
Last Time

● Introduced Parallel Processing
● Looked at Parallel Dataflow as a common set of operations that can be

readily parallelized
● Studied parallel join and parallel aggregation
● Introduced Dask, a parallel implementation of Pandas

Spark Architecture

Spark Operations

● RDD: Resilient Distributed Dataset, a collection of elements that can be
operated in parallel

○ Data flows in the DAG in the form of RDD
● Transformation: produce new RDDs given input RDDs

○ map, join, union, filter …
○ Lazy evaluation: building the dataflow DAG

● Action: executes the DAG and returns results to driver program
○ Count, persist, take …

● Demo

Spark Fault Tolerance Model

● Lineage-based recomputation
● When a worker node failed during execution, only the RDD partitions that are

affected are recomputed.

Lecture 17:
Scalable Data

Processing with

Slides courtesy of Prof. Stephanie Wang

Website: stephanie-wang.github.io
Email: smwang@cs.washington.edu

About Professor Wang 👋

● Incoming assistant professor at UW CSE
● Software engineer at Anyscale
● Lead author and committer of the Ray project, created at UC Berkeley

Outline

1. What is Ray?

a. History of open-source project and system architecture

2. Ray Data deep dive

3. What’s next for Ray?

What Problem is Ray Trying to Address?

Trends:

1. AI compute demands exploding → Need scale

2. AI application diversity exploding → Need flexibility
a. Diversity in data(sets)

b. Diversity in compute needs

Can We Use Spark or Dask for This?

AI workloads have flavor(s) of parallel execution supported by Spark/Dask

- Feature extraction
- Last-mile data-loading and preprocessing (i.e. data streaming)
- Model inference
- Model training

Q: could you write a Spark program to do each of these^ individually?

Note: Spark MLLib and Dask-ML support training decision trees & random forests

Case Study: Reinforcement Learning (RL)

RL 30,000 foot overview (one training epoch):

1. Init. NN model (called “policy”)

2. Policy is provided an initial state (e.g.
chessboard, sensor data)

3. Policy is asked to take an action

4. Action is simulated in an environment

5. Environment returns new state (i.e.
“observation”) and a reward

6. Steps 2-5 repeat for T time steps to
produce a “trajectory”

7. N trajectories are produced and used to
train / update the policy model

Do not need to know this for quiz

Case Study: Reinforcement Learning (RL)

This AI workload requires us to support:

1. Model Serving

2. Parallel (distributed, possibly
asynchronous) simulation

3. Model Training

Can we write a Spark / Dask program which
does this? Is it efficient? Why or why not?

What More Might We Want / Need for AI Workloads?

In a nutshell: fine-grained, low-level control over compute and data placement

- Spark and Dask are a bit too coarse-grained and synchronous
- E.g. “run the same transformation over different partitions of a dataset (likely using

homogenous hardware)”
- Great fit for many data processing workloads
- But possibly too optimized to be general purpose enough for AI workloads

- Ray offers lower-level programming interface which is ideal for these workloads
- E.g. “co-locate my policy model and simulation environment on GPU instances, but run the

simulation code on a separate set of CPU-optimized instances”
- Support for stateful execution (Actors) and stateless execution (Tasks) in Ray Core
- Easy to build optimized ML libraries and pipelines on top of this

Notably, Ray is reported to have been OpenAI’s framework of choice for training GPT

History of Ray

● 2016: Started development of v0.1 at UC Berkeley, in the RISELab

○ First version in Rust: https://github.com/amplab/orchestra

○ C++ prototype with gRPC: https://github.com/ray-project/ray-legacy

○ C prototype

○ May 2017: v0.1 released

https://github.com/amplab/orchestra
https://github.com/ray-project/ray-legacy
https://github.com/ray-project/ray/tree/ray-0.1.0

History of Ray

● 2017: Tune (hyperparameter search) and RLlib (reinforcement learning)
libraries

● 2018: Rewrite Ray core in C++; first Ray paper at OSDI’18

● 2019: Anyscale founded; began second rewrite of Ray core

● 2020: Ray v1.0 released; first Ray Summit; Serve (ML serving) library

● 2021: Ray v1.0 paper at NSDI’21; Ray Data

● 2022: Ray v2.0; OpenAI releases ChatGPT

● 2023: Ray beats Spark on CloudSort world record

● 2016: Started development of v0.1 at UC Berkeley, in the RISELab

GitHub star history

ML libraries

Ray: A Unified System for ML

16

Hyperparameter
Search

Distributed
Training Simulation Inference Stream

processing
Data

Processing

On a single node, Python libraries are the key to app development:
+ Performance: Libraries often optimized with native code.
+ Developer productivity: Easily compose libraries with function calls.

Problem: In the distributed setting, need to address domain-specific
problems in scheduling, fault tolerance, etc.

Distributed
System

Distributed
System

Distributed
System

Distributed
System

Distributed
System

Distributed
System

Ray: A Unified System for ML

17

Hyperparameter
Search

Distributed
Training Simulation Inference Stream

processing
Data

Processing

- Developer productivity: Orchestration? Data movement?

- Performance: End-to-end performance? Future-proof systems?

Libraries

(Core): A general-purpose distributed execution layer

Ray: A Unified System for ML

18

Hyperparameter
Search

Distributed
Training Simulation Inference Stream

processing
Data

Processing

Ray Tune/Train RLlib Ray Serve Ray Data

Libraries

(Core): A general-purpose distributed execution layer

Ray: A Unified System for ML

19

Hyperparameter
Search

Distributed
Training Simulation Inference Stream

processing
Data

Processing

Ray Tune/Train RLlib Ray Serve Ray Data

Libraries

(Core): A general-purpose distributed execution layer

Ray: A Unified System for ML

20

Hyperparameter
Search

Distributed
Training Simulation Inference Stream

processing
Data

Processing

Ray Tune/Train RLlib Ray Serve Ray Data

Remote functions and classes

This is our focus for Lab 6

- If you can master Ray Tasks and
Actors, learning the rest of the Ray
libraries becomes much easier

def f(shape):
 return np.zeros(shape)

def add(a, b):
 return a + b

Tasks

The Ray API

@ray.remote
def f(shape):
 return np.zeros(shape)

@ray.remote
def add(a, b):
 return a + b

Tasks

The Ray API

@ray.remote
def f(shape):
 return np.zeros(shape)

@ray.remote
def add(a, b):
 return a + b

Tasks

o1 = f.remote([5, 5])

o1 is a:

...future: The eventual value will be
computed by f.

...remote reference: The value may be
stored on a remote node (in Ray’s
distributed object store).

The Ray API

@ray.remote
def f(shape):
 return np.zeros(shape)

@ray.remote
def add(a, b):
 return a + b

Tasks

o1 = f.remote([5, 5])

o1 is a:

...future: The eventual value will be
computed by f.

...remote reference: The value may be
stored on a remote node (in Ray’s
distributed object store).

The Ray API

@ray.remote
def f(shape):
 return np.zeros(shape)

@ray.remote
def add(a, b):
 return a + b

Tasks

o1 = f.remote([5, 5])

o1 is a:

...future: The eventual value will be
computed by f.

...remote reference: The value may be
stored on a remote node (in Ray’s
distributed object store).

o2 = f.remote([5, 5])
o3 = add.remote(o1, o2)
result = ray.get(o3)

The Ray API

Demo!

@ray.remote
def f(shape):
 return np.zeros(shape)

@ray.remote
def add(a, b):
 return a + b

o1 = f.remote([5, 5])
o2 = f.remote([5, 5])
o3 = add.remote(o1, o2)
result = ray.get(o3)

class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

Tasks

The Ray API

@ray.remote
def f(shape):
 return np.zeros(shape)

@ray.remote
def add(a, b):
 return a + b

o1 = f.remote([5, 5])
o2 = f.remote([5, 5])
o3 = add.remote(o1, o2)
result = ray.get(o3)

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

Tasks Actors

The Ray API

@ray.remote
def f(shape):
 return np.zeros(shape)

@ray.remote
def add(a, b):
 return a + b

o1 = f.remote([5, 5])
o2 = f.remote([5, 5])
o3 = add.remote(o1, o2)
result = ray.get(o3)

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter.remote()
o4 = c.inc.remote()
o5 = c.inc.remote()
Returns [1, 2].
result = ray.get([o4, o5])

Tasks Actors

The Ray API

Quick Break

32
“Global control store” (GCS): holds all system state, other components stateless

2018: Ray pre-1.0 Architecture

Global Control Store
Global Control Store

Lineage Store

Scheduler

Debugging

Profiling

Web UI

Driver Worker

Scheduler

Object Store Object Store

Worker Worker

Slides from OSDI’18

Distributed object store to
store task args and returns

2018: Ray pre-1.0 Architecture

Global Control Store
Global Control Store

Lineage Store

Scheduler

Debugging

Profiling

Web UI

Driver Worker

Scheduler

Object Store Object Store

Worker Worker

35
“Global control store” (GCS)

Performance: every task and
object involved multiple
messages with the
scheduler, object store, and
GCS.

Including actors (where
location of worker is already
known).

2018: Ray pre-1.0 Architecture

Global Control Store
Global Control Store

Lineage Store

Scheduler

Debugging

Profiling

Web UI

Driver Worker

Scheduler

Object Store Object Store

Worker Worker

37
“Global control store” (GCS)

Fault tolerance:
Didn’t work in a lot of cases: actors,
serialized ObjectRefs, etc.

Decentralized design made system
more unstable.

Without automatic memory
management, could not
distinguish between machine
failures and OOM.

2018: Designing Ray v1.0

Problems:

● Decentralized design added a lot of overhead, especially for actor tasks.

● System complexity created instability under load and failures.

● Need automatic memory management for better stability.

○ But this would’ve added even more overhead and complexity!

→ Ray v1.0: We need to redesign the metadata control plane.

2018: Designing Ray v1.0

Some parallel Ideas:

● Performance: Reduce load from lower system components by having
workers send tasks directly to each other via RPC.

● Reducing complexity: Instead of decentralizing by storing all system state in
GCS, let’s keep the decentralized part but introduce some notion of metadata
ownership.

○ Who should the owner be? Automatic memory management makes this
answer obvious: the owner should be the original reference holder (the
worker that created the original ObjectRef)!

2018: Key metrics leading up to Ray v1.0

Stability changes that are harder to quantify:
● Task retries
● Automatic memory management

For generality, the system must impose low overhead.
Analogy: gRPC can execute millions of tasks/s. Can we do the same for
distributed futures? → futures whose values can be stored anywhere

Goal: Build a distributed futures system that guarantees fault tolerance with low
task overhead.

Enable applications that dynamically generate fine-grained tasks. → Check
out the paper[1] for more details!

For generality, the system must impose low overhead.
Analogy: gRPC can execute millions of tasks/s. Can we do the same for
distributed futures? → futures whose values can be stored anywhere

Goal: Build a distributed futures system that guarantees fault tolerance with low
task overhead. → Note the similarity! :)

Enable applications that dynamically generate fine-grained tasks. → Check
out the paper[1] for more details!

For generality, the system must impose low overhead.
Analogy: gRPC can execute millions of tasks/s. Can we do the same for
distributed futures?

Goal: Build a distributed futures system that guarantees fault tolerance with low
task overhead.

Enable applications that dynamically generate fine-grained tasks. → Check
out the paper[1] for more details!

2020: A distributed futures system for fine-grained tasks

[1] Ownership: A Distributed Futures System for Fine-Grained Tasks. NSDI, 2021.Slides from NSDI’21

2020: Distributed futures introduce shared state

f()

f()

driver

add(o1,o2)

o2

o1
Invocation

Legend

Task (RPC)

Data dependency o1

Slides from NSDI’21

Distributed Futures (in a nutshell)

a. RPC
i. Function calls block; data is copied

everywhere
b. RPC + distributed memory

i. Pass-by-reference eliminates some
data copies

c. RPC + futures
i. Functions can be executed in

parallel
d. Distributed Futures

i. Parallel execution & minimal data
copy

Multiple processes refer to the same value.

2020: Distributed futures introduce shared state

add(o1,o2)

f()

f()

driver

o2

o1o1o1

Dereferencing a distributed future requires coordination.

1. The process that specifies how the
value is created and used.

2. The process that creates the value.

3. The process that uses the value.

4. The physical location of the value.

Slides from NSDI’21

2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of
a distributed futures application.

f()

f()

driver

add(o1,o2)

o2

o1

1. Task graphs are hierarchical.

2. A distributed future is often
passed within the scope of the
caller.

Slides from NSDI’21

2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of
a distributed futures application.

1. Task graphs are hierarchical.

Insight: By leveraging the structure of distributed futures applications,
we can decentralize without requiring expensive coordination.

2. A distributed future is often
passed within the scope of the
caller.

f()

f()

add(o1,o2)

o2

o1

driver

Slides from NSDI’21

2020: Our approach: Ownership

Insight: By leveraging the structure of distributed futures applications,
we can decentralize without requiring expensive coordination.

Architecture Failure handling Performance

Ownership:
The worker that

calls a task owns
the returned

distributed future.

Each worker is a
“centralized owner” for
the objects that it owns.
Use supervision to
handle owner failure.

No additional writes on
the critical path of task
execution. Scaling
through nested
function calls.

Slides from NSDI’21

Today: When to use Ray Core?

Ray Tune/
Train

RLlib Ray
Serve

Ray
Data

vLLM

Coarse-grained (process-level)
orchestration

✅ ✅ ✅ ✅ ✅

Fine-grained (10ms+ function-level)
orchestration

✅ ✅ ✅ ✅

Distributed memory management ✅

Note: There are also benefits when composing libraries!

Ray Data: Scalable datasets for ML

Ray Data is a flexible and scalable data processing library

+ Ease of use: Python-native, easy deployment via Ray Core

+ Transparent scale: Transparent fault tolerance, resource management, data
partitioning and placement, pipelining, heterogeneous clusters

+ Flexibility: Pipelining between CPU and GPU tasks; native support for
tabular, image, (Anyscale-only) audio/video

Ray Data is a flexible and scalable data processing library

Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines

Ray Data is a flexible and scalable data processing library

Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines

Data loading for ML training

Storage
Cloud storage or

local disk

Dataset
GPU

Needs to scale to large datasets and clusters.

Needs to be fast, to maximize GPU utilization.

→ Large dataset → Must stream through memory

Data loading for ML training

Storage
Cloud storage or

local disk

Dataset

GPU GPU

GPU GPU

Needs to scale to large datasets and clusters.

Needs to be fast, to maximize GPU utilization.

→ Large dataset → Must stream through memory

→ Cluster → Must send data over the network

Data loading for ML training

Storage
Cloud storage or

local disk

Dataset

GPU GPU

GPU GPU

Needs to be flexible, to support arbitrary preprocessing.

→ Data can have different: storage, modality, preprocessing,
memory footprint, ordering, …

Needs to scale to large datasets and clusters.

Needs to be fast, to maximize GPU utilization.

Ray Data is…
Fast Parallelize S3 reads

Streaming execution in v2.4+.
Shared-memory data loading.

Control memory usage

Same time window

Training ResNet-50 (image
classification) on a raw S3 dataset

Maximize GPU utilization

Ray Data is…
Fast Scalable Flexible

text

Query planner for building
arbitrary data preprocessing

pipelines.

Heterogeneous clusters.
Automatic failure recovery.

Streaming execution.
Shared-memory data

loading.

node

Ray Data design

GPU

worker worker worker worker

How are workers implemented?
→ Ray core → generic dist. compute

How does data get passed?
→ Workers put data in shared memory

How is work assigned to the workers?
→ Work is broken into smaller “tasks”

scheduled by Ray
→ Task outputs are spread on-the-fly

among GPUs

GPU

Ray task

Ray shared-memory object store

Ray
object

How are workers implemented?
→ Ray core → generic dist. compute

How does data get passed?
→ Workers put data in shared memory

How is work assigned to the workers?
→ Work is broken into smaller “tasks”

scheduled by Ray
→ Task outputs are spread on-the-fly

among GPUs

node

GPU

worker worker worker worker

GPU

Ray task

Ray shared-memory object store

Additional overheads compared to `multiprocessing`:
- Copy preprocessed data in shared memory
- Ray core task overhead (<1ms per task)

But in return:
+ Automatically partition data
+ Scheduler can control execution to dynamically load-balance

and limit memory usage
+ Recover from failures without having to restart

Get distributed features from Ray core “for free”.

Ray Data design

node

Ray shared-memory object store

node

Ray Data with distributed trainers

GPU

worker worker worker worker

GPU

Ray shared-memory object store

Ray Data routes batches based on data locality and load-balancing.

Ray object
(preprocessed

batches)

Ray task

Caching Ray Datasets with ds.materialize()

Data can be cached at any stage of preprocessing. Ray core automatically
spills to disk to avoid out-of-memory.

node

Ray shared-memory object store

node

GPU

worker worker worker worker

GPU

Ray shared-memory object store

nodenode

Ray shared-memory object store

Ray Data with heterogeneous clusters

GPU

worker worker worker worker

Data produced by remote tasks gets moved to the trainer node in the background.

Ray shared-memory object store

Data loading for ML training features

Single-node + distributed:

- Automatic dataset partitioning and load-balancing across workers

- Automatic memory limits

- Recover from failures without restarting training

- Cache materialized datasets in-memory and on-disk

Distributed features:

- Heterogeneous clusters: Scale CPU-based data preprocessing separately from
GPU-based training

- Locality-based scheduling

- (soon) Autoscaling clusters

Flexibility!

ImageNet scalability benchmark on S3

1. Load images
from S3 path

ds = ray.data.read_images(
 “s3://bucket”
)
ds = ds.map(
 crop_and_flip_image
)

v2.4+

ImageNet scalability benchmark on S3

1. Load images
from S3 path

2. Apply
preprocessing
fn to images

ds = ray.data.read_images(
 “s3://bucket”
)
ds = ds.map(
 crop_and_flip_image
)

v2.4+

ds = ds.map(
 read_images->
 crop_and_flip_image
)

Query
optimizer

ImageNet scalability benchmark on S3

1. Load images
from S3 path

2. Apply
preprocessing
fn to images

3. Ingest with
Ray Train
TorchTrainer

def train_loop_per_worker(batch_iter : ray.data.DataIterator):
 # Batch Iterator over Ray Dataset/Torch DataLoader
 for batch in batch_iter:
 ...

ds = ray.data.read_images(
 “s3://bucket”
)
ds = ds.map(
 crop_and_flip_image
)

v2.4+

ImageNet scalability benchmark on S3

Node setup: g4dn.xlarge
● 16 vCPU
● 1 NVIDIA T4 GPU
● 64 GiB memory

Dataset:
● ImageNet, stored as raw

images (JPG) on S3
● Each trainer reads about

10GB of images

Ray Data is fast and scalable, matching manually tuned
Torch Dataloader in a distributed setting.

Implementation Details

def load_image(inputs):
 import io
 from PIL import Image

 url, fd = inputs
 data = fd.file_obj.read()
 image = Image.open(io.BytesIO(data))
 image = image.convert("RGB")
 if transform is not None:
 image = crop_and_flip_image(image)
 return image

class FileURLDataset:
 def __init__(self, file_urls):
 self._file_urls = file_urls

 def __iter__(self):
 worker_info =
torch.utils.data.get_worker_info()
 assert worker_info is not None

 torch_worker_id = worker_info.id
 return
iter(self._file_urls[torch_worker_id])

 file_urls = INPUT_FILES_PER_WORKER[worker_rank]
 file_urls = [f.tolist() for f in
np.array_split(file_urls, num_workers)]
 file_url_dp =
IterableWrapper(FileURLDataset(file_urls))
 file_dp = S3FileLoader(file_url_dp)
 image_dp = file_dp.map(load_image)

dataloader

Torch required tedious wrangling:
● Custom S3 DataLoader

implementation
● Manual tuning of num_workers
● Manual partitioning of input

dataset files to each worker

ds = ray.data.read_images(
 “s3://bucket”
)
ds =
ds.map(crop_and_flip_image)

v2.4+

Supporting Heterogeneous Clusters

Node setup: g4dn.xlarge
+ 4 r5.16xlarge

● 16 vCPU
● 1 NVIDIA T4 GPU
● 64 GiB memory
● +64 vCPU, 512 GiB

memory
Dataset:

● ImageNet, stored as raw
images (JPG) on S3

● Each trainer reads about
10GB of images

Utilizing extra CPUs to
maximize throughput
No code changes!

What’s next for Ray?

Trend: Model execution is becoming more complex

Post-training Model routing

Fine-tuning Mixture-of-Experts

Speculative decoding

Draft
model Target model

Data processing

Retrieval Augmented Generation

Model
quantization

Model Quantized
model

71

Model

Dataset experimentation

Trend: Model execution is becoming more complex

Simple scaling of models is getting increasingly expensive.

Before: One model per task, all inputs take the same path.

After: One to many models for many tasks, inputs may take different and
dynamic paths.

Meanwhile, current (distributed) ML systems are highly static!

72

Is Ray Core the answer?

Ray Tune/
Train

RLlib Ray
Serve

Ray
Data

vLLM

Coarse-grained (process-level)
orchestration

✅ ✅ ✅ ✅ ✅

Fine-grained (10ms+ function-level)
orchestration

✅ ✅ ✅ ✅

Distributed memory management ✅

Ray Tune/
Train

RLlib Ray
Serve

Ray
Data

vLLM

Coarse-grained (process-level)
orchestration

✅ ✅ ✅ ✅ ✅

Fine-grained (10ms+ function-level)
orchestration

✅ ✅ ✅ ✅

Distributed memory management ✅

Is Ray Core the answer?

Problem: GPU “tasks” run at 100s of us.

Ray Tune/
Train

RLlib Ray
Serve

Ray
Data

vLLM

Coarse-grained (process-level)
orchestration

✅ ✅ ✅ ✅ ✅

Fine-grained (10ms+ function-level)
orchestration

✅ ✅ ✅ ✅

Distributed memory management ✅

Is Ray Core the answer?

Problem: GPU memory management is often tightly coupled
with GPU compute.

Ray 3.0: Accelerated DAGs

Observation 1: Ray Core is (relatively) slow because it assumes a completely
dynamic workload.

Observation 2: Even complicated GPU schedules like pipeline parallelism are
not very dynamic.

76

Ray 3.0: Accelerated DAGs

Key ideas:

- (Initially) Restrict user to static dataflow
- Provide fast, transparent, pipelined data movement between GPUs

Goal: Reduce burden in building (distributed) GPU systems, without loss of
performance.

77

Driver

Tensor-parallel inference DAG:
dag = ray.dag.MultiOutputNode(
 [w.fwd.bind(input) for w in workers])

Driver
input

Ray 3.0: Accelerated DAGs

Pipeline-parallel DAG:
dag = input
for w in workers:
 dag = w.fwd.bind(dag)

input

Ray 3.0: Accelerated DAGs

GPUActor

input1

input2

input3

GPU-GPU
communication

Pipeline-parallel DAG:

Ray 3.0: Accelerated DAGs

Ray 3.0: Accelerated DAGs for LLM inference

Current use cases:

- Prefill disaggregation
- Pipeline parallelism

Experimental use cases:

- Mixing tensor parallelism and pipeline parallelism
- CPU offloading
- Heterogeneous GPU systems
- Online prompt processing

81

