Last Time

e Introduced Parallel Processing

e Looked at Parallel Dataflow as a common set of operations that can be
readily parallelized

e Studied parallel join and parallel aggregation

e Introduced Dask, a parallel implementation of Pandas

Spark Architecture

Driver Program

SparkContext

i

Cluster Manager

Worker Node

Executor

Cache

Task

Task

\

[\

—P| | Task

Worker Node

v

Executor

Cache

Task

Spark Operations

e RDD: Resilient Distributed Dataset, a collection of elements that can be
operated in parallel
o Data flows in the DAG in the form of RDD

e Transformation: produce new RDDs given input RDDs
o map, join, union, filter ...
o Lazy evaluation: building the dataflow DAG

e Action: executes the DAG and returns results to driver program
o Count, persist, take ...

e Demo

Spark Fault Tolerance Model

e Lineage-based recomputation
e \When a worker node failed during execution, only the RDD partitions that are
affected are recomputed.

Lecture 17:
Scalable Data
Processing with

0o RAY

| Slides courtesy of Prof. Stephanie Wang

Website: stephanie-wang.github.io

Email: smwang@cs.washington.edu

About Professor Wang

e Incoming assistant professor at UW CSE
e Software engineer at Anyscale
e Lead author and committer of the Ray project, created at UC Berkeley

PAULG.AIIFI_AE{\ISCHOOL DDD anyscale «rise

OF COMPUTER SCIENCE & ENGINEERING UC Berkeley

Outline

1. What is Ray?
a. History of open-source project and system architecture

2. Ray Data deep dive

3. What's next for Ray?

What Problem is Ray Trying to Address?

Trends:

1. Al compute demands exploding — Need scale

2. Al application diversity exploding — Need flexibility

a. Diversity in data(sets)

b. Diversity in compute needs

Can We Use Spark or Dask for This?

Al workloads have flavor(s) of parallel execution supported by Spark/Dask

- Feature extraction

- Last-mile data-loading and preprocessing (i.e. data streaming)
- Model inference

- Model training

Q: could you write a Spark program to do each of these” individually?

Note: Spark MLLib and Dask-ML support training decision trees & random forests

Case Study: Reinforcement Learning (RL)

RL 30,000 foot overview (one training epoch):

1.
2.

Init. NN model (called “policy”)

Policy is provided an initial state (e.g.
chessboard, sensor data)

Policy is asked to take an action
Action is simulated in an environment

Environment returns new state (i.e.
“observation”) and a reward

Steps 2-5 repeat for T time steps to
produce a “trajectory”

N trajectories are produced and used to
train / update the policy model

Agent Environment

................

: Training |

 improvement |
\ (e.g, SGD) !

Servmg action (a))
Policy POI'CYI Policy

‘| state (s;y)
 evaluation (observatlon'

' | reward (1)

trajeCtory: S0, (slr 1'1), seey (Sm rn)

Figure 1: Example of an RL system.

Do not need to know this for quiz

Case Study: Reinforcement Learning (RL)

This Al workload requires us to support:

1. Model Serving

2. Parallel (distributed, possibly Agent Environment

asynchronous) simulation Training; | Serving | | action @)
Policy pollcy Policy ’

3. Model Training improvement | ' evaluation I(oli?é?v(;tllc)m E
! (e.g, SGD) | - || reward (g

Can we write a Spark / Dask program which e s

does this? Is it efficient? Why or why not? Figure 1: Example of an RL system.

What More Might We Want / Need for Al Workloads?

In a nutshell: fine-grained, low-level control over compute and data placement

- Spark and Dask are a bit too coarse-grained and synchronous
- E.g. “run the same transformation over different partitions of a dataset (likely using
homogenous hardware)”
- Great fit for many data processing workloads
- But possibly too optimized to be general purpose enough for Al workloads

- Ray offers lower-level programming interface which is ideal for these workloads

- E.g. “co-locate my policy model and simulation environment on GPU instances, but run the
simulation code on a separate set of CPU-optimized instances”

- Support for stateful execution (Actors) and stateless execution (Tasks) in Ray Core

- Easy to build optimized ML libraries and pipelines on top of this

Notably, Ray is reported to have been OpenAl’'s framework of choice for training GPT

History of Ray

e 2016: Started development of v0.1 at UC Berkeley, in the RISELab

o First version in Rust: https://qithub.com/amplab/orchestra

o C++ prototype with gRPC: https://github.com/ray-project/ray-legacy

o C prototype
o May 2017: v0.1 released

https://github.com/amplab/orchestra
https://github.com/ray-project/ray-legacy
https://github.com/ray-project/ray/tree/ray-0.1.0

History of Ray

e 2016: Started development of v0.1 at UC Berkeley, in the RISELab

e 2017: Tune (hyperparameter search) and RLIib (reinforcement learning)
libraries

e 2018: Rewrite Ray core in C++; first Ray paper at OSDI'18

e 2019: Anyscale founded; began second rewrite of Ray core

e 2020: Ray v1.0 released; first Ray Summit; Serve (ML serving) library
e 2021: Ray v1.0 paper at NSDI'21; Ray Data

e 2022: Ray v2.0; OpenAl releases ChatGPT

e 2023: Ray beats Spark on CloudSort world record

GitHub star history

® / apache/spark

® % kubeflow/kubeflow
= mlflow/mlflow
> ray—project/ray

30.0k

N
o
o
x

GitHub Stars

10.0k

2020 2022 2024

2016 2018
Date %} star—history.com

Ray: A Unified System for ML

ML libraries

Hyperparameter Distributed : : Data Stream
_ Simulation Inference : :
Search Training Processing processing

On a single node, Python libraries are the key to app development:
+ Performance: Libraries often optimized with native code.
+ Developer productivity: Easily compose libraries with function calls.

Problem: In the distributed setting, need to address domain-specific
problems in scheduling, fault tolerance, etc.

16

Ray: A Unified System for ML

Distributed Distributed Distributed || Distributed Distributed Distributed
System System System System System System
Hyperparameter Distributed Simulation Inference Data Stream

Search Training Processing processing

- Developer productivity: Orchestration? Data movement?

- Performance: End-to-end performance? Future-proof systems?

Ray: A Unified System for ML

Libraries
. RLlIib Ray Serve
Ray Tune/Train- -~~~ -------------- o Ray Data_
1 Hyperparameter |1 | Distributed i Simulation :: Inference : Data Stream
: Search : Training |, i : Processing processing
| 1

N e -

0%) RAY (Core): A general-purpose distributed execution layer

18

Ray: A Unified System for ML

Libraries
. RLlIib Ray Serve
Ray Tune/Train- -~~~ -------------- o Ray Data_
1 Hyperparameter |1 | Distributed i Simulation :: Inference : Data Stream
: Search : Training |, i : Processing processing
| 1

N e -

0%) RAY (Core): A general-purpose distributed execution layer

19

Ray: A Unified System for ML

Libraries
. RLlIib Ray Serve
Ray Tune/Train- -~~~ -------------- o Ray Data_
1 Hyperparameter |1 | Distributed i Simulation :: Inference : Data Stream
: Search : Training |, i : Processing processing
| 1

N e -

Remote functions and classes

0%) RAY (Core): A general-purpose distributed execution layer

20

This is our focus for Lab 6

- If you can master Ray Tasks and
Actors, learning the rest of the Ray
libraries becomes much easier

Ad If you can dodge a wrench,

‘== ='you can dodge a ball.

THOTHEE BECA S SN RORG DNE GRSTPER LA OB wSEUN mOUROTE VR
CHALAMET ZENDAYA FERGUSON BROLIN BUTLER PUGH BAUTISTA WALKEN SEYDOUX YACOUB SKARSG‘KRD RAMPLING BARDEM

The Ray API

Tasks

def f(shape):
return np.zeros(shape)

def add(a, b):
return a + b

The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):
return a + b

The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b): :
olis a:

return a + b
...future: The eventual value will be
@ f.remote([5, 5]) computed by f.

...remote reference: The value may be
stored on a remote node (in Ray’s
distributed object store).

The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b): :
olis a:

return a + b
...future: The eventual value will be
@ f.remote([5, 5]) computed by f.

...remote reference: The value may be
stored on a remote node (in Ray’s
distributed object store).

The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):

return a + b olis a:

...future: The eventual value will be

ol = f.remote([5, 5])

02 = f.remote([5, 5]) computed by ¥.

03 = add.remote(ol, o02) ...remote reference: The value may be
result = ray.get(o3) stored on a remote node (in Ray’s

distributed object store).

Demo!

The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):
return a + b

ol = f.remote([5, 5])
02 = f.remote([5, 5])
03 = add.remote(ol, 02)
result = ray.get(o3)

class Counter(object):
def init (self):
self.value = 0
def inc(self):
self.value += 1
return self.value

The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):
return a + b

ol = f.remote([5, 5])
02 = f.remote([5, 5])
03 = add.remote(ol, 02)
result = ray.get(o3)

Actors

@ray.remote
class Counter(object):
def init (self):
self.value = 0
def inc(self):
self.value += 1
return self.value

The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):
return a + b

ol = f.remote([5, 5])
02 = f.remote([5, 5])
03 = add.remote(ol, 02)
result = ray.get(o3)

Actors

@ray.remote
class Counter(object):
def init (self):
self.value = 0
def inc(self):
self.value += 1
return self.value

c = Counter.remote()

04 = c.inc.remote()

05 = c.inc.remote()

Returns [1, 2].

result = ray.get([o4, 05])

Quick Break

2018: Ray pre-1.0 Architecture

I Driver II Worker I | Worker " Worker I
1T = = 1 B ol | Distributed object store to
| Object Store Object Store : J
e e —— === - I store task args and returns
Scheduler < : | | : > Scheduler
- | | Debugging |
Lineage Store | Profiling |
I | Web Ul |

Slides from OSDI'18 «GJobal control store” (GCS): holds all system state, other components stateless

Ray: Underneath the Hood

- GCS is designed to support
scheduling millions of tasks / sec*
- *=mileage may vary
- “Bottom-up scheduling” — first try

to schedule tasks locally

- Global scheduling only happens
iffwhen node overloaded

- GCS is a (sharded and replicated)

key-value store
- Key: Object / Task IDs
- Value: node location

Nodet1 . NodeN .
E Driver Worker | | Worker | | E Worker | | Worker | | Worker | |
Local Scheduler ; i Local Scheduler

Global Contr
Global Global
Scheduler Scheduler
=P Submit =~ Schedule = Load
—p tasks -~ tasks - =P info

Figure 6: Bottom-up distributed scheduler. Tasks are submitted
bottom-up, from drivers and workers to a local scheduler and
forwarded to the global scheduler only if needed (Section 4.2.2).
The thickness of each arrow is proportional to its request rate.

Example Task Execution

- Obj. Aand B start on nodes N1
and N2 respectively

- Remote fcn. add is registered
w/GCS upon init. and distributed to
every worker (step 0)

N1

Global Control Store (GCS)

Driver

Function Table

@ray.remote
def add(a, b):
return a + b

@ray.remote

N2

Worker

‘,l id, = add.remote(a, b) |

,,’ ¢ = ray.get(id.)

/ Obiject store

id,(a|

Local Scheduler

@ray.remote

(0 ¥ def add(a, b): | def add(a, b):
return a + b retumn a+b
Obiject Table S ‘
id, | N1 9
id, | N2 ¥+~ Object storex/
C) = \ !
D% Tt/
P @] :
[@ Global Scheduler L _@' » Local Scheduler

(a) Executing a task remotely

- Steps (1-4): task submitted at N1 gets scheduled on N2 (for sake of ex.)
- Steps (5-7): input A is copied to N2 to bring all inputs to N2
- Steps (8-9): local sched. invokes task once inputs are ready

2018: Ray pre-1.0 Architecture

I Driver II Worker I

I Worker " Worker

Aetaie‘Store

Objev&w}

Scheduler

= =

Scheduler

?

?

yY¥—

[

Lineage Store

“Global control store” (GCS)

Performance: every task and
object involved multiple
messages with the
scheduler, object store, and
GCS.

Including actors (where
location of worker is already
known).

| Debuggmg I

| Profiling |

| Web Ul

35

Example Returning Result of Execution

N1 Global Control Store (GCS) N2

- Same setup as in previous slide [Drver 1 [Function Table Worker
@ray.remote @ray.remote @ray.remote
def add(a, b): def add(a, b): def add(a, b):
retum a+b returna + b retuma+b
id. = add.remote(a, b) =
é 13\ ray.get(id.) || Object Table /
- Steps (1-2): lookup for value C / [[—
@ @, id, | N2 | ‘
results in N1’s obj. store registering @ - (O] 'LALXIM, JOF Wy Jpmwps
ACIR | idc|C | ida|@] idy b |
callback w/Object Table worrerem B O _

(b) Returning the result of a remote task

- Steps (3-5): N2 completes execution of add and adds entry for C in
Object Table

- Steps (5-7): callback is triggered; C is copied to N1 and returned

2018: Ray pre-1.0 Architecture

Fault tolerance:

Didn’t work in a lot of cases: actors,

| Driver || worker | serialized ObjectRefs, etc.

I Object Store I

Decentralized design made system
more unstable.

Scheduler ¢ :

Without automatic memory
management, could not

failures and OOM.

Lineage Store

L | | distinguish between machine
_ []
|

“Global control store” (GCS)

Web Ul

37

2018: Designing Ray v1.0

Problems:
e Decentralized design added a lot of overhead, especially for actor tasks.
e System complexity created instability under load and failures.
e Need automatic memory management for better stability.
o But this would've added even more overhead and complexity!

— Ray v1.0: We need to redesign the metadata control plane.

2018: Designing Ray v1.0

Some parallel Ideas:

e Performance: Reduce load from lower system components by having
workers send tasks directly to each other via RPC.

e Reducing complexity: Instead of decentralizing by storing all system state in
GCS, let’'s keep the decentralized part but introduce some notion of metadata

ownership.

o Who should the owner be? Automatic memory management makes this
answer obvious: the owner should be the original reference holder (the
worker that created the original ObjectRef)!

B Rayo0.7
B Rayo0s
B oRPC 1.2 (Python)

2018: Key metrics leading up to Ray v1.0

Object Transfer Throughput

Actor Call Latency

16MiB object

0 100 200 300 1GiB object

Latency (microseconds)

Stability changes that are harder to quantify:
e Task retries
e Automatic memory management

Transfer throughput (Gbps)

2020: A distributed futures system for fine-grained tasks

For generality, the system must impose low overhead.
Analogy: gRPC can execute millions of tasks/s. Can we do the same for
distributed futures? — futures whose values can be stored anywhere

Goal: Build a distributed futures system that guarantees fault tolerance with low
task overhead. — Note the similarity! :)

Enable applications that dynamically generate fine-grained tasks. — Check
out the paper[1] for more details!

Slides from NSDI'21 [1] Ownership: A Distributed Futures System for Fine-Grained Tasks. NSDI, 2021.

2020: Distributed futures introduce shared state

Legend driver
() Task (RPC)
- --» |nvocation

— Data dependency add(o1,02)

Slides from NSDI’'21

Distributed Futures (in a nutshell)

Pass by reference
Pass by value (Distributed memory)

a. RPC Driver Worker 1 Worker 2 Driver Worker 1 Worker 2

i. Function calls block; data is copied '
everywhere
b. RPC + distributed memory
i. Pass-by-reference eliminates some
data copies
c. RPC + futures
I. Functions can be executed in
parallel
d. Distributed Futures
i. Parallel execution & minimal data

copy (©) (d)

Blocking RPCs

(b)

Driver Worker 1 Worker 2 Driver Worker 1 Worker 2

b=F()

c=add(
a,b)

Nonblocking RPCs (Futures)

2020: Distributed futures introduce shared state

Multiple processes refer to the same value.

driver
1. The process that specifies how the /Q
value is created and used. g .

£ O
2. The process that creates the value.

3. The process that uses the value. £0) (5/ 02

4. The physical location of the value.

add(ol,02)

Dereferencing a distributed future requires coordination.

Slides from NSDI’'21

2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of
a distributed futures application. Q

driver

1. Task graphs are hierarchical. " 7°- ’O

2. Adistributed future is often
passed within the scope of the
caller.

Slides from NSDI’'21

2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of

a distributed futures application. dri
river

1. Task graphs are hierarchical. Q

2. Adistributed future is often P K *
passed within the scope of the ol ::6
add(ol,02)

caller. ’ —
10 O

Insight: By leveraging the structure of distributed futures applications,

we can decentralize without requiring expensive coordination.
Slides from NSDI'21

2020: Our approach: Ownership

Insight: By leveraging the structure of distributed futures applications,
we can decentralize without requiring expensive coordination.

Architecture Failure handling Performance
Ownership: Each worker is a No additional writes on
The worker that | “centralized owner” for | the critical path of task
calls a task owns the objects that it owns. execution. Scaling
the returned Use supervision to through nested
distributed future. handle owner failure. function calls.

Slides from NSDI’'21

Today: When to use Ray Core?

Ray Tune/ RLlib ¥ Ray | Ray vLLM
Train Serve | Data

Coarse-grained (process-level) 4 4 4 4 4

orchestration

Note: There are also benefits when composing libraries!

Ray Data: Scalable datasets for ML

Ray Data is a flexible and scalable data processing library

+ Ease of use: Python-native, easy deployment via Ray Core

+ Transparent scale: Transparent fault tolerance, resource management, data
partitioning and placement, pipelining, heterogeneous clusters

+ Flexibility: Pipelining between CPU and GPU tasks; native support for
tabular, image, (Anyscale-only) audio/video

Ray Data is a flexible and scalable data processing library

Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines

Ray Data is a flexible and scalable data processing library

Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines

Data loading for ML training

Storage
\Cloud storage or/
local disk

HERE GPU

Dataset

HNEEEEEE
‘AN

Needs to be fast, to maximize GPU utilization.
Needs to scale to large datasets and clusters.

— Large dataset — Must stream through memory

Data loading for ML training

Storage
\Cloud storage or/ GPU GPU
local disk — ——y
Dataset
EEEEEEEN GPU GPU
HEEN

Needs to be fast, to maximize GPU utilization.
Needs to scale to large datasets and clusters.
— Large dataset — Must stream through memory

— Cluster — Must send data over the network

Data loading for ML training
N — -

Storage
\Cloud storage or/ GPU ~— GPU
|Oca| d|Sk () —_—Wi
Dataset : I —
EEEEEEEE GPU GPU
HEER B

Needs to be fast, to maximize GPU utilization.
Needs to scale to large datasets and clusters.
Needs to be flexible, to support arbitrary preprocessing.

— Data can have different: storage, modality, preprocessing,
memory footprint, ordering, ...

Ray Data is...

Training ResNet-50 (image Fast . Parallelize S3 reads
classification) on a raw S3 dataset

10 GB/s

7.50 GB/s

5GB/s

15GPUs
2.50 GB/s l | |
mey -
10 GPUs e 12: 1200 W?Tr 14:00 . 14:30 15:00
Same time window
5 GPUs

Control memory usage

Maximize GPU utilization

931GiB
0 GPUs
12:30 13:00 13:30 14:00 14:30 15:00 638.GiB
Streaming execution in v2.4+. e
Shared-memory data loading. O
0B =

11:00 11:30 12:00 2:30 13:00 13:30

Ray Data is...
Fast Scalable

Node GPU (hardware utilization) Ray Data vs. Torch DatalLoader (No caching)

206FU8 = Torch Dataloader = Ray Data
25000 ™ Ray Data (Heterogeneous Cluster)

156PUs 20395

N
o
o
o
o

-
o
o
o
o

10 GPUs
11821

Throughput (img/s)
g
8

5GPUs 50001022 s 2033 164:908 3945
perts 12:30 13:00 13:30 14:00 14:30 ’ 1 2 4 16

' i i # Nodes
Streaming execution. Heterogeneous clusters.

Shared-memory data Automatic failure recovery.

loading.

Flexible

e a
A/

72 NumPy O PyTorch f

TensorFlow
Parquet XﬁER0W>>>

text E
a

Query planner for building
arbitrary data preprocessing
pipelines.

\\ NEK

Ray Data design

node

Rl

LRay shared -memory object store

o

worker

worker

worker

®

Ray task

How are workers implemented?
— Ray core — generic dist. compute

Ray Data design

Additional overheads compared to "multiprocessing :
- Copy preprocessed data in shared memory
- Ray core task overhead (<1ms per task)

But in return:
+ Automatically partition data

+ Scheduler can control execution to dynamically load-balance
and limit memory usage

+ Recover from failures without having to restart

Get distributed features from Ray core “for free”.

Ray Data with distributed trainers

Ray shared+‘memory\object store

|
Ray task ‘

worker | | worker

node
‘ GPU
~Ray object _ ™
(preprocessed
batches)

node

GPU

L.

Ray shared memory object store

oo

worker | | worker

|

Ray Data routes batches based on data locality and load-balancing.

Caching Ray Datasets with ds.materialize()

node

HEEI

Ray shared-memory object store

worker | | worker

node

GPU

L-/

"% am

-J
Ray shared-memory object store

worker

worker

Data can be cached at any stage of preprocessing. Ray core automatically

spills to disk to avoid out-of-memory.

Ray Data with heterogeneous clusters

node node

GPU
/‘\ P w i
LRay shared+‘memory\object store LRay shared -memory object storeJ

worker | | worker worker | | worker

Data produced by remote tasks gets moved to the trainer node in the background.

Data loading for ML training features

Single-node + distributed:
- Automatic dataset partitioning and load-balancing across workers
- Automatic memory limits
- Recover from failures without restarting training
- Cache materialized datasets in-memory and on-disk
Distributed features:

- Heterogeneous clusters: Scale CPU-based data preprocessing separately from
GPU-based training

- Locality-based scheduling

- (soon) Autoscaling clusters

Flexibility!

ImageNet scalability benchmark on S3

0%9 RAY v2.4+
I' LOGCI imqges /ds = ray.data.read_images(\
from S3 pqth “s3://bucket”

)
ds = ds.map (
crop and flip image

N\ Y,

ImageNet scalability benchmark on S3

0S» RAY v2.4+
1. Load imClgeS /ds = ray.data.read images (\
from S3 pCIth | “s3://bucket”
ds = ds.map (
2. A I crop _and flip image
preprocessing
fn to images Query
optimizer
[N

ds = ds.map (
read images->
crop and flip image

)

- /

1.

ImageNet scalability benchmark on S3

Load images
from S3 path

Apply
preprocessing
fn to images

Ingest with
Ray Train
TorchTrainer

0S» RAY v2.4+

-~

ds

)
ds

\

= ray.data.read images (
“s3://bucket”

= ds.map (
crop and flip image

~

)

-

def train_loop per_ worker (batch iter :

\

ray.data.Datalterator) :

Batch Iterator over Ray Dataset/Torch Dataloader

for batch in batch iter:

ImageNet scalability benchmark on S3

Ray Data vs. Torch DatalLoader (No caching)
= Torch Dataloader = Ray Data

12500 11821 12352 Node setup: g4dn.xlarge

e 16 VvCPU

e 1NVIDIAT4 GPU

e 64 GiB memory

Dataset:

e ImageNet, stored as raw
images (JPG) on S3

e Each trainer reads about
10GB of images

10000

7500

5000 3908 3245

2500 20331645
1022 798

Throughput (img/s)

1 2 4 16
Nodes

Ray Data is fast and scalable, matching manually tuned
Torch Dataloader in a distributed setting.

Implementation Details

Torch required tedious wrangling:

0Sp RAY v2.4+

-~

ds = ray.data.read images (
“s3://bucket”

)

ds =

ds.map (crop and flip image)

\

~

Custom S3 Datal.oader
implementation

Manual tuning of num_workers
Manual partitioning of input
dataset files to each worker

/

O PyTorch dataloader

def load_ image (inputs) :
import io
from PIL import Image

url, fd = inputs
data = fd.file obj.read()
image = Image.open (io.BytesIO(data))
image = image.convert ("RGB")
if transform is not None:

image crop_and_flip image (image)
return image

class FileURLDataset:
def _ init_ (self, file urls):
self. file urls = file urls

def _ iter_(self)
worker_info =
torch.utils.data.get_worker_ info()
assert worker info is not None

torch_worker id = worker info.id
return
iter(self. file urls[torch worker id])

file urls = INPUT_FILES_PER_WORKER|[worker rank]
file urls = [f.tolist() for f in
np.array split(file urls, num workers)]
file url dp =
IterableWrapper (FileURLDataset (file_urls))
file dp = S3FilelLoader (file_url_dp)
image dp = file dp.map(load_image)

Supporting Heterogeneous Clusters

Ray Data vs. Torch DatalLoader (No caching)

= Torch Dataloader = Ray Data

Node setup: g4dn.xI
-s000 ™ Ray Data (Heterogeneous Cluster) 0de Setup- gdn.xiarge

+ 4 r5.16xlarge

@ 20395 e 16VCPU

g’ 20000 e 1NVIDIAT4 GPU

= 15000 e 64 GiB memory

a8 e +64 vCPU, 512 GiB

S 10000 memory

3 Dataset:

E 5000 e ImageNet, stored as raw

images (JPG) on S3
e [Each trainer reads about
10GB of images

#Nodes Utjlizing extra CPUs to
maximize throughput
No code changes!

What's next for Ray?

Trend: Model execution is becoming more complex

Post-training

Model routing

Data processing

o E—

N

Pretrained w

Weights

N R

Pl —

N E—

Fine-tuning

Output A Output B
Tower A Tower B

Mixture-of-Experts

Full Prompt

Retrieval Augmented Generation

Quantized
model

Model

Model
quantization

Gaft

model

Target model

Speculative decoding

Model

Dataset experimentation

Trend: Model execution is becoming more complex

Simple scaling of models is getting increasingly expensive.
Before: One model per task, all inputs take the same path.

After: One to many models for many tasks, inputs may take different and
dynamic paths.

Meanwhile, current (distributed) ML systems are highly static!

72

Is Ray Core the answer?

Ray Tune/ RLlib ¥ Ray | Ray vLLM

Train Serve | Data
Coarse-grained (process-level) (4 4 4 (4 4
orchestration
Fine-grained (10ms+ function-level) 4 4 (4 4
orchestration

Distributed memory management V|

Is Ray Core the answer?

Ray Tune/ RLlib ¥ Ray | Ray vLLM

Train Serve Data
Coarse-grained (process-level) 4 4 4 4 v
orchestration
Fine-grained (10ms+ function-level) 4 4 4 4
orchestration
Distributed memory management 4

Problem: GPU “tasks” run at 100s of us.

Is Ray Core the answer?

Ray Tune/ RLlib ¥ Ray | Ray vLLM

Train Serve Data
Coarse-grained (process-level) 4 V| 4 (4 v
orchestration
Fine-grained (10ms+ function-level) 4 4 (4 4
orchestration
Distributed memory management v

Problem: GPU memory management is often tightly coupled
with GPU compute.

Ray 3.0: Accelerated DAGs

Observation 1: Ray Core is (relatively) slow because it assumes a completely
dynamic workload.

Observation 2: Even complicated GPU schedules like pipeline parallelism are
not very dynamic.

76

Ray 3.0: Accelerated DAGs

Key ideas:

- (Initially) Restrict user to static dataflow
- Provide fast, transparent, pipelined data movement between GPUs

Goal: Reduce burden in building (distributed) GPU systems, without loss of
performance.

77

Ray 3.0: Accelerated DAGs

Tensor-parallel inference DAG:
dag = ray.dag.MultiOutputNode(
[w.fwd.bind(input) for w in workers])

Driver Driver

Ray 3.0: Accelerated DAGs

Pipeline-parallel DAG:
dag = input
for w in workers:

dag = w.fwd.bind(dag)

O 0 @O

Ray 3.0: Accelerated DAGs

Pipeline-parallel DAG:

GPU-GPU ‘

communication

GPUActor

Ray 3.0: Accelerated DAGs for LLM inference

Current use cases:

- Prefill disaggregation
- Pipeline parallelism

Experimental use cases:

- Mixing tensor parallelism and pipeline parallelism
- CPU offloading

- Heterogeneous GPU systems

- Online prompt processing

81

