
Last Time

● Introduced Parallel Processing
● Looked at Parallel Dataflow as a common set of operations that can be 

readily parallelized
● Studied parallel join and parallel aggregation
● Introduced Dask, a parallel implementation of Pandas



Spark Architecture



Spark Operations

● RDD: Resilient Distributed Dataset, a collection of elements that can be 
operated in parallel

○ Data flows in the DAG in the form of RDD
● Transformation: produce new RDDs given input RDDs

○ map, join, union, filter …
○ Lazy evaluation: building the dataflow DAG

● Action: executes the DAG and returns results to driver program
○ Count, persist, take …

● Demo



Spark Fault Tolerance Model

● Lineage-based recomputation
● When a worker node failed during execution, only the RDD partitions that are 

affected are recomputed.
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About Professor Wang 👋

● Incoming assistant professor at UW CSE
● Software engineer at Anyscale
● Lead author and committer of the Ray project, created at UC Berkeley



Outline

1. What is Ray?

a. History of open-source project and system architecture

2. Ray Data deep dive

3. What’s next for Ray?



What Problem is Ray Trying to Address?

Trends:

1. AI compute demands exploding → Need scale

2. AI application diversity exploding → Need flexibility
a. Diversity in data(sets)

b. Diversity in compute needs



Can We Use Spark or Dask for This?

AI workloads have flavor(s) of parallel execution supported by Spark/Dask

- Feature extraction
- Last-mile data-loading and preprocessing (i.e. data streaming)
- Model inference
- Model training

Q: could you write a Spark program to do each of these^ individually?

Note: Spark MLLib and Dask-ML support training decision trees & random forests



Case Study: Reinforcement Learning (RL)

RL 30,000 foot overview (one training epoch):

1. Init. NN model (called “policy”)

2. Policy is provided an initial state  (e.g. 
chessboard, sensor data)

3. Policy is asked to take an action

4. Action is simulated in an environment

5. Environment returns new state (i.e. 
“observation”) and a reward

6. Steps 2-5 repeat for T time steps to 
produce a “trajectory”

7. N trajectories are produced and used to 
train / update the policy model

Do not need to know this for quiz



Case Study: Reinforcement Learning (RL)

This AI workload requires us to support:

1. Model Serving

2. Parallel (distributed, possibly 
asynchronous) simulation

3. Model Training

Can we write a Spark / Dask program which 
does this? Is it efficient? Why or why not?



What More Might We Want / Need for AI Workloads?

In a nutshell: fine-grained, low-level control over compute and data placement

- Spark and Dask are a bit too coarse-grained and synchronous
- E.g. “run the same transformation over different partitions of a dataset (likely using    

homogenous hardware)”
- Great fit for many data processing workloads
- But possibly too optimized to be general purpose enough for AI workloads

- Ray offers lower-level programming interface which is ideal for these workloads
- E.g. “co-locate my policy model and simulation environment on GPU instances, but run the 

simulation code on a separate set of CPU-optimized instances”
- Support for stateful execution (Actors) and stateless execution (Tasks) in Ray Core
- Easy to build optimized ML libraries and pipelines on top of this

Notably, Ray is reported to have been OpenAI’s framework of choice for training GPT



History of Ray

● 2016: Started development of v0.1 at UC Berkeley, in the RISELab

○ First version in Rust: https://github.com/amplab/orchestra

○ C++ prototype with gRPC: https://github.com/ray-project/ray-legacy

○ C prototype

○ May 2017: v0.1 released

https://github.com/amplab/orchestra
https://github.com/ray-project/ray-legacy
https://github.com/ray-project/ray/tree/ray-0.1.0


History of Ray

● 2017: Tune (hyperparameter search) and RLlib (reinforcement learning) 
libraries

● 2018: Rewrite Ray core in C++; first Ray paper at OSDI’18

● 2019: Anyscale founded; began second rewrite of Ray core

● 2020: Ray v1.0 released; first Ray Summit; Serve (ML serving) library

● 2021: Ray v1.0 paper at NSDI’21; Ray Data

● 2022: Ray v2.0; OpenAI releases ChatGPT

● 2023: Ray beats Spark on CloudSort world record

● 2016: Started development of v0.1 at UC Berkeley, in the RISELab



GitHub star history



ML libraries

Ray: A Unified System for ML
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Hyperparameter 
Search

Distributed 
Training Simulation Inference Stream 

processing
Data 

Processing

On a single node, Python libraries are the key to app development:
+ Performance: Libraries often optimized with native code.
+ Developer productivity: Easily compose libraries with function calls.

Problem: In the distributed setting, need to address domain-specific 
problems in scheduling, fault tolerance, etc.



Distributed 
System

Distributed 
System

Distributed 
System

Distributed 
System

Distributed 
System

Distributed 
System

Ray: A Unified System for ML
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Hyperparameter 
Search

Distributed 
Training Simulation Inference Stream 

processing
Data 

Processing

- Developer productivity: Orchestration? Data movement?

- Performance: End-to-end performance? Future-proof systems?



Libraries

(Core): A general-purpose distributed execution layer

Ray: A Unified System for ML
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Ray Tune/Train RLlib Ray Serve Ray Data



Libraries

(Core): A general-purpose distributed execution layer

Ray: A Unified System for ML
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Libraries

(Core): A general-purpose distributed execution layer

Ray: A Unified System for ML

20

Hyperparameter 
Search

Distributed 
Training Simulation Inference Stream 

processing
Data 

Processing

Ray Tune/Train RLlib Ray Serve Ray Data

Remote functions and classes



This is our focus for Lab 6

- If you can master Ray Tasks and 
Actors, learning the rest of the Ray 
libraries becomes much easier



def f(shape):
    return np.zeros(shape)

def add(a, b):
  return a + b

Tasks

The Ray API



@ray.remote
def f(shape):
    return np.zeros(shape)

@ray.remote
def add(a, b):
  return a + b

Tasks

The Ray API



@ray.remote
def f(shape):
    return np.zeros(shape)

@ray.remote
def add(a, b):
  return a + b

Tasks

o1 = f.remote([5, 5])

o1 is a:

...future: The eventual value will be 
computed by f.

...remote reference: The value may be 
stored on a remote node (in Ray’s 
distributed object store).

The Ray API



@ray.remote
def f(shape):
    return np.zeros(shape)

@ray.remote
def add(a, b):
  return a + b

Tasks

o1 = f.remote([5, 5])

o1 is a:

...future: The eventual value will be 
computed by f.

...remote reference: The value may be 
stored on a remote node (in Ray’s 
distributed object store).

The Ray API



@ray.remote
def f(shape):
    return np.zeros(shape)

@ray.remote
def add(a, b):
  return a + b

Tasks

o1 = f.remote([5, 5])

o1 is a:

...future: The eventual value will be 
computed by f.

...remote reference: The value may be 
stored on a remote node (in Ray’s 
distributed object store).

o2 = f.remote([5, 5])
o3 = add.remote(o1, o2)
result = ray.get(o3)

The Ray API



Demo!



@ray.remote
def f(shape):
    return np.zeros(shape)

@ray.remote
def add(a, b):
  return a + b

o1 = f.remote([5, 5])
o2 = f.remote([5, 5])
o3 = add.remote(o1, o2)
result = ray.get(o3)

class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

Tasks

The Ray API



@ray.remote
def f(shape):
    return np.zeros(shape)

@ray.remote
def add(a, b):
  return a + b

o1 = f.remote([5, 5])
o2 = f.remote([5, 5])
o3 = add.remote(o1, o2)
result = ray.get(o3)

@ray.remote
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

Tasks Actors

The Ray API



@ray.remote
def f(shape):
    return np.zeros(shape)

@ray.remote
def add(a, b):
  return a + b

o1 = f.remote([5, 5])
o2 = f.remote([5, 5])
o3 = add.remote(o1, o2)
result = ray.get(o3)

@ray.remote
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter.remote()
o4 = c.inc.remote()
o5 = c.inc.remote()
# Returns [1, 2].
result = ray.get([o4, o5])

Tasks Actors

The Ray API



Quick Break
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“Global control store” (GCS): holds all system state, other components stateless

2018: Ray pre-1.0 Architecture

Global Control Store
Global Control Store

Lineage Store

Scheduler

Debugging

Profiling

Web UI

Driver Worker

Scheduler

Object Store Object Store

Worker Worker

Slides from OSDI’18

Distributed object store to 
store task args and returns







2018: Ray pre-1.0 Architecture

Global Control Store
Global Control Store

Lineage Store

Scheduler

Debugging

Profiling

Web UI

Driver Worker

Scheduler

Object Store Object Store

Worker Worker
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“Global control store” (GCS)

Performance: every task and 
object involved multiple 
messages with the 
scheduler, object store, and 
GCS.

Including actors (where 
location of worker is already 
known).





2018: Ray pre-1.0 Architecture

Global Control Store
Global Control Store

Lineage Store

Scheduler

Debugging

Profiling

Web UI

Driver Worker

Scheduler

Object Store Object Store

Worker Worker
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“Global control store” (GCS)

Fault tolerance:
Didn’t work in a lot of cases: actors, 
serialized ObjectRefs, etc.

Decentralized design made system 
more unstable.

Without automatic memory 
management, could not 
distinguish between machine 
failures and OOM.



2018: Designing Ray v1.0

Problems:

● Decentralized design added a lot of overhead, especially for actor tasks.

● System complexity created instability under load and failures.

● Need automatic memory management for better stability.

○ But this would’ve added even more overhead and complexity!

→ Ray v1.0: We need to redesign the metadata control plane.



2018: Designing Ray v1.0

Some parallel Ideas:

● Performance: Reduce load from lower system components by having 
workers send tasks directly to each other via RPC.

● Reducing complexity: Instead of decentralizing by storing all system state in 
GCS, let’s keep the decentralized part but introduce some notion of metadata 
ownership.

○ Who should the owner be? Automatic memory management makes this 
answer obvious: the owner should be the original reference holder (the 
worker that created the original ObjectRef)!



2018: Key metrics leading up to Ray v1.0

Stability changes that are harder to quantify:
● Task retries
● Automatic memory management



For generality, the system must impose low overhead.
Analogy: gRPC can execute millions of tasks/s. Can we do the same for 
distributed futures? → futures whose values can be stored anywhere

Goal: Build a distributed futures system that guarantees fault tolerance with low 
task overhead.

Enable applications that dynamically generate fine-grained tasks. → Check 
out the paper[1] for more details!

For generality, the system must impose low overhead.
Analogy: gRPC can execute millions of tasks/s. Can we do the same for 
distributed futures? → futures whose values can be stored anywhere

Goal: Build a distributed futures system that guarantees fault tolerance with low 
task overhead. → Note the similarity! :)

Enable applications that dynamically generate fine-grained tasks. → Check 
out the paper[1] for more details!

For generality, the system must impose low overhead.
Analogy: gRPC can execute millions of tasks/s. Can we do the same for 
distributed futures?

Goal: Build a distributed futures system that guarantees fault tolerance with low 
task overhead.

Enable applications that dynamically generate fine-grained tasks. → Check 
out the paper[1] for more details!

2020: A distributed futures system for fine-grained tasks

[1] Ownership: A Distributed Futures System for Fine-Grained Tasks. NSDI, 2021.Slides from NSDI’21



2020: Distributed futures introduce shared state

f()

f()

driver

add(o1,o2)

o2

o1
Invocation

Legend

Task (RPC)

Data dependency o1

Slides from NSDI’21



Distributed Futures (in a nutshell)

a. RPC
i. Function calls block; data is copied 

everywhere
b. RPC + distributed memory

i. Pass-by-reference eliminates some 
data copies

c. RPC + futures
i. Functions can be executed in 

parallel
d. Distributed Futures

i. Parallel execution & minimal data 
copy



Multiple processes refer to the same value.

2020: Distributed futures introduce shared state

add(o1,o2)

f()

f()

driver

o2

o1o1o1

Dereferencing a distributed future requires coordination.

1. The process that specifies how the 
value is created and used.

2. The process that creates the value.

3. The process that uses the value.

4. The physical location of the value.

Slides from NSDI’21



2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of 
a distributed futures application.

f()

f()

driver

add(o1,o2)

o2

o1

1. Task graphs are hierarchical.

2. A distributed future is often 
passed within the scope of the 
caller.

Slides from NSDI’21



2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of 
a distributed futures application.

1. Task graphs are hierarchical.

Insight: By leveraging the structure of distributed futures applications, 
we can decentralize without requiring expensive coordination.

2. A distributed future is often 
passed within the scope of the 
caller.

f()

f()

add(o1,o2)

o2

o1

driver

Slides from NSDI’21



2020: Our approach: Ownership

Insight: By leveraging the structure of distributed futures applications, 
we can decentralize without requiring expensive coordination.

Architecture Failure handling Performance

Ownership:
The worker that 

calls a task owns 
the returned 

distributed future.

Each worker is a 
“centralized owner” for 
the objects that it owns.
Use supervision to 
handle owner failure.

No additional writes on 
the critical path of task 
execution. Scaling 
through nested 
function calls.

Slides from NSDI’21



Today: When to use Ray Core?

Ray Tune/ 
Train

RLlib Ray 
Serve

Ray 
Data

vLLM

Coarse-grained (process-level) 
orchestration

✅ ✅ ✅ ✅ ✅

Fine-grained (10ms+ function-level) 
orchestration

✅ ✅ ✅ ✅

Distributed memory management ✅

Note: There are also benefits when composing libraries!



Ray Data: Scalable datasets for ML



Ray Data is a flexible and scalable data processing library

+ Ease of use: Python-native, easy deployment via Ray Core

+ Transparent scale: Transparent fault tolerance, resource management, data 
partitioning and placement, pipelining, heterogeneous clusters

+ Flexibility: Pipelining between CPU and GPU tasks; native support for 
tabular, image, (Anyscale-only) audio/video



Ray Data is a flexible and scalable data processing library

Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines



Ray Data is a flexible and scalable data processing library

Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines



Data loading for ML training

Storage
Cloud storage or

local disk

Dataset
GPU

Needs to scale to large datasets and clusters.

Needs to be fast, to maximize GPU utilization.

→ Large dataset → Must stream through memory



Data loading for ML training

Storage
Cloud storage or

local disk

Dataset

GPU GPU

GPU GPU

Needs to scale to large datasets and clusters.

Needs to be fast, to maximize GPU utilization.

→ Large dataset → Must stream through memory

→ Cluster → Must send data over the network



Data loading for ML training

Storage
Cloud storage or

local disk

Dataset

GPU GPU

GPU GPU

Needs to be flexible, to support arbitrary preprocessing.

→ Data can have different: storage, modality, preprocessing, 
memory footprint, ordering, …

Needs to scale to large datasets and clusters.

Needs to be fast, to maximize GPU utilization.



Ray Data is…
Fast Parallelize S3 reads

Streaming execution in v2.4+.
Shared-memory data loading.

Control memory usage

Same time window

Training ResNet-50 (image 
classification) on a raw S3 dataset

Maximize GPU utilization



Ray Data is…
Fast Scalable Flexible

text

Query planner for building 
arbitrary data preprocessing 

pipelines.

Heterogeneous clusters.
Automatic failure recovery.

Streaming execution.
Shared-memory data 

loading.



node

Ray Data design

GPU

worker worker worker worker

How are workers implemented?
→ Ray core → generic dist. compute

How does data get passed?
→ Workers put data in shared memory

How is work assigned to the workers?
→ Work is broken into smaller “tasks” 

scheduled by Ray
→ Task outputs are spread on-the-fly 

among GPUs

GPU

Ray task

Ray shared-memory object store

Ray 
object



How are workers implemented?
→ Ray core → generic dist. compute

How does data get passed?
→ Workers put data in shared memory

How is work assigned to the workers?
→ Work is broken into smaller “tasks” 

scheduled by Ray
→ Task outputs are spread on-the-fly 

among GPUs

node

GPU

worker worker worker worker

GPU

Ray task

Ray shared-memory object store

Additional overheads compared to `multiprocessing`:
- Copy preprocessed data in shared memory
- Ray core task overhead (<1ms per task)

But in return:
+ Automatically partition data
+ Scheduler can control execution to dynamically load-balance 

and limit memory usage
+ Recover from failures without having to restart

Get distributed features from Ray core “for free”.

Ray Data design



node

Ray shared-memory object store

node

Ray Data with distributed trainers

GPU

worker worker worker worker

GPU

Ray shared-memory object store

Ray Data routes batches based on data locality and load-balancing.

Ray object 
(preprocessed 

batches)

Ray task



Caching Ray Datasets with ds.materialize()

Data can be cached at any stage of preprocessing. Ray core automatically 
spills to disk to avoid out-of-memory.

node

Ray shared-memory object store

node

GPU

worker worker worker worker

GPU

Ray shared-memory object store



nodenode

Ray shared-memory object store

Ray Data with heterogeneous clusters

GPU

worker worker worker worker

Data produced by remote tasks gets moved to the trainer node in the background.

Ray shared-memory object store



Data loading for ML training features

Single-node + distributed:

- Automatic dataset partitioning and load-balancing across workers

- Automatic memory limits

- Recover from failures without restarting training

- Cache materialized datasets in-memory and on-disk

Distributed features:

- Heterogeneous clusters: Scale CPU-based data preprocessing separately from 
GPU-based training

- Locality-based scheduling

- (soon) Autoscaling clusters

Flexibility!



ImageNet scalability benchmark on S3

1. Load images 
from S3 path

ds = ray.data.read_images(
    “s3://bucket”
)
ds = ds.map(
    crop_and_flip_image
)

v2.4+



ImageNet scalability benchmark on S3

1. Load images 
from S3 path

2. Apply 
preprocessing 
fn to images

ds = ray.data.read_images(
    “s3://bucket”
)
ds = ds.map(
    crop_and_flip_image
)

v2.4+

ds = ds.map(
    read_images->
    crop_and_flip_image
)

Query 
optimizer



ImageNet scalability benchmark on S3

1. Load images 
from S3 path

2. Apply 
preprocessing 
fn to images

3. Ingest with 
Ray Train 
TorchTrainer

def train_loop_per_worker(batch_iter : ray.data.DataIterator):
    # Batch Iterator over Ray Dataset/Torch DataLoader
    for batch in batch_iter:
        ...

ds = ray.data.read_images(
    “s3://bucket”
)
ds = ds.map(
    crop_and_flip_image
)

v2.4+



ImageNet scalability benchmark on S3

Node setup: g4dn.xlarge
● 16 vCPU
● 1 NVIDIA T4 GPU
● 64 GiB memory

Dataset:
● ImageNet, stored as raw 

images (JPG) on S3
● Each trainer reads about 

10GB of images

Ray Data is fast and scalable, matching manually tuned 
Torch Dataloader in a distributed setting.



Implementation Details

def load_image(inputs):
    import io
        from PIL import Image

        url, fd = inputs
        data = fd.file_obj.read()
        image = Image.open(io.BytesIO(data))
        image = image.convert("RGB")
        if transform is not None:
            image = crop_and_flip_image(image)
        return image

class FileURLDataset:
    def __init__(self, file_urls):
        self._file_urls = file_urls

        def __iter__(self):
            worker_info = 
torch.utils.data.get_worker_info()
            assert worker_info is not None

            torch_worker_id = worker_info.id
            return 
iter(self._file_urls[torch_worker_id])

    file_urls = INPUT_FILES_PER_WORKER[worker_rank]
    file_urls = [f.tolist() for f in 
np.array_split(file_urls, num_workers)]
    file_url_dp = 
IterableWrapper(FileURLDataset(file_urls))
    file_dp = S3FileLoader(file_url_dp)
    image_dp = file_dp.map(load_image)

dataloader

Torch required tedious wrangling:
● Custom S3 DataLoader 

implementation
● Manual tuning of num_workers
● Manual partitioning of input 

dataset files to each worker

ds = ray.data.read_images(
    “s3://bucket”
)
ds = 
ds.map(crop_and_flip_image)

v2.4+



Supporting Heterogeneous Clusters

Node setup: g4dn.xlarge 
+ 4 r5.16xlarge

● 16 vCPU
● 1 NVIDIA T4 GPU
● 64 GiB memory
● +64 vCPU, 512 GiB 

memory
Dataset:

● ImageNet, stored as raw 
images (JPG) on S3

● Each trainer reads about 
10GB of images

Utilizing extra CPUs to 
maximize throughput
No code changes!



What’s next for Ray?



Trend: Model execution is becoming more complex

Post-training Model routing

Fine-tuning Mixture-of-Experts

Speculative decoding

Draft 
model Target model

Data processing

Retrieval Augmented Generation

Model 
quantization

Model Quantized 
model

71

Model

Dataset experimentation



Trend: Model execution is becoming more complex

Simple scaling of models is getting increasingly expensive.

Before: One model per task, all inputs take the same path.

After: One to many models for many tasks, inputs may take different and 
dynamic paths.

Meanwhile, current (distributed) ML systems are highly static!
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Is Ray Core the answer?

Ray Tune/ 
Train

RLlib Ray 
Serve

Ray 
Data

vLLM

Coarse-grained (process-level) 
orchestration

✅ ✅ ✅ ✅ ✅

Fine-grained (10ms+ function-level) 
orchestration

✅ ✅ ✅ ✅

Distributed memory management ✅



Ray Tune/ 
Train

RLlib Ray 
Serve

Ray 
Data

vLLM

Coarse-grained (process-level) 
orchestration

✅ ✅ ✅ ✅ ✅

Fine-grained (10ms+ function-level) 
orchestration

✅ ✅ ✅ ✅

Distributed memory management ✅

Is Ray Core the answer?

Problem: GPU “tasks” run at 100s of us.



Ray Tune/ 
Train

RLlib Ray 
Serve

Ray 
Data

vLLM

Coarse-grained (process-level) 
orchestration

✅ ✅ ✅ ✅ ✅

Fine-grained (10ms+ function-level) 
orchestration

✅ ✅ ✅ ✅

Distributed memory management ✅

Is Ray Core the answer?

Problem: GPU memory management is often tightly coupled 
with GPU compute.



Ray 3.0: Accelerated DAGs

Observation 1: Ray Core is (relatively) slow because it assumes a completely 
dynamic workload.

Observation 2: Even complicated GPU schedules like pipeline parallelism are 
not very dynamic.
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Ray 3.0: Accelerated DAGs

Key ideas:

- (Initially) Restrict user to static dataflow
- Provide fast, transparent, pipelined data movement between GPUs

Goal: Reduce burden in building (distributed) GPU systems, without loss of 
performance.

77



Driver

Tensor-parallel inference DAG:
dag = ray.dag.MultiOutputNode(
        [w.fwd.bind(input) for w in workers])

Driver
input

Ray 3.0: Accelerated DAGs



Pipeline-parallel DAG:
dag = input
for w in workers:
  dag = w.fwd.bind(dag)

input

Ray 3.0: Accelerated DAGs



GPUActor

input1

input2

input3

GPU-GPU 
communication

Pipeline-parallel DAG:

Ray 3.0: Accelerated DAGs



Ray 3.0: Accelerated DAGs for LLM inference

Current use cases:

- Prefill disaggregation
- Pipeline parallelism

Experimental use cases:

- Mixing tensor parallelism and pipeline parallelism
- CPU offloading
- Heterogeneous GPU systems
- Online prompt processing
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