
Data Science:
Research Systems and

Discoveries
Mike Cafarella

Part 1: Systems

Foundation Models are Great!

● LLMs, VLMs, OpenCLIP, other models are incredible potential building blocks
● Consider the vast range of possible data/AI applications

● All of these are small use cases today, but possibly huge tomorrow
● All of these should now be dramatically easier to build

Data Integration Next-Generation Search

Data Cleaning Next-Generation Dashboards

Information Extraction Log-Driven System Diagnosis

Form Processing Data-Driven Digital Twins

Multimodal Scientific Discovery … and many others

…but AI Programming is a Drag

● The user has to complete a correct software
engineering goal

○ “Find all the materials science papers that talk about
EV batteries”

○ “Find all US banks’ SEC filings in 2022 and extract
the footnotes that talk about solvency”

○ “Extract a video of the winning touchdown from every
Super Bowl”

● While also ensuring good quality, fast
execution, and reasonable costs

● While also models, hardware, and
optimization methods are in constant flux

● While also projects needs change over time
(e.g., minimal cost vs maximal quality)

The Good News

We’ve solved a problem like this before!

In the mid-1970s, database programmers
had to write custom code for every query

Declarative queries allowed them to write
succinct programs while also obtaining
good performance in a rapidly-changing
technological environment

Let’s do the same for data/AI applications

Sample Code

“Get the author and subject of every email in the Enron collection”

class Email(pz.TextFile):

"""Represents an email, which in practice is usually from a text file"""

sender = pz.Field(desc="The email address of the sender", required=True)

subject = pz.Field(desc="The subject of the email", required=True)

emails = pz.Dataset(“enron-collection”, schema=Email)

Sample Code

“Find all the materials science papers about EV batteries that come from
MIT and report all the paper metadata”

class ScientificPaper(pz.PDFFile):

"""Represents a scientific research paper, which in practice is usually from a PDF file"""

title = pz.Field(desc="The title of the paper.", required=True)

publicationYear = pz.Field(desc="The year the paper was published", required=False)

author = pz.Field(desc="The name of the first author of the paper", required=True)

institution = pz.Field(desc="The institution of the paper", required=True)

sciPapers = pz.Dataset(“materials-science-papers”, schema=ScientificPaper)

filteredPapers = scientificPapers.filterByStr(“The paper is about batteries”)

output = filteredPapers.filterByStr(“The paper is from MIT”)

Sample Code

“Find the images that contain at least one dog and figure out its breed”

class DogImage(pz.ImageFile):

breed = pz.Field(desc="The breed of the dog", required = True)

images = pz.Dataset(“image-corpus”, schema=pz.ImageFile)

filteredImages = images.filterByStr(“The image contains one or more dogs”)

dogImages = filteredImages.convert(DogImage, desc = “Image of a dog”)

Execution
emails = pz.Dataset(“enron-collection”, schema=Email) Step 1: User Query

Step 2: Logical Optimization

Step 3: Physical Optimization

Step 4: Concrete Execution

Optimizations are Crucial

These queries may process huge numbers
of data objects.

Even minor parts of the query may naively
entail multiple slow and expensive model
invocations

LLM services deliver ~100 tokens/sec.
That’s less than 1kb/second

We need to automatically consider and
choose many different optimizations to get
better cost/quality tradeoffs

Choose cheap, lower-quality models when
possible

Reduce input data size prior to LLM processing, if
entire input isn’t needed

Synthesize traditional non-model code whenever
possible

Approximate expensive LLM invocations with
local one-off trained models

Use low-resolution imagery whenever possible

Use parallel execution services

… possibly many others?

Demo!

Sample-based Token Reduction
Sample Set

User Question

Hot Sections of User Q

User Budget:
Max token cost

Optimal range:

Offline Sampling and Profiling

1. Comparable results
2. Lower $ cost
3. Lower runtime

⓵ ⓶

⓷
⓸

Test Set

Comparable Results – Boolean Eval

Offline Experiment Setup:

● Get the heatmap over 80 VLDB papers and
tested on another 100 VLDB papers

● QUESTIONS = [
"What is the main contribution of the
paper?",
"Who are the authors of the paper?",
"What is the paper title?"

]

● Varying input budget from 0.001-0.4 vs full.

Text ratio→
Question↓

0.005 0.01 0.05 0.1 0.2 0.4 (~7k
tokens)

Title 1.89 1.82 3.06 4.18 11.8 23.86

Authors 2.39 2.47 2.91 5.07 8.44 18.31

Contribution 1.68 2.60 3.70 5.56 9.55 19.45

Inference Time (s)

Runtime with
Huggingface API

• Runtime with Mistral-7B-Instruct-v0.2
on V100-32GB Memory

Convenience Features

● Cached answers are especially helpful, since many input sets don’t change
● Data marshalling and sampling is (or will be) built-in
● Improve quality with data labeling services & tools, without modifying the

original code

Future Work

We have a working prototype, but this project is very large and we have a lot of
work to do

● New optimization strategies
● New core data types: data plots, source code, videos, maps, blueprints,

sequences and other bioinformatics data…
● Dynamic fine-tuning for improved optimization tradeoffs
● Cache answers across organizations and the internet
● New ancillary tools
● Streaming and improved performance

Part 2: Discoveries

How do we know?

Economists: Data Scientists Since Before It Was Cool

• Most modern federal statistical machinery grew up starting in 1930s
• Statistical income research conducted in 1930s; modern income data

series started in 1947
• Consumer Price Index started in 1913

• Enabled by:
• Legislation that compels survey response (e.g., Title 13 (Census

Act))
• Social norms around key voluntary surveys

• Monthly retail sales; CPI enumeration
• Statistical methods and research (e.g., Simon Kuznets)
• Bureaucracy (Bureau of Labor Statistics, Census, BEA)

Inflation and Real Consumption Growth

• The price of a good changes: is that due to inflation or quality change?

2022: $100.00 2023: $90.00
+ $10.00

Inflation and Real Consumption Growth

• The price of a good changes: is that due to inflation or quality change?

2022: $100.00 2023: $110.00
- $10.00

Inflation and Real Consumption Growth

• The price of a good changes: is that due to inflation or quality change?

2022: $100.00 2023: $95.00
+/- $???.??

Now 20% Rayon

Quality Adjustment is Crucial

• Prices and quality vary simultaneously
• Product quality varies in response to preferences, costs, etc
• Collecting price data is relatively easy; quality adjustment is not

• Flux in market goods for sale is astonishing
• 1-year half-life of a barcoded good (probability it will be on the shelf in

12 months) is about 50%

• Consider the vast number of products on the market (50K in
supermarket)

• How can quality adjustment be done reliably, rigorously, affordably?
• Problem first practically examined in 1970s

Using ML to Construct Hedonic Price Indexes

● Our plan:
1. Exploit large-scale product sales data from checkout scanners
2. Use machine learning to adjust for quality at barcode level
3. Employ resulting “well-behaved” dataset to compute new price index

Matthew Shapiro
Univ of Michigan

Gabriel Ehrlich
Univ of Michigan

Tian Gao
Snowflake Inc

Laura Yi Zhao
Bank of Canada,
Univ of Maryland

John Haltiwanger
Univ of Maryland

Current BLS Adjust-for-Quality Algorithm

● Collect a set of (time-period, item-id, price) records
● If item in time-period=0 disappears in time-period=1

1. Find most similar item in time-period=1
to obtain original item It=0 and a similar item I’t=1

2. Choose a method to make prices of I and I’ comparable
(that is, “adjust for quality”)

1. Direct Comparison: eyeball descriptions and see if they’re the same
2. Direct Quality Adjustment: estimate value of differences

“house-to-house combat” approach (Shapiro and Wilcox 1996)
3. Imputation: adjust using average price change of product class

• By trade-weighted volume, about 15% of sales
are adjusted using quantitative regression
models (CPU speed, memory capacities, etc)

• Remaining sales are rule-adjusted

Modern Data Management Can Do Better

● Desiderata for better inflation and consumption data:
○ Principled and accurate price adjustment
○ High-frequency (as often as possible)
○ High-resolution (fine-grained product categories)

● Our plan:
1. Exploit large-scale product sales data from checkout scanners
2. Use machine learning to adjust for quality at barcode level
3. Employ resulting “well-behaved” dataset to compute new price index

Price Data

● Nielsen transaction data
○ Weekly prices and quantities at store level
○ Supermarkets, groceries, discount, convenience, drug and liquor
○ Diverse set of goods
○ Includes product descriptions

‘brand’ ZR DT LN/LM CF NBP CT
‘brand’ NATURAL R CL NB 12P
‘brand’ DR W 1P 308S TT 6PK

Hedonic Adjustment at Scale

● Train a series of time-period-specific price prediction models
○ Training: 26.36M records, 2.2GB; takes ~88 hrs using GeForce

M2022(“brand ZR DT LN/LM CF NBP CT”) -> $4.99

M2022(“brand DR W 1P 308S TT 6PK”) -> $8.99

M2023(“brand ZR DT LN/LM CF NBP CT”) -> $5.24

M2023(“brand DR W 1P 308S TT 6PK”) -> $9.49

Our Procedure

1. Use appropriate model to predict prices for each time period
○ For new and disappearing goods, predicted price allows for

contribution of new and exiting goods to inflation
○ For continuing goods, predicted price adjusts for changes in value of

attributes
2. Compute aggregate inflation as weighted average of predicted price

changes across all goods

2022 2023

Aggregating Price Adjustments

$100.00

$95.00

Naive approaches:
• Mark goods as equal: $5.00 price drop
• Mark as incomparable: $0.00 price change

2022 2023

Aggregating Price Adjustments

$97.00

M2022(’20% rayon shirt’)

$100.00

$95.00 +$2.00

What benefit was delivered by a novel good?

vs

What benefit was lost by a good’s departure?

2022 2023

Aggregating Price Adjustments

$97.00

M2022(’20% rayon shirt’)

$100.00

$95.00

A naïve comparison might indicate that we became 5 dollars richer.

In fact, because the product became worse, we’re only 2 dollars richer.

Training Procedure

● 50/40/10 train/validate/test split
● Training data: 26.36M records, 2.2GB
● Yields 4,570 distinct models, one for each (year, quarter, product-group)
● About 88 hours of training time using NVIDIA GeForce
● Model implemented using PyTorch
● Model yields binned price prediction (10 deciles)
● Fit continuous prices as in product of non-trivial bin probability with time/product-

specific bin means

Training Procedure

● 50/40/10 train/validate/test split
● Training data: 26.36M records, 2.2GB
● Yields 4,570 distinct models, one for each (year, quarter, product-group)
● About 88 hours of training time using NVIDIA GeForce
● Model implemented using PyTorch
● Model yields binned price prediction (10 deciles)
● Fit continuous prices as in product of non-trivial bin probability with time/product-

specific bin means

Model Accuracy

Nonfood Price Index Results

Official BLS

Our method

Pr
ic

e
in

de
x

Official BLS

Our method

Pr
ic

e
in

de
x

Our results show much less inflation (i.e., increased
consumption) in food than traditional methods do

Our index reduces cumulative inflation 2007-2015
by more than half compared to traditional method

BLS adjustment for food relies heavily on imputation

Technological improvement in food may be
much greater than typically believed

