•{n} means exactly n occurrences
•{n,} means at least n occurrences
•{n,m} means at least n occurrences but no more 

than m occurrences
Example:
•.{0,} same as .*
•a{2,} same as aaa* 



OR

a|b* denotes {ε, "a", "b", "bb", "bbb", ...}

(a|b)* denotes the set of all strings with no symbols 
other than "a" and "b", including the empty string: {ε, "a", 
"b", "aa", "ab", "ba", "bb", "aaa", ...}

ab*(c) denotes the set of strings starting with "a", then 
zero or more "b"s and finally optionally a "c": {"a", "ac", 
"ab", "abc", "abb", "abbc", ...}



CHARACTER CLASSES – OR SHORTHAND

Character classes [] can be used to match 
any specific set of characters.

beat a brat on a boat

match 1 match 2

regular expression b [eor] a t  

match 3



NEGATED CHARACTER CLASSES

Character classes can be negated with the 
[^] syntax.

beat a brat on a boat

match

regular expression b [^eo] a t  



MORE ABOUT CHARACTER CLASSES
• [aeiou] will match any of the characters a, e, i, o, or u
• [kK]orn will match korn or Korn

Ranges can also be specified in character classes
• [1-9] is the same as [123456789]
• [abcde] is equivalent to [a-e]
• You can also combine multiple ranges

• [abcde123456789] is equivalent to [a-e1-9]
• Note that the - character has a special meaning in a 

character class but only if it is used within a range,
[-123] would match the characters -, 1, 2, or 3



NAMED CHARACTER CLASSES

Commonly used character classes can be referred 
to by name (alpha, lower, upper, alnum, digit, 
punct, cntrl)
Syntax [:name:]
• [a-zA-Z]       [[:alpha:]]
• [a-zA-Z0-9]    [[:alnum:]]
• [45a-z]     [45[:lower:]]

Important for portability across languages



ANCHORS

Anchors are used to match at the 
beginning or end of a line (or both).
^ means beginning of the line
$ means end of the line



beat a brat on a boat

match

regular expression ^ b [eor] a t  

regular expression b [eor] a t $ 

beat a brat on a boat

match

^$^word$



MATCH LENGTH

Scrapple from the apple.

no
yes

regular expression a . * e 

By default, a match will be the longest string that satisfies the regular 
expression.

no



MATCH LENGTH

Scrapple from the apple.

yes
no

regular expression a . * ? e 

no

Append a ? to match the shortest string possible:



PRACTICAL REGEX EXAMPLES

Dollar amount with optional cents

•\$[0-9]+(\.[0-9][0-9])?
Time of day

•(1[012]|[1-9]):[0-5][0-9] (am|pm)
HTML headers <h1> <H1> <h2> …
•<[hH][1-4]>



GREP
• grep comes from the ed (Unix text editor) 

search command “global regular expression 
print” or g/re/p

• This was such a useful command that it was 
written as a standalone utility

• There are two other variants, egrep and fgrep 
that comprise the grep family

• grep is the answer to the moments where you 
know you want the file that contains a specific 
phrase but you can’t remember its name



GREP DEMO

grep '\"text\": ".*location.*"' twitter.json

"text": "RT @TwitterMktg: Starting today, businesses can request and 
share locations when engaging with people in Direct Messages. 
https://t.co/rpYn…",
      "text": "Starting today, businesses can request and share locations 
when engaging with people in Direct Messages. 
https://t.co/rpYndqWfQw",



BACKREFERENCES

Used to refer to a match that made earlier in a regex
• \n is a backreference specifier, where n is a number

Matches the nth subexpression specified by (…)

E.g., to find if the first word of a line is the same as the last:
• ^([[:alpha:]]+) .* \1$

Here, 
 [[:alpha:]]+ matches 1 or more letters 
 ([[:alpha:]]+) is the first subexpression
 \1 matches the first subexpression



FORMALLY

Regular  expressions are “regular” because they can only express 
languages accepted by finite automata.     Backreferences allow you 
to do much more.

See: https://link.springer.com/article/10.1007%2Fs00224-012-9389-0



BACKREFERENCE TRICKS
Can you find a  regex to match   L=ww ; w in {a,b}*

e.g.,    aa, bb, abab, or abbabb

Cannot be expressed with a FA, because need to revisit 
the tokens in w exactly once, and w is an unknown 
length. 

([ab]*)\1



BACKREFERENCE TRICKS
def f(n):

    s = "x" * n //string of “x”’s of length n

    return re.match("^x?$|^(xx+?)\\1+$", s)

Generates a string of length n, to test if n is prime
^x?$  base case: 0 and 1 are not prime 
  (? matches preceding character 0 or 1 times)
|  or 
^(xx+?) two or more xs
   
A prime is a number that cannot be factored.  If we find a sequence of 
N xs that repeats two or more times without any xs  left over, we know 
N is a factor, and the number is not prime.
Example: xxxxxxx

xxxxxxxxx
Doesn’t match,  can’t consume all xs with repeated pattern,  ==> Prime

Matches, we consume all xs with 3x repeated pattern,  ==> Not Prime

\1+$
repeated one or more times, followed by $

//n is number we are testing for primality

//a single backslash 
//in the string



^X?$|^(XX+?)\1+$

Generates a string of length n, to test if n is prime
^x?$  base case: 0 and 1 are not prime 
  (? matches preceding character 0 or 1 times)
|  or 
^(xx+?) two or more xs
   (? makes + match smallest substring)

Without ?:

xxxxxx

xxxxxx

xxxxxx

xxxxxx

No match

No match

No match

Match! è Prime

xxxxxx Match!

? does not affect correctness;  any match 
indicates non-prime

Search algorithm is to  look for (largest | 
smallest) match;  if none found, backtrack and 
repeated with one (smaller | larger) 
subsequence

With ?:



PERFORMANCE EXAMPLE

N = 10000
 smallest first: 0.00021
 largest first: 0.0085
N = 100000
 smallest first: 0.0013
 largest first: 0.79
N = 99991
 smallest first: 3.2
 largest first: 3.2
N = 99999
 smallest first: 0.0026
 largest first: 1.4
N = 100000
 smallest first: 0.0015
 largest first: 0.79



CLICKER QUESTION

Select the string for which the regular expression 
‘..\.19..’  would find a match:
 a) “12.1000” 
 b) “123.1900” 
 c) “12.2000”
 d) the regular expression does not   

 match any of the strings above

https://clicker.mit.edu/6.S079/



CLICKER QUESTION
Choose the pattern that finds all filenames in which
1. the first letters of the filename are chap,
2. followed by two digits,
3. followed by some additional text,
4. and ending with a file extension of .doc
For example : chap23Production.doc 
 a) chap[0-9]*.doc
 b) chap*[0-9]doc
 c) chap[0-9][0-9].*\.doc
 d) chap*doc
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1) grep
Basic syntax:
  grep 'regexp' filename

or equivalently (using UNIX pipelining): 
  cat filename | grep 'regexp'

2) sed – stream editor
Basic syntax
  sed 's/regexp/replacement/g' filename

For each line in the intput, the portion of the line that matches regexp (if any) 
is replaced with replacement. 
Sed is quite powerful within the limits of operating on single line at a time. 
You can use \( \) to refer to parts of the pattern match. 



SED EXAMPLE
File = Trump is the president.  His job is to tweet.

sed 's/Trump/Biden/g' file

sed 's/\(His job is to\).*/\1 run the country./g' file

Biden is the president. His job is to tweet.
Trump is the president. His job is to run the country.



COMBINING TOOLS

grep \"screen_name\": twitter.json | 
sed 's/[ ]*\"screen_name\": \"\(.*\)\",/\1/g'

Suppose we want to extract all the “screen_name” fields from 
twitter data

[
  {
    "created_at": "Thu Apr 06 15:28:43 +0000 2017",
    "id": 850007368138018817,
    "id_str": "850007368138018817",
    "text": "RT @TwitterDev: 1/ Today we’re sharing our vision for the 
future of the Twitter API platform!nhttps://t.co/XweGngmxlP",
    "truncated": false,
…
    "user": {
      "id": 6253282,
      "id_str": "6253282",
      "name": "Twitter API",
      "screen_name": "twitterapi",



COMBINING TOOLS

grep \"screen_name\": twitter.json | 
sed 's/[ ]*\"screen_name\": \"\(.*\)\",/\1/g'

Suppose we want to extract all the “screen_name” fields from 
twitter data

[
  {
    "created_at": "Thu Apr 06 15:28:43 +0000 2017",
    "id": 850007368138018817,
    "id_str": "850007368138018817",
    "text": "RT @TwitterDev: 1/ Today we’re sharing our vision for the 
future of the Twitter API platform!nhttps://t.co/XweGngmxlP",
    "truncated": false,
…
    "user": {
      "id": 6253282,
      "id_str": "6253282",
      "name": "Twitter API",

"screen_name": "twitterapi",



EXAMPLE 2: LOG PARSING
192.168.2.20 - - [28/Jul/2006:10:27:10 -0300] "GET /cgi-bin/try/ HTTP/1.0" 200 3395 

127.0.0.1 - - [28/Jul/2006:10:22:04 -0300] "GET / HTTP/1.0" 200 2216 

sed -E 's/^([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)[^\"]*\"([^\"]*)\".*/\1,\2/g' apache.txt

IP Address Stuff 
up to quote

URL

192.168.2.20,GET /cgi-bin/try/ HTTP/1.0
127.0.0.1,GET / HTTP/1.0



THREE POWERFUL TOOLS
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Awk
Finally, awk is a powerful scripting language (not unlike perl). The basic syntax of 
awk is:
 awk -F',' 'BEGIN{commands} 

    /regexp1/ {command1} /regexp2/ {command2} 
    END{commands}' 

• For each line, the regular expressions are matched in order, and if there is a 
match, the corresponding command is executed (multiple commands may be 
executed for the same line). 

• BEGIN and END are both optional. 
• The -F',' specifies that the lines should be split into fields using the separator ",", 

and those fields are available to the regular expressions and the commands as 
$1, $2, etc. 

• See the manual (man awk) or online resources for further details.



AWK COMMANDS

{ print $1 }  – Match any line, print the 1st field

$1=="Obama"{print $2}’ 
  If the first field is “Obama”, print the 2nd field

'$0 ~ /Obama/ {t = gsub("Obama","Trump","g", $0); print t}'
 If the line contains Obama,  globally replace “Trump” for ”Obama” and assign 
the result to the variable “txt”.  Then print it.

Awk commands:

https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html



WRANGLING IN AWK

Reported crime in Alabama,
,
2004,4029.3
2005,3900
2006,3937
2007,3974.9
2008,4081.9
,
Reported crime in Alaska,
,
2004,3370.9
2005,3615
2006,3582
2007,3373.9
2008,2928.3
,
Reported crime in Arizona,
,
2004,5073.3
2005,4827
2006,4741.6

Input data

2004,Alabama,4029.3
2005,Alabama,3900
2006,Alabama,3937
2007,Alabama,3974.9
2008,Alabama,4081.9
2004,Alaska,3370.9
2005,Alaska,3615
2006,Alaska,3582
2007,Alaska,3373.9
2008,Alaska,2928.3
2004,Arizona,5073.3
2005,Arizona,4827
2006,Arizona,4741.6
2007,Arizona,4502.6
2008,Arizona,4087.3
2004,Arkansas,4033.1
2005,Arkansas,4068

Desired Output:



AWK EXAMPLE

BEGIN {FS="[, ]"}
$1=="Reported" {  
state = $4" "$5;  
gsub(/[ \t]+$/, "", state)
}
$1 ~ 20 {print $1","state","$2}

Reported crime in Alabama,
,
2004,4029.3
2005,3900
2006,3937
2007,3974.9
2008,4081.9

line begins w/ reported

some states are two words
strip trailing spaces

line begins with 20 print year, state, and amount



DATA WRANGLER / TRIFACTA
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http://vis.stanford.edu/wrangler/app/



BREAK



WORKING WITH 
TEXT



TEXT AS DATA
What might we want to do?

Find similar documents
 E.g., for document clustering 
Find similarity between a document and a string

 E.g., for document search

Answer questions from documents
Assess document sentiment
Extract information from documents

Focus today: 
Given two 
pieces of 
text, how do 
we measure 
similarity?



TOKENIZATION
• A token is an instance of a sequence of characters
Input: “Friends, Romans and Countrymen”
Output: Tokens
• Friends
• Romans
• and
• Countrymen

• What are valid tokens?
•  Typically, just words, but can be complicated

Sec. 2.2.1

E.g., how many tokens is 
Lebensversicherungsgesellschaftsangestellter, meaning‘life 
insurance company employee’in German?



WHY TOKENIZE?

• Often useful to think of text as a bag of words, or as a table 
of words and their frequencies

• Need a standard way to define a word, and correct for 
differences in formatting, etc. 

• LLMs are trained to consume and predict tokens

• Very common in information retrieval (IR) / keyword search
• Typical goal: find similar documents based on their 

words or n-grams (length n word groups)



DOCUMENT SIMILARITY EXAMPLE

sen = [
    "Tim loves the band Korn.",
    "Tim adores the rock group Korn.",
    "Tim loves eating corn.",
    "Tim used to love Korn, but now he hates them.",
    "Tim absolutely loves Korn.",
    "Tim completely detests the performers named Korn",
    "Tim has a deep passion for the outfit the goes by the name of Korn",
    "Tim loves listening to the band Korn while eating corn."
]

Suppose we have the following strings, and want to measure their 
similarity?



BAG-OF-WORDS MODEL
• Treat documents as sets
• Measure similarity of sets

Standard set similarity metric:  Jaccard Similarity

sim({tim,loves,korn}, {tim, loves, eating, corn}) = 2 / 5
sim({tim,absolutely,adores,the,band,korn}, {tim, loves, korn}) = 2 / 7

Problems:
 All words weighted equally
 Same word with different suffix treated differently (e.g.,  love & loves)
 Semantic significance ignored (e.g., adores & loves are the same)
 Duplicates are ignored (“Tim really, really loves Korn”) 
 



CODE



EXAMPLE



STOP WORDS
With a stop list, you exclude from the dictionary entirely the 
commonest words. Intuition:
• They have little semantic content: the, a, and, to, be
• There are a lot of them: ~30% of postings for top 30 words

Sometimes you want to include them, as they affect meaning
• Phrase queries: “King of Denmark”
• Various song titles, etc.: “Let it be”, “To be or not to be”
• “Relational” queries: “flights to London”

Sec. 2.2.2



STOP WORDS IN PYTHON

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", 
"you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 
'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 
'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 
'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 
'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 
'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 
'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 
'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 
'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 
'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 
'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', 
"should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', 
"couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 
'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 
'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 
'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]



STEMMING
• Reduce terms to their “roots” before indexing
• “Stemming” performs crude affix chopping
• language dependent
• e.g., automate(s), automatic, automation all 

reduced to automat.

for example compressed 
and compression are both 
accepted as equivalent to 
compress.

Sec. 2.2.4

for exampl compress and
compress ar both accept
as equival to compress



Most common algorithm for stemming English
• Other options exist, e.g., snowball

Conventions + 5 phases of reductions
• phases applied sequentially
• each phase consists of a set of commands
• sample convention: Of the rules in a compound 

command, select the one that applies to the longest 
suffix.

Sec. 2.2.4

PORTER’S ALGORITHM



sses → ss
ies → i
ational → ate
tional → tion

 Weight of word sensitive rules
 (m>1) EMENT →

• replacement → replac
• cement → cement

Sec. 2.2.4

TYPICAL RULES IN PORTER



STEMMING IN PYTHON

tim
love
the
band
korn



STEP WORDS + STEMMING

tim love band korn
tim ador rock group korn
tim love eat corn
tim use love korn hate
tim absolut love korn
tim complet detest perform name korn
tim deep passion outfit goe korn
tim love listen band korn eat corn

sen = [
    "Tim loves the band Korn.",
    "Tim adores the rock group Korn.",
    "Tim loves eating corn.",
    "Tim used to love Korn, but now he hates them.",
    "Tim absolutely loves Korn.",
    "Tim completely detests the performers named Korn",
    "Tim has a deep passion for the outfit the goes by the name of Korn",
    "Tim loves listening to the band Korn while eating corn."
]



COSINE SIMILARITY

Given two vectors, a standard way to measure how similar they are

Cos(v1, v2) = closeness of two vectors (smaller is closer)

(2,1)

(1,2)

Θ

Cos(Θ) = V1 • V2 / ||V1|| x ||V2||

Cos(Θ) = [1 2] • [2 1] / (sqrt(5)) ^ 2
Acos(4 / 5) = 36.8°

(2,.3)

(.2,2)

Θ

||V1|| =  2.01,  ||V2|| = 2.02
Cos(Θ) = [.2 2] • [2 .3] / 2.015
      = 1/2.015
Acos(1/2.015) = 60.2°



COSINE SIMILARITY OF WORD VECTORS
Cos(Θ) = V1 • V2 / ||V1|| x ||V2||

1       2       3
S1 = Tim loves Korn
                     4         5
S2 = Tim loves eating corn

V1 = 1 1 1 0 0 
V2 = 1 1 0 1 1 

V1 • V2 = 2
||V1|| = sqrt(3)
||V2|| = sqrt(4)

2 / sqrt(3) * sqrt(4) = .58  

1       2       3
S1 = Tim loves Korn
                     4             5          6      7     
S2 = Tim absolutely adores the band Korn

V1 = 1 1 1 0 0 0 0
V2 = 1 0 1 1 1 1 1

V1 • V2 = 2
||V1|| = sqrt(3)
||V2|| = sqrt(6)

2 / sqrt(3) * sqrt(6) = .47 

Typically, when using cosine similarity, we don’t take 
the acos of the values (since acos is expensive)



JACCARD VS COSINE

S1 = Tim loves Korn
S2 = Tim loves eating corn

CosSim(S1,S2) = .29
Jaccard(S1,S2) = .4

S3 = Tim absolutely adores the band Korn
CosSim(S1,S3) = .43
Jaccard(S1,S3) = .28

Jaccard more sensitive to different document lengths than CosSim

CosSim can incorporate repeated words (by using non-binary vectors)



CLICKER
Consider two setences:
 Sam loves limp bizkit
 Sam eats limp biscuits

What is their Jaccard similarity?
 A. 4/6
 B. 2/8
 C. 2/6
 D. Something else
What is their Cosine similarity?
 A. 1/4
 B. 2/4
 C. 4/6
 D. Something else
 

S1: 1 1 1 1 0 0
S2: 1 0 1 0 1 1
S1 • S2 = 2
||S1|| = ||S2|| = sqrt(4)

{Sam, limp}
--------------
{Sam, loves, limp, bizkit, eats, biscuits}

https://clicker.csail.mit.edu/6.s079/



IMPLEMENTING COSINE SIMILARITY

[[0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0]
 [0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0]
 [0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0]
 [0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1]
 [1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0]
 [0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0]
 [0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0]
 [0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0]]

['absolut', 'ador', 'band', 'complet', 'corn', 'deep', 
'detest', 'eat', 'goe', 'group', 'hate', 'korn', 
'listen', 'love', 'name', 'outfit', 'passion', 'perform', 
'rock', 'tim', 'use']

band korn timlove



IMPLEMENTING COSINE SIMILARITY

[[1.   0.45 0.5  0.67 0.75 0.41 0.41 0.76]
 [0.45 1.   0.22 0.4  0.45 0.37 0.37 0.34]
 [0.5  0.22 1.   0.45 0.5  0.2  0.2  0.76]
 [0.67 0.4  0.45 1.   0.67 0.37 0.37 0.51]
 [0.75 0.45 0.5  0.67 1.   0.41 0.41 0.57]
 [0.41 0.37 0.2  0.37 0.41 1.   0.33 0.31]
 [0.41 0.37 0.2  0.37 0.41 0.33 1.   0.31]
 [0.76 0.34 0.76 0.51 0.57 0.31 0.31 1.  ]]

Tim loves the band Korn
Tim adores the rock group Korn

Tim used to love Korn, 
but now he hates them



COSINE SIMILARITY PLOT

Includes 
stemming



WHICH WORDS MATTER:  TF-IDF
Problem: neither Jaccard nor Cosine Similarity have a way to 
understand which words are important

TF-IDF tries to estimate the importance of words based on

1) Their Term Frequency (TF) in a document
2) Their Inter-document Frequency (IDF), across all documents

Assumptions: If a term appears frequently in a document, it’s more 
important in that document

If a term appears frequently in all documents, its less important



TF-IDF EQUATIONS

t = t
d = document
ft,d = frequency of t in d

For each term t in d, tf(t,d) is the fraction of words in d that are t

Approaches 0 as 
more documents 
use term

Larger the more 
times document d 
uses term



TF-IDF EQUATIONS

t = t
d = document

ft,d = frequency of t in d



TF-IDF EXAMPLE
S1 = Tim loves Korn
S2 = Tim loves eating corn

Terms = Tim, loves, Korn, eating Korn

tf-idf(Tim,s1) = tf(Tim,s1) x idf(Tim) = 1/3 x log (2/2) = 0
tf-idf(loves,s1) = tf(loves,s1) x idf(loves) = 1/3 x log (2/2) = 0
tf-idf(Korn,s1) = tf(Korn,s1) x idf(Korn) = 1/3 x log (2/1) = 1/3 x .69 = 0.23

tf-idf(eating,s2) = tf(eating,s2) x idf(eating) = 1/4 x log(2/1) = 0.17 
tf-idf(corn,s2) = tf(corn,s2) x idf(corn) = 1/4 x log(2/1) = 0.17 

Words in all documents aren’t helpful if we’re trying to rank documents 
according to their similarity or do keyword search

S1 = [0, 0, .23]
S2 = [ 0, 0, .17, .17]



TF-IDF IN PYTHON
These parameters make it match 

equations on previous slide

[[1.   0.13 0.26 0.29 0.37 0.11 0.11 0.57]
 [0.13 1.   0.05 0.09 0.11 0.06 0.06 0.07]
 [0.26 0.05 1.   0.17 0.22 0.04 0.04 0.68]
 [0.29 0.09 0.17 1.   0.25 0.07 0.07 0.16]
 [0.37 0.11 0.22 0.25 1.   0.1  0.1  0.21]
 [0.11 0.06 0.04 0.07 0.1  1.   0.06 0.06]
 [0.11 0.06 0.04 0.07 0.1  0.06 1.   0.06]
 [0.57 0.07 0.68 0.16 0.21 0.06 0.06 1.  ]]

Tim loves the band Korn
Tim adores the rock group Korn

Tim loves eating corn
Tim used to love Korn, 

but now he hates them

TF-IDF not a great choice for these sentences, because it downweights 
frequent words (Tim, Korn and loves)



MODERN ML TECHNIQUES
Modern deep learning has completely transformed text processing tasks like this

NLP models, e.g., BERT and GPT-3/4 trained to understand documents

Models are trained to predict missing words:
 Tim loves the ____ Korn
 Tim loves eating ____
Using billions of documents on the Web (training takes years of GPU time!!!)

Models take a window of text (e.g., 512 words) and produce an output vector 
(e.g., 768 floats) for each word

Vector represents the “meaning” of that word in the context of the natural 
language in which it appears

This vector can be used to predict the next word, or to measure the similarity of 
meaning of two words

We’re going to try 
BERT, which is a 
slightly older model 
than GPT-3/4



BERT

https://towardsdatascience.com/bert-for-
measuring-text-similarity-eec91c6bf9e1

Each word in input 
assigned a 768 
element output 
vector, that depends 
on its context (before 
and after)

110M params

Trained via mask & predict

Transformer Architecture



USING BERT VECTORS
Each word is represented by a set of 768-element outputs
Convert to a single element 768-vector for each sentence by averaging 
words in document
Compute similarity between vectors (e.g., using Cosine Similarity)

Python sentence-transformers package makes this trivial

A popular BERT-
like model known 
to perform well

Does averaging 
across documents

Contains a 768-
element vector 
for each 
document



USING BERT VECTORS

[[1.   0.97 0.49 0.83 0.92 0.81 0.93 0.78]
 [0.97 1.   0.46 0.82 0.91 0.81 0.93 0.77]
 [0.49 0.46 1.   0.42 0.52 0.41 0.43 0.81]
 [0.83 0.82 0.42 1.   0.83 0.86 0.8  0.67]
 [0.92 0.91 0.52 0.83 1.   0.79 0.87 0.76]
 [0.81 0.81 0.41 0.86 0.79 1.   0.8  0.66]
 [0.93 0.93 0.43 0.8  0.87 0.8  1.   0.71]
 [0.78 0.77 0.81 0.67 0.76 0.66 0.71 1.  ]]

Tim loves the band Korn
Tim adores the rock group Korn

Tim loves eating corn
Tim used to love Korn, 

but now he hates them

Captures meaning of sentences much better than other 
metrics



HEAT MAP



Here are a bunch of sentences: "Tim loves the band Korn.", "Tim adores the rock 
group Korn.", "Tim loves eating corn.", "Tim used to love Korn, but now he hates 
them.", "Tim absolutely loves Korn.", "Tim completely detests the performers named 
Korn", "Tim has a deep passion for the outfit the goes by the name of Korn", "Tim 
loves listening to the band Korn while eating corn." 

Which is most similar to the phrase "Sam loves the band Korn", and why? 

Based on the text provided in your message, the sentence most similar to "Sam loves 
the band Korn" is "Tim loves the band Korn.”

This is because both sentences express a positive sentiment about the subject's 
feeling towards the band Korn, with the only difference being the subject of the 
sentence (Sam vs. Tim). The structure and the main verb "loves" are the same, making 
them closely similar in both meaning and sentiment.



SUMMARY
Saw three classes of tools – grep, sed, and awk, based on regular 
expressions to transform data

Saw how tools like Wrangler try to automate this

Looked at text processing techniques
 Jaccard and Cosine similarity
 Tokenization, stemming, stop lists
 TF-IDF
 Embeddings using BERT

We will return to embeddings and GPT models in a few weeks


