Lec 5: Data Wrangling And Working With Strings

Key ideas: regular expressions, sed/awk/grep, working with text

Lab 2 due next Tuesday
Project proposals \& teams due next Friday - Use Piazza to find a team

Data Science Pipeline

DATA WRANGLING

THREE POWERFUL TOOLS

1) grep - find text matching a regular expression

Basic syntax:
grep 'regexp' filename
or equivalently (using UNIX pipelining):

```
cat filename | grep 'regexp'
```

2) sed - stream editor
3) awk - general purpose text processing language

WHAT IS A REGULAR EXPRESSION?

A regular expression (regex) describes a set of possible input strings.

Regular expressions descend from a fundamental concept in Computer Science called finite automata theory

Regular expressions are used in many *nix tools

- vi, ed, sed, and emacs
- awk, tcl, perl and Python
- grep, egrep, fgrep
- compilers

REGULAR EXPRESSIONS

The simplest regular expressions are a string of literal characters to match.

The string matches the regular expression if it contains the substring.

UNIX sucks.

match

UNIX is okay.

no match

REGULAR EXPRESSIONS

A regular expression can match a string in more than one place.

REGULAR EXPRESSIONS

The . regular expression can be used to match any character.

REPETITION

The * is used to define zero or more occurrences of the single regular expression preceding it.

+ Matches one or more occurrences
regular expression

I got mail, yaaaaaaaaaay!

match

I sat on the stoop

match

REPETITION RANGES

Ranges can also be specified

- \{ \} notation can specify a range of repetitions for the immediately preceding regex
- $\{\boldsymbol{n}\}$ means exactly n occurrences
- $\{\boldsymbol{n}$,$\} means at least n$ occurrences
- $\{\boldsymbol{n}, \boldsymbol{m}\}$ means at least n occurrences but no more than m occurrences
Example:
-. $\{0$,$\} same as .*$
- a $\{2$,$\} same as aaa*$

OR

a|b* denotes $\{\varepsilon$, "a", "b", "bb", "bbb", ...\}
(a|b)* denotes the set of all strings with no symbols other than "a" and "b", including the empty string: $\{\varepsilon$, "a", "b", "aa", "ab", "ba", "bb", "aaa", ...\}
$a b *(c)$ denotes the set of strings starting with "a", then zero or more "b"s and finally optionally a "c": \{"a", "ac", "ab", "abc", "abb", "abbc", ...\}

CHARACTER CLASSES - OR SHORTHAND

Character classes [] can be used to match any specific set of characters.

NEGATED CHARACTER CLASSES

Character classes can be negated with the [^^] syntax.

MORE ABOUT CHARACTER CLASSES

- [aeiou] will match any of the characters $\mathbf{a}, \mathbf{e}, \mathbf{i}, \mathbf{o}$, or \mathbf{u}
- [kK]orn will match korn or Korn

Ranges can also be specified in character classes

- [1-9] is the same as [123456789]
- [abcde] is equivalent to [a-e]
- You can also combine multiple ranges
- [abcde123456789] is equivalent to [a-e1-9]
- Note that the - character has a special meaning in a character class but only if it is used within a range, [-123] would match the characters -, 1, 2, or 3

NAMED CHARACTER CLASSES

Commonly used character classes can be referred to by name (alpha, lower, upper, alnum, digit, punct, cntrl)

Syntax [:name:]

- [a-zA-Z] [[:alpha:]]
- [a-zA-Z0-9] [[:alnum:]]
- [45a-z] [45[:lower:]]

Important for portability across languages

ANCHORS

Anchors are used to match at the beginning or end of a line (or both).
\wedge means beginning of the line
\$ means end of the line

beat a brat on a boat match

beat a brat on a boat
match
^word\$

MATCH LENGTH

By default, a match will be the longest string that satisfies the regular expression.

MATCH LENGTH

Append a ? to match the shortest string possible:

PRACTICAL REGEX EXAMPLES

Dollar amount with optional cents

$$
\cdot \backslash \$[0-9]+(\backslash \cdot[0-9][0-9]) ?
$$

Time of day

- (1 [012]|[1-9]): [0-5][0-9] (am|pm)

HTML headers $<\mathrm{h} 1><\mathrm{H} 1><\mathrm{h} 2>\ldots$

- $<$ [hH] [1-4] $>$

GREP

- grep comes from the ed (Unix text editor) search command "global regular expression print" or $\mathrm{g} / \mathrm{re} / \mathrm{p}$
- This was such a useful command that it was written as a standalone utility
- There are two other variants, egrep and fgrep that comprise the grep family
- grep is the answer to the moments where you know you want the file that contains a specific phrase but you can' t remember its name

GREP DEMO

grep '\"text\": ".*location.*"' twitter.json
"text": "RT @TwitterMktg: Starting today, businesses can request and share locations when engaging with people in Direct Messages. https://t.co/rpYn...",
"text": "Starting today, businesses can request and share locations when engaging with people in Direct Messages. https://t.co/rpYndqWfQw",

BACKREFERENCES

Used to refer to a match that made earlier in a regex

- $V n$ is a backreference specifier, where n is a number Matches the nth subexpression specified by (...)
E.g., to find if the first word of a line is the same as the last:
-^([[:alpha:]]+) .* $11 \$$

Here,
[[:alpha:]]+ matches 1 or more letters
([[:alpha:]]+) is the first subexpression
$\backslash 1$ matches the first subexpression

FORMALLY

Regular expressions are "regular" because they can only express languages accepted by finite automata. Backreferences allow you to do much more.

See: https://link.springer.com/article/l0.1007\%2Fs00224-012-9389-0

BACKREFERENCE TRICKS

Can you find a regex to match $L=w w ; w$ in $\{a, b\}^{*}$
e.g., aa, bb, abab, or abbabb

Cannot be expressed with a FA, because need to revisit the tokens in w exactly once, and w is an unknown length.

([ab]*) ${ }^{*} 1$

BACKREFERENCE TRICKS

```
def f(n): //n is number we are testing for primality
    s = "x" * n //string of "x"'s of length n
    return re.match("^x?$|^(xx+?)\\1+$", s)
```

Generates a string of length n, to test if n is prime //a single backslash
${ }^{\wedge} \mathbf{x} \boldsymbol{\mathbf { W }} \quad$ base case: 0 and 1 are not prime
(? matches preceding character 0 or 1 times)
\mid or
^($\mathbf{x} \mathbf{x}+\mathbf{?}) \backslash \mathbf{1 + \$}$ two or more xs
repeated one or more times, followed by \$

A prime is a number that cannot be factored. If we find a sequence of N xs that repeats two or more times without any xs left over, we know N is a factor, and the number is not prime.
Example: \qquad Doesn't match, can't consume all xs with repeated pattern, ==> Prime $\mathbf{X X X X X X X X}$ Matches, we consume all x s with $3 x$ repeated pattern, ==> Not Prime

^ X ? ${ }^{\text {| }}{ }^{\wedge}(\mathrm{XX}+?) \backslash 1+\$$

Generates a string of length n, to test if n is prime

With ?

Xx|xx|x Match!
? does not affect correctness; any match indicates non-prime

Search algorithm is to look for (largest | smallest) match; if none found, backtrack and repeated with one (smaller | larger) subsequence

PERFORMANCE EXAMPLE

```
import re
import time
def prime(n):
    S = "x" * n
    return re.match("^x?$|^(xx+?)\\1+$", s)
def prime_largest(n):
    s = "x" * n
    return re.match("^x?$|^(xx+)\\1+$", s)
for n in [10000, 100000, 99991, 99999, 100000]:
    print(f"N = {n}")
    start = time.time()
    r1 = prime(n)
    end = time.time()
    print(f"\tsmallest first: {end - start:.2}")
    start = time.time()
    r2 = prime_largest(n)
    end = time.time()
    print(f"\tlargest first: {end - start:.2}")
```

$N=10000$
smallest first: 0.00021
largest first: 0.0085
$\mathrm{N}=100000$
smallest first: 0.0013
largest first: 0.79
$\mathrm{N}=99991$
smallest first: 3.2
largest first: 3.2
$N=99999$
smallest first: 0.0026
largest first: 1.4
$N=100000$
smallest first: 0.0015
largest first: 0.79

CLICKER QUESTION

Select the string for which the regular expression '..\.19..' would find a match:
a) "12.1000"
b) " $123.1900 "$
c) "12.2000"
d) the regular expression does not match any of the strings above

CLICKER QUESTION

Choose the pattern that finds all filenames in which

1. the first letters of the filename are chap,
2. followed by two digits,
3. followed by some additional text,
4. and ending with a file extension of .doc

For example : chap23Production.doc

a) chap[0-9]*.doc	
b)	chap*[0-9]doc
c)	chap[0-9][0-9].*.doc
d) chap*doc	

THREE POWERFUL TOOLS

1) grep

Basic syntax:
grep 'regexp' filename
or equivalently (using UNIX pipelining):

```
cat filename | grep 'regexp'
```


2) sed - stream editor

Basic syntax
sed 's/regexp/replacement/g' filename

For each line in the intput, the portion of the line that matches regexp (if any) is replaced with replacement.
Sed is quite powerful within the limits of operating on single line at a time. You can use $\backslash(\backslash)$ to refer to parts of the pattern match.

SED EXAMPLE

> File $=$ Trump is the president. His job is to tweet. sed's/Trump/Biden/g' file sed ' $\mathrm{s} / \backslash($ His job is to $\backslash) . * / \backslash \mathrm{l}$ run the country./g' file

```
Biden is the president. His job is to tweet.
Trump is the president. His job is to run the country.
```


COMBINING TOOLS

Suppose we want to extract all the "screen_name" fields from twitter data

```
[
```

 "created_at": "Thu Apr 06 15:28:43 +0000 2017",
 "id": 850007368138018817,
 "id_str": "850007368138018817",
 "text": "RT @TwitterDev: 1/ Today we’re sharing our vision for the
 future of the Twitter API platform!nhttps://t.co/XweGngmxlP",
"truncated": false,
"user": \{
"id": 6253282,
"id_str": "6253282",
"name": "Twitter API",
"screen_name": "twitterapi",
grep \"screen_name\": twitter.json sed 's/[]*\"screen_name\": \"
(.*
)\",/\1/g'

COMBINING TOOLS

Suppose we want to extract all the "screen_name" fields from twitter data

```
[
```

 "created_at": "Thu Apr 06 15:28:43 +0000 2017",
 "id": 850007368138018817,
 "id_str": "850007368138018817",
 "text": "RT @TwitterDev: 1/ Today we’re sharing our vision for the
 future of the Twitter API platform!nhttps://t.co/XweGngmxlP",
"truncated": false,
"user": \{
"id": 6253282,
"id_str": "6253282",
"name": "Twitter API",
"screen_name": "twitterapi",
grep \"screen_name\": twitter.json
sed 's/[]*\"screen_name\": \"
(.*
)\",/\1/g'

EXAMPLE 2: LOG PARSING

```
192.168.2.20 - - [28/Jul/2006:10:27:10 -0300] "GET /cgi-bin/try/ HTTP/1.0" 200 3395
127.0.0.1 - - [28/Jul/2006:10:22:04 -0300] "GET / HTTP/1.0" 200 2216
sed -E 's/^([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)[^\"]*\"([^^\"]*)\".*/\1,\2/g' apache.txt
IP Address Stuff URL
    up to quote
    192.168.2.20,GET /cgi-bin/try/ HTTP/1.0
    127.0.0.1,GET / HTTP/1.0
```


THREE POWERFUL TOOLS

Awk

Finally, awk is a powerful scripting language (not unlike perl). The basic syntax of awk is:
awk - F^{\prime},' ' $\operatorname{BEGIN}\{\mathrm{commands}\}$

```
/regexp1/ {command1} /regexp2/ {command2}
END {commands }'
```

- For each line, the regular expressions are matched in order, and if there is a match, the corresponding command is executed (multiple commands may be executed for the same line).
- BEGIN and END are both optional.
- The - ${ }^{\prime}$ ', specifies that the lines should be split into fields using the separator ",", and those fields are available to the regular expressions and the commands as \$1, \$2, etc.
- See the manual (man awk) or online resources for further details.

AWK COMMANDS

\{ print \$1 \} - Match any line, print the $1^{\text {st }}$ field

$$
\text { \$1=="Obama"\{print \$2\}' }
$$

If the first field is "Obama", print the $2^{\text {nd }}$ field
'\$0 ~ /Obama/ \{t = gsub("Obama","Trump","g", \$0); print t\}' If the line contains Obama, globally replace "Trump" for "Obama" and assign the result to the variable "txt". Then print it.

Awk commands:
https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html

WRANGLING IN AWK

Input data
Reported crime in Alabama,

```
2004,4029.3
2005,3900
2006,3937
2007,3974.9
2008,4081.9
```

,
Reported crime in Alaska,
2004,3370.9
2005,3615
2006,3582
2007,3373.9
2008,2928.3
Reported crime in Arizona, ,
2004,5073.3
2005,4827

Desired Output:

2004, Alabama, 4029.3
2005, Alabama, 3900
2006, Alabama, 3937
2007,Alabama, 3974.9
2008, Alabama, 4081.9
2004, Alaska,3370.9
2005,Alaska,3615
2006,Alaska,3582
2007,Alaska,3373.9
2008,Alaska,2928.3
2004,Arizona,5073.3
2005,Arizona, 4827
2006,Arizona,4741.6
2007,Arizona,4502.6
2008,Arizona, 4087. 3
2004, Arkansas,4033.1
2005,Arkansas,4068

AWK EXAMPLE

```
Reported crime in Alabama,
2004,4029.3
2005,3900
2006,3937
2007,3974.9
2008,4081.9
```

BEGIN \{FS="[,]"\} \$1=="Reported" \{ line begins w/ reported state $=\$ 4 "$ " $\$ 5$ some states are two words gsub(/[\t]+\$/, "", state) strip trailing spaces \}
\$1 ~ 20 \{print \$1","state","\$2\}
line begins with 20 print year, state, and amount

DATA WRANGLER / TRIFACTA

http://vis.stanford.edu/wrangler/app/

BREAK

WORKING WITH

 TEXT
TEXT AS DATA

What might we want to do?

Find similar documents

> E.g., for document clustering

Find similarity between a document and a string

> E.g., for document search

Focus today:
Given two pieces of text, how do we measure similarity?

Answer questions from documents
Assess document sentiment
Extract information from documents

TOKENIZATION

- A token is an instance of a sequence of characters

Input: "Friends, Romans and Countrymen"
Output: Tokens

- Friends
- Romans
- and
- Countrymen
- What are valid tokens?
- Typically, just words, but can be complicated
E.g., how many tokens is

Lebensversicherungsgesellschaftsangestellter, meaning 'life insurance company employee' in German?

WHY TOKENIZE?

- Often useful to think of text as a bag of words, or as a table of words and their frequencies
- Need a standard way to define a word, and correct for differences in formatting, etc.
- LLMs are trained to consume and predict tokens
- Very common in information retrieval (IR) / keyword search
- Typical goal: find similar documents based on their words or n-grams (length n word groups)

DOCUMENT SIMILARITY EXAMPLE

Suppose we have the following strings, and want to measure their similarity?
sen $=$ [
"Tim loves the band Korn.",
"Tim adores the rock group Korn.",
"Tim loves eating corn.",
"Tim used to love Korn, but now he hates them.",
"Tim absolutely loves Korn.",
"Tim completely detests the performers named Korn",
"Tim has a deep passion for the outfit the goes by the name of Korn",
"Tim loves listening to the band Korn while eating corn."
]

BAG-OF-WORDS MODEL

- Treat documents as sets
- Measure similarity of sets

Standard set similarity metric: Jaccard Similarity

$$
\operatorname{sim}(s 1, s 2)=\frac{s 1 \cap s 2}{s 2 \cup s 2}
$$

$\operatorname{sim}(\{$ tim,loves,korn $\},\{$ tim, loves, eating, corn $\})=2 / 5$
$\operatorname{sim}(\{$ tim, absolutely,adores,the,band,korn\}, \{tim, loves, korn\})=2 $\mathbf{~ / ~} 7$
Problems:
All words weighted equally
Same word with different suffix treated differently (e.g., love \& loves)
Semantic significance ignored (e.g., adores \& loves are the same)
Duplicates are ignored ('Tim really, really loves Korn")

```
sen = [
    "Tim loves the band Korn.",
    "Tim adores the rock group Korn.",
    "Tim loves eating corn.",
    "Tim used to love Korn, but now he hates them.",
    "Tim absolutely loves Korn.",
    "Tim completely detests the performers named Korn",
    "Tim has a deep passion for the outfit the goes by the name of Korn",
    "Tim loves listening to the band Korn while eating corn."
]
def jaccard(s1, s2):
        j = float(len(s1.intersection(s2))) / float(len(s1.union(s2)))
        return j
def plot_sim_matrix(m,sens):
    cmap = cm.get_cmap('RdYlGn')
    fig, ax = plt.subplots(figsize=(8,8))
    cax = ax.matshow(m, interpolation='nearest', cmap=cmap)
    ax.grid(True)
    plt.xticks(range(len(sens)), sens, rotation=90);
    plt.yticks(range(len(sens)), sens);
    fig.colorbar(cax, ticks=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, .75,.8..85,
    plt.show()
out = np.zeros((len(sen),len(sen)))
for i in range(len(sen)):
    sen1 = set(sen[i].split(" "))
    for j in range(len(sen)):
        sen2 = set(sen[j].split(" "))
        out[i][j] = jaccard(sen1, sen2)
plot_sim_matrix(out, sen)
```


EXAMPLE

STOP WORDS

With a stop list, you exclude from the dictionary entirely the commonest words. Intuition:

- They have little semantic content: the, a, and, to, be
- There are a lot of them: $\sim 30 \%$ of postings for top 30 words

Sometimes you want to include them, as they affect meaning

- Phrase queries: "King of Denmark"
- Various song titles, etc.: "Let it be", "To be or not to be"
- "Relational" queries: "flights to London"

STOP WORDS IN PYTHON

from nltk. corpus import stopwords
print(stopwords.words('english'))
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]

STEMMING

- Reduce terms to their "roots" before indexing
- "Stemming" performs crude affix chopping
- language dependent
- e.g., automate(s), automatic, automation all reduced to automat.
for example compressed and compression are both accepted as equivalent to compress.
for exampl compress and compress ar both accept as equival to compress

PORTER'S ALGORITHM

Most common algorithm for stemming English

- Other options exist, e.g., snowball

Conventions +5 phases of reductions

- phases applied sequentially
- each phase consists of a set of commands
- sample convention: Of the rules in a compound command, select the one that applies to the longest suffix.

TYPICAL RULES IN PORTER

sses \rightarrow ss
$i e s \rightarrow i$
ational \rightarrow ate
tional \rightarrow tion

Weight of word sensitive rules
$(m>1)$ EMENT \rightarrow

- replacement \rightarrow replac
- cement \rightarrow cement

STEMMING IN PYTHON

```
import nltk.stem.porter
stemmer = nltk.stem.porter.PorterStemmer()
for w in sen[0].split(" "):
    print(stemmer.stem(w))
```

tim
love
the
band
korn

STEP WORDS + STEMMING

```
sen = [
    "Tim loves the band Korn.",
    "Tim adores the rock group Korn.",
    "Tim loves eating corn.",
    "Tim used to love Korn, but now he hates them.",
    "Tim absolutely loves Korn.",
    "Tim completely detests the performers named Korn",
    "Tim has a deep passion for the outfit the goes by the name of Korn",
    "Tim loves listening to the band Korn while eating corn."
]
tim love band korn
tim ador rock group korn
tim love eat corn
tim use love korn hate
tim absolut love korn
tim complet detest perform name korn
tim deep passion outfit goe korn
tim love listen band korn eat corn
```


COSINE SIMILARITY

Given two vectors, a standard way to measure how similar they are
$\operatorname{Cos}(\mathrm{v} 1, \mathrm{v} 2)=$ closeness of two vectors (smaller is closer)

$$
\begin{aligned}
& \operatorname{Cos}(\Theta)=\mathrm{V} 1 \cdot \mathrm{~V} 2 /\|\mathrm{V}| ||\mathrm{x} \| \mathrm{V} 2| \mid \\
& \operatorname{Cos}(\Theta)=[12] \cdot[21] /(\operatorname{sqrt}(5))^{\wedge} 2 \\
& \operatorname{Acos}(4 / 5)=36.8^{\circ}
\end{aligned}
$$

$$
||\mathrm{Vl|\mid}=2.01,||\mathrm{~V} 2||=2.02
$$

$$
\operatorname{Cos}(\Theta)=[.22] \cdot[2.3] / 2.015
$$

$$
=1 / 2.015
$$

$$
A \cos (1 / 2.015)=60.2^{\circ}
$$

COSINE SIMILARITY OF WORD VECTORS

$\operatorname{Cos}(\Theta)=\mathrm{V} 1 \bullet \mathrm{~V} 2 /\|\mathrm{V} 1\| \mathrm{x}\|\mathrm{V} 2\|$

S1 = Tim loves Korn	

S2 $=$ Tim loves eating corn
$\mathrm{V} 1=11100$
V2 = 11011
$\mathrm{V} 1 \cdot \mathrm{~V} 2=2$
||V1|| = sqrt(3)
||V2|| = sqrt(4)
$2 /$ sqrt(3) * sqrt(4) $=.58$

S2 $=$ Tim absolutely adores the band Korn
V1 = 1110000
V2 = 1011111

$$
\mathrm{V} 1 \cdot \mathrm{~V} 2=2
$$

$$
\|\mathrm{V} 1\|=\operatorname{sqrt}(3)
$$

$$
\|\mathrm{V} 2\|=\operatorname{sqrt}(6)
$$

$2 /$ sqrt(3) * sqrt(6) $=.47$

$$
\begin{aligned}
& 123 \\
& \text { S1 = Tim loves Korn } \\
& \begin{array}{llll}
4 & 5 & 6 & 7
\end{array}
\end{aligned}
$$

Typically, when using cosine similarity, we don't take the acos of the values (since acos is expensive)

JACCARD VS COSINE

S1 = Tim loves Korn
S2 = Tim loves eating corn
$\operatorname{CosSim}(\mathrm{S} 1, \mathrm{~S} 2)=.29$
Jaccard(S1,S2) $=.4$
S3 = Tim absolutely adores the band Korn
CosSim(S1,S3) $=.43$
$\operatorname{Jaccard}(\mathrm{S} 1, \mathrm{~S} 3)=.28$
Jaccard more sensitive to different document lengths than CosSim
CosSim can incorporate repeated words (by using non-binary vectors)

CLICKER https://clicker.csail.mit.edu/6.s079/

Consider two setences:
Sam loves limp bizkit
Sam eats limp biscuits

What is their Jaccard similarity?

A. $4 / 6$
B. $2 / 8$
C. $2 / 6$

\{Sam, limp\}
\{Sam, loves, limp, bizkit, eats, biscuits\}
D. Something else

What is their Cosine similarity?

A. $1 / 4$
B. $2 / 4$
C. $4 / 6$
D. Something else

$$
\begin{aligned}
& \text { S1: } 111100 \\
& \text { S2: } 101011 \\
& \text { S1•S2 }=2 \\
& ||S 1||=||S 2||=\operatorname{sqrt}(4)
\end{aligned}
$$

IMPLEMENTING COSINE SIMILARITY

\#Count vectorizer translates each document into a vector of counts f = sklearn.feature_extraction.text. CountVectorizer() X = f.fit_transform(sen)
print(X.toarray())
print(f.get_feature_names())

		an										n	lov						im
	0		0	0	0			0	0										0]
	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	1 0]
0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0		$10]$
	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0		1 1]
	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0		$0]$
	0	0	1	0	0	1	0	0	0	0		0	0		0		1		$0]$
	0	0	0	0	1	0	0	1	0	0	1	0	0	0	1				$0]$

['absolut', 'ador', 'band', 'complet', 'corn', 'deep', 'detest', 'eat', 'goe', 'group', 'hate', 'korn', 'listen', 'love', 'name', 'outfit', 'passion', 'perform', 'rock', 'tim', 'use']

IMPLEMENTING COSINE SIMILARITY

```
#Count vectorizer translates each document into a vector of counts
f = sklearn.feature_extraction.text.CountVectorizer()
X = f.fit_transform(sen)
print(X.toarray())
print(f.get_feature_names())
```

```
#cosine_similarity computes the cosine similarity between
#a set of vectors
from sklearn.metrics.pairwise import cosine_similarity
cos_sim = cosine_similarity(X)
print(cos_sim)
```


Tim adores the rock group Korn $\left[\begin{array}{lllllllll}0.45 & 1 . & 0.22 & 0.4 & 0.45 & 0.37 & 0.37 & 0.34\end{array}\right]$
Tim used to love Korn, $\left[\begin{array}{llllllllll}0.67 & 0.4 & 0.45 & 1 . & 0.67 & 0.37 & 0.37 & 0.51\end{array}\right]$
but now he hates them $\quad\left[\begin{array}{lllllllllllllllllll}0.15 & 0.45 & 0.5 & 0.67 & 1 . & 0.41 & 0.41 & 0.57]\end{array}\right.$
$\left[\begin{array}{llllllll}0.41 & 0.37 & 0.2 & 0.37 & 0.41 & 1 . & 0.33 & 0.31\end{array}\right]$
$\left[\begin{array}{llllllll}0.41 & 0.37 & 0.2 & 0.37 & 0.41 & 0.33 & 1 . & 0.31\end{array}\right]$
$\left[\begin{array}{lllllllllllllllll}0.76 & 0.34 & 0.76 & 0.51 & 0.57 & 0.31 & 0.31 & 1 .\end{array}\right]$

COSINE SIMILARITY PLOT

Includes
stemming

WHICH WORDS MATTER: TF-IDF

Problem: neither Jaccard nor Cosine Similarity have a way to understand which words are important

TF-IDF tries to estimate the importance of words based on

1) Their Term Frequency (TF) in a document
2) Their Inter-document Frequency (IDF), across all documents

Assumptions: If a term appears frequently in a document, it's more important in that document

If a term appears frequently in all documents, its less important

TF-IDF EQUATIONS

$\mathrm{t}=\mathrm{t}$

$$
t f(t, d)=\frac{f_{t, d}}{\sum_{t^{\prime} \in d} f_{t^{\prime}, d}}
$$

d = document

Larger the more
times document d
uses term
$f_{t, d}=$ frequency of t in d

For each term t in $d, t f(t, d)$ is the fraction of words in d that are t

$$
i d f(t, D)=\log \frac{N}{\mid\{d \in D: t \in d \mid}
$$

$\mathrm{N}=$ number of documents
$D=$ set of all documents
$|\{d \in D: t \in d\}|=\#$ documents which use term t

For each term t in all $D, \operatorname{idf}(t, D)$ is inversely proportional to the number of documents that use t

TF-IDF EQUATIONS

$$
\begin{gathered}
t f(t, d)=\frac{f_{t, d}}{\sum_{t^{\prime} \in d} f_{t^{\prime}, d}} \quad i d f(t, D)=\log \frac{N}{\mid\{d \in D: t \in d \mid} \\
t f-i d f(t, d, F)=t f(t, d) \bullet i d f(t, D)
\end{gathered}
$$

$$
\mathrm{t}=\mathrm{t}
$$

$d=$ document
$f_{t, d}=$ frequency of t in d
$\mathrm{N}=$ number of documents
$D=$ set of all documents
$|\{d \in D: t \in d\}|=\#$ documents which use term t

TF-IDF EXAMPLE

S1 = Tim loves Korn

$\underline{S 2}$ = Tim loves eating corn

$$
t f(t, d)=\frac{f_{t, d}}{\sum_{t^{\prime} \in d} f_{t^{\prime}, d}}
$$

$$
\operatorname{idf}(t, D)=\log \frac{N}{\mid\{d \in D: t \in d \mid}
$$

$$
\begin{aligned}
& S 1=[0,0, .23] \\
& S 2=[0,0, .17, .17]
\end{aligned}
$$

Terms = Tim, loves, Korn, eating Korn
$\mathrm{tf}-\mathrm{idf}(\mathrm{Tim}, \mathrm{s} 1)=\mathrm{tf}(\mathrm{Tim}, \mathrm{s} 1) \times \operatorname{idf}(\operatorname{Tim})=1 / 3 \times \log (2 / 2)=0$
tf-idf(loves,s1) $=\mathrm{tf}($ loves,s 1$) \times$ idf(loves $)=1 / 3 \times \log (2 / 2)=0$
tf -idf(Korn,s1) $=\mathrm{tf}($ (Korn,s1 $) \times \operatorname{idf}($ Korn $)=1 / 3 \times \log (2 / 1)=1 / 3 \times .69=0.23$
$\mathrm{tf}-\mathrm{idf}($ eating, s 2$)=\mathrm{tf}($ eating,s2) $\mathrm{xidf}($ eating $)=1 / 4 \times \log (2 / 1)=0.17$
$\mathrm{tf}-\mathrm{idf}(\mathrm{corn}, \mathrm{s} 2)=\mathrm{tf}(\mathrm{corn}, \mathrm{s} 2) \times \mathrm{idf}($ corn $)=1 / 4 \times \log (2 / 1)=0.17$

Words in all documents aren't helpful if we're trying to rank documents according to their similarity or do keyword search

TF-IDF IN PYTHON

\#TF-IDF using sklearn
These parameters make it match equations on previous slide
f = sklearn.feature_extraction.text.TfidfVectorizer(smooth_idf=False,norm='l1')
X = f.fit_transform(sen)
print(X.toarray())
cos_sim = cosine_similarity(X)
print(cos_sim)

Tim adores the rock group Korn $\left[\begin{array}{llllllllllllllllll}0.13 & 1 . & 0.05 & 0.09 & 0.11 & 0.06 & 0.06 & 0.07\end{array}\right]$
Tim loves eating corn $\left[\begin{array}{lllllllll}0.26 & 0.05 & 1 . & 0.17 & 0.22 & 0.04 & 0.04 & 0.68\end{array}\right]$
Tim used to love Korn, $\left[\begin{array}{llllllllll}0.29 & 0.09 & 0.17 & 1 . & 0.25 & 0.07 & 0.07 & 0.16\end{array}\right]$
but now he hates them $\quad\left[\begin{array}{llllllllll}0.37 & 0.11 & 0.22 & 0.25 & 1 . & 0.1 & 0.1 & 0.21\end{array}\right]$
$\left[\begin{array}{llllllll}0.11 & 0.06 & 0.04 & 0.07 & 0.1 & 1 . & 0.06 & 0.06\end{array}\right]$
$\left[\begin{array}{llllllll}0.11 & 0.06 & 0.04 & 0.07 & 0.1 & 0.06 & 1 . & 0.06\end{array}\right]$
$\left[\begin{array}{llllllll}0.57 & 0.07 & 0.68 & 0.16 & 0.21 & 0.06 & 0.06 & 1 .\end{array}\right]$

TF-IDF not a great choice for these sentences, because it downweights frequent words (Tim, Korn and loves)

MODERN ML TECHNIQUES

Modern deep learning has completely transformed text processing tasks like this

NLP models, e.g., BERT and GPT-3/4 trained to understand documents

Models are trained to predict missing words:
Tim loves the \qquad Korn
Tim loves eating \qquad
Using billions of documents on the Web (training takes years of GPU time!!!)

Models take a window of text (e.g., 512 words) and produce an output vector (e.g., 768 floats) for each word

Vector represents the "meaning" of that word in the context of the natural language in which it appears

This vector can be used to predict the next word, or to measure the similarity of meaning of two words

BERT

Randomly
masked A quick [MASK] fox jumps over the [MASK] dog
masked

Trained via mask \& predict
Predict A quick brown fox jumps over the lazy dog

Transformer Architecture

Each word in input assigned a 768 element output vector, that depends on its context (before and after)
(GPT3 is 175 B !)

l10M params

https://towardsdatascience.com/bert-for-measuring-text-similarity-eec9lc6bf9el

USING BERT VECTORS

Each word is represented by a set of 768 -element outputs
Convert to a single element 768 -vector for each sentence by averaging words in document
Compute similarity between vectors (e.g., using Cosine Similarity)

Python sentence-transformers package makes this trivial

	A popular BERT- like model known to perform well
model = SentenceTransformer('all-mpnet-base-v2') sentence_transformers import SentenceTransformer sen_embeddings = model.encode(sen)	Does averaging across documents
cos_sim = cosine_similarity(sen_embeddings)	
print(cos_sim)	Contains a 768- element vector for each document

USING BERT VECTORS

```
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-mpnet-base-v2')
sen_embeddings = model.encode(sen)
cos_sim = cosine_similarity(sen_embeddings)
print(cos_sim)
```


Tim adores the rock group Korn $\left[\begin{array}{llllllllll}0.97 & 1 . & 0.46 & 0.82 & 0.91 & 0.81 & 0.93 & 0.77\end{array}\right]$
Tim loves eating corn $\left[\begin{array}{lllllllll}0.49 & 0.46 & 1 . & 0.42 & 0.52 & 0.41 & 0.43 & 0.81\end{array}\right]$
Tim used to love Korn, $\left[\begin{array}{lllllllll}0.83 & 0.82 & 0.42 & 1 . & 0.83 & 0.86 & 0.8 & 0.67\end{array}\right]$ but now he hates them
$\left.\begin{array}{llllllll}{[0.92} & 0.91 & 0.52 & 0.83 & 1 . & 0.79 & 0.87 & 0.76\end{array}\right]$

Captures meaning of sentences much better than other metrics

HEAT MAP

Here are a bunch of sentences: "Tim loves the band Korn.", "Tim adores the rock group Korn.", "Tim loves eating corn.", "Tim used to love Korn, but now he hates them.", "Tim absolutely loves Korn.", "Tim completely detests the performers named Korn", "Tim has a deep passion for the outfit the goes by the name of Korn", "Tim loves listening to the band Korn while eating corn."

Which is most similar to the phrase "Sam loves the band Korn", and why?

(5) ChatGPT

Based on the text provided in your message, the sentence most similar to "Sam loves the band Korn" is "Tim loves the band Korn."

This is because both sentences express a positive sentiment about the subject's feeling towards the band Korn, with the only difference being the subject of the sentence (Sam vs. Tim). The structure and the main verb "loves" are the same, making them closely similar in both meaning and sentiment.

SUMMARY

Saw three classes of tools - grep, sed, and awk, based on regular expressions to transform data

Saw how tools like Wrangler try to automate this

Looked at text processing techniques
Jaccard and Cosine similarity
Tokenization, stemming, stop lists
TF-IDF
Embeddings using BERT

We will return to embeddings and GPT models in a few weeks

