# Data Layouts 

6.S079 Lecture 14

Sam Madden
4/9/2024

## Last Time: Performance

- Python vs pandas vs C vs SQL
- Quantifying performance: bandwith, latency, etc
- Finding \& fixing performance issues
- Indexing \& join algorithms


## This Time: Data Layouts

- Key ideas:
- Data Locality
- Horizontal and Vertical Partitioning
- Multi-dimensional Layouts
- Compression
- Sparse Data
- Log-structured Merge Trees



## What is Data Locality?

- Data "near" to data you've already accessed can usually be read more quickly
-Why?
- Blocking: data is often arranged in blocks, and read a block at a time
- If you just read a record in a block B, if the next record is in B that will be fast
- Pre-fetching: hardware often retrieves the next $N$ data items after the data item you just read


## Example

- SELECT name FROM donations WHERE name ~ 'MAD\%'

| Sorted in name | $\ldots$ |
| :--- | :--- |
| order | MACADAM |
| All "MAD" | MADDAN |
| records on same | MADDEN |
| few | MADSEN |
| disk/memory | MADYAM |
| blocks $\Rightarrow$ | MARDEN |
| Sequential | $\ldots$ |
| access to just <br> those blocks |  |


| ... | Not sorted |
| :--- | :--- |
| MADYAM | Each "MAD" |
| .. | records on |
| ... | different block |
| MARDEN | $\rightarrow$ Random |
| $\ldots$ | access |
| MADDAN | (or sequential |
| ... | read through |
| MACADAM | whole file) |
| ... |  |
| MADSEN |  |

## Sequential Access is Much Faster



## Is Data Transformation Worth the Price?

- Many of the techniques we will discuss only make sense if frequently re-accessing data
- E.g., querying in a database
- Not worth spending a lot of time reorganizing data you're going to use once
- E.g., to build an ML model
- But sometimes writing directly into a more efficient representation can benefit even infrequently read data


## Data is $\mathbf{N}$ dimensional, Memory is Linear

- Have to "linearize" data somehow
- Examples:
- Row-by-row
- Column-by-column
- Some more complicated N dimensional partitioning scheme
- Quad-trees
- Zorder


## Linearizing a Table - Row store

## Linearizing a Table Vertical Partitioning - aka "Column Store"

## When Are Columns a Good Idea?

- When only a subset of columns need to be accessed
- When looking at many records
- Reading data from N columns of a few column-oriented records may be worse than using a row-oriented representation



## Query Processing Example

- Traditional Row Store



## Query Processing Example

- Basic Column Store
- "Early Materialization"

Complete tuples


Row-oriented plan

```
SELECT avg(price)
```

FROM tickstore
WHERE symbol = 'GM'
AND date $=$ ' $1 / 17 / 2007$ '

Fields from same tuple at same index (position) in each column file

## Query Processing Example

Prices

(1,1,1,0)


See Abadi et al ICDE 07

- C-Store
- "Late

Materialization"
AVG

Much less data flowing through memory

## Parquet: Column Representation for Data Science

- Parquet is a column-oriented data form for storing tabular data
- Advantages are not just due to column orientation:
- Data is stored in binary format, so more compact
- Data is typed and types are stored, so parsing is much faster
- Supports compression directly


## Parquet Layout



From "A Cost-based Storage Format Selector for Materialization in Big Data Frameworks", Faisal et al

## Parquet vs CSV Load Times

Read Time For Different Methods


## Parquet vs CSV File Sizes



Break


## More Layout Tricks

- Data Partitioning
- Sorting
- Multi-dimensional Partitioning
- Compression
- Loading


## Horizontal Partitioning

| Date | Region | Profit |
| :--- | :--- | :--- |
| $1 / 1 / 2019$ | NE |  |

- Slice dataset according to some attribute

| Date | Region | Profit |
| :--- | :--- | :--- |
| $1 / 1 / 2019$ | NE |  |
| $1 / 2 / 2019$ | NE |  |
| $1 / 2 / 2019$ | SW |  |
| $1 / 2 / 2019$ | SE |  |
| $1 / 2 / 2019$ | NW |  |
| $1 / 3 / 2019$ | NE |  |
| $1 / 3 / 2019$ | SW |  |
| $1 / 3 / 2019$ | SE |  |
| $1 / 4 / 2019$ | SE |  |
| $1 / 4 / 2019$ | NW |  |
| $1 / 4 / 2019$ | NE |  |


| Date | Region | Profit |
| :--- | :--- | :--- |
| $1 / 2 / 2019$ | NE |  |
| $1 / 2 / 2019$ | SW |  |
| $1 / 2 / 2019$ | SE |  |
| $1 / 2 / 2019$ | NW |  |


| Date | Region | Profit |
| :--- | :--- | :--- |
| $1 / 3 / 2019$ | NE |  |
| $1 / 3 / 2019$ | SW |  |
| $1 / 3 / 2019$ | SE |  |


| Date | Region | Profit |
| :--- | :--- | :--- |
| $1 / 4 / 2019$ | SE |  |
| $1 / 4 / 2019$ | NW |  |
| $1 / 4 / 2019$ | NE |  |

## Postgres Example (From Lec 13)



## Peformance Speedup

select name from donations_hash where name = 'MADDEN';
Time: 26.407 ms
select name from donations where name = 'MADDEN';
Time: 105.667 ms

## Sorting

- Can also order data according to some attribute

| Date | Region | Profit |  | Date | Region |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 1 / 2019$ | NE |  | $1 / 1 / 19$ | Profit |  |
| $1 / 2 / 2019$ | NE |  | $1 / 2 / 19$ | NE |  |
| $1 / 2 / 2019$ | SW |  | $1 / 3 / 19$ | NE |  |
| $1 / 2 / 2019$ | SE | $1 / 4 / 19$ | NE |  |  |
| $1 / 2 / 2019$ | NW |  | $1 / 2 / 19$ | NW |  |
| $1 / 3 / 2019$ | NE | $1 / 4 / 19$ | NW |  |  |
| $1 / 3 / 2019$ | SW | $1 / 2 / 19$ | SE |  |  |
| $1 / 3 / 2019$ | SE | $1 / 3 / 19$ | SE |  |  |
| $1 / 4 / 2019$ | SE | $1 / 4 / 19$ | SE |  |  |
| $1 / 4 / 2019$ | NW |  | $1 / 2 / 19$ | SW |  |
| $1 / 4 / 2019$ | NE |  | $1 / 3 / 19$ | SW |  |

## Can both sort \& partition

| Date | Region | Profit |
| :--- | :--- | :--- |
| $1 / 1 / 2019$ | NE |  |
| Date | Region | Profit |
| $1 / 2 / 2019$ | NE |  |
| $1 / 2 / 2019$ | NW |  |
| $1 / 2 / 2019$ | SE |  |
| $1 / 2 / 2019$ | SW |  |
| Date | Region | Profit |
| $1 / 3 / 2019$ | NE |  |
| $1 / 3 / 2019$ | SE |  |
| $1 / 3 / 2019$ | SW |  |
|  |  |  |
| Date | Region | Profit |
| $1 / 4 / 2019$ | NE |  |
| $1 / 4 / 2019$ | NW |  |
| $1 / 4 / 2019$ | SW |  |

## What if I want to partition on several attributes?

- Basic idea: "tile" data into N dimesions
- 2 approaches:
- Quad-tree: recursively subdivide until tiles are under a target size
- Z-order: interleave multiple dimensions, order by interleaving

Quad-Tree


## Quad-Tree

Recursively subdivide


## Quad-Tree

Until partitions are of some maximum size

Index stores boundaries of rectangles, and pointers on disk


## Quad-Tree

Until partitions are of some maximum size


Index stores boundaries of rectangles, and pointers on disk

| X1 | X2 | Y1 | Y2 | Part |
| :--- | :--- | :--- | :--- | :--- |
| 0 | .25 | 0 | .25 | A |
| 0 | .25 | .25 | .5 | C |
| .25 | .5 | 0 | .25 | B |
| .25 | .25 | .25 | .5 | D |
| .5 | 1 | 0 | .5 | E |
| 0 | .5 | .5 | 1 | F |
| $\ldots$ |  |  |  |  |

## ZOrder



## Zorder Implementation

- To generate a Zorder, interleave bits of numbers
e.g., Zorder(3,2)
$3=0011$
$2=0010$
$\rightarrow 00001110=14$



## Zorder Querying

- Support we want to look up data in Rectange((1,1),(2,3))

Zorder $(1,1)=0011=3$
$Z \operatorname{order}(2,3)=1101=13$



## Larger Example

$10 \times 10$ zorder


## Larger Example

$10 \times 10$ zorder
Query from
$(2,4)$ to $(3,7)$
All records in rectangle are contiguous in zorder

Overlaying pages, we can read just one


## Larger Example

$10 \times 10$ zorder
Query from $(2,2)$ to $(4,4)$

9 records in range are

37 records between smallest and largest zorder


Actual wasted I/O depends on page structure

Here we would
read 4 pages, with 64 records, 9 of which we need

## Row Order Example

8 records in range
32 records between smallest and largest roworder

If split into pages, need to read 3 pages, with 60 records on them, to get 8 records


## Clicker Q1

- Table of sales, with sale price, region, date, store, customer, and many other columns
- For each query, which layout would you recommend, if this is the only query your system needs to run

Choose A, B, or C
A) Column store, ordered by date, partitioned region
B) Row store
C) Column store, ordered by price, partitioned by store

SELECT MAX(price) FROM sales GROUP BY store
https://clicker.mit.edu/6.S079

## Clicker Q2

- Table of sales, with sale price, region, date, store, customer, and many other columns
- For each query, which layout would you recommend, if this is the only query your system needs to run

Choose A, B, or C
A) Column store, ordered by date, partitioned region
B) Row store
C) Column store, ordered by price, partitioned by store

> INSERT INTO sales VALUES (....)

## Clicker Q3

- Table of sales, with sale price, region, date, store, customer, and many other columns
- For each query, which layout would you recommend, if this is the only query your system needs to run

Choose A, B, or C
A) Column store, ordered by date, partitioned region
B) Row store
C) Column store, ordered by price, partitioned by store

$$
\text { SELECT * FROM sales WHERE customerid = } 123211
$$

## Compression

- Storage is expensive
- System performance is proportional to the amount of data flowing through the system


## Compression Methods

- Entropy coding, e.g., gzip, zlib, ...
- General purpose, good overall compression
- Delta encoding
- Encode differences, e.g., 1, 2, 3, 4 -> 1, +1, +1, +1

Good for mostly sorted, numeric data (floats)

- Run length encoding
- Suppress duplicates, e.g., 2, 2, 2, 3, 4, 4, 4, 4, 4, -> $2 \times 3,3 \times 1$, $4 \times 5$
- Bit packing
- Use fewer bits for short integers

Good for limited precision

- Pairs well with delta coding
- Performance vs space tradeoff
- Some compression can be directly operated on, e.g., RLE
- As with sorting, modifying compressed data in place is difficult


## Speed / Performance Tradeoff In Entropy Compression Methods

| Compressor name | Ratio | Compression | Decompress. |
| :--- | :--- | :--- | :--- |
| zstd 1.4.5 -1 | 2.884 | $500 \mathrm{MB} / \mathrm{s}$ | $1660 \mathrm{MB} / \mathrm{s}$ |
| zlib 1.2.11-1 | 2.743 | $90 \mathrm{MB} / \mathrm{s}$ | $400 \mathrm{MB} / \mathrm{s}$ |
| brotli 1.0.7-0 | 2.703 | $400 \mathrm{MB} / \mathrm{s}$ | $450 \mathrm{MB} / \mathrm{s}$ |
| zstd 1.4.5 --fast=1 | 2.434 | $570 \mathrm{MB} / \mathrm{s}$ | $2200 \mathrm{MB} / \mathrm{s}$ |
| zstd 1.4.5 --fast=3 | 2.312 | $640 \mathrm{MB} / \mathrm{s}$ | $2300 \mathrm{MB} / \mathrm{s}$ |
| quicklz 1.5.0-1 | 2.238 | $560 \mathrm{MB} / \mathrm{s}$ | $710 \mathrm{MB} / \mathrm{s}$ |
| zstd 1.4.5 --fast=5 | 2.178 | $700 \mathrm{MB} / \mathrm{s}$ | $2420 \mathrm{MB} / \mathrm{s}$ |
| Izo1x 2.10-1 | 2.106 | $690 \mathrm{MB} / \mathrm{s}$ | $820 \mathrm{MB} / \mathrm{s}$ |
| Iz4 1.9.2 | 2.101 | $740 \mathrm{MB} / \mathrm{s}$ | $4530 \mathrm{MB} / \mathrm{s}$ |
| Izf 3.6-1 | 2.077 | $410 \mathrm{MB} / \mathrm{s}$ | $860 \mathrm{MB} / \mathrm{s}$ |
| snappy 1.1.8 | 2.073 | $560 \mathrm{MB} / \mathrm{s}$ | $1790 \mathrm{MB} / \mathrm{s}$ |
|  |  |  |  |

Even $4 G B /$ sec may not be able to keep up with memory!

Compressing a range of text data from the Internet

Lightweight schemes will be faster, and less good at text compression, but can do very well for tabular data with few values or regular values
http://facebook.github.io/zstd/

## Delta Encoding in Parquet



Source "Efficient Data Storage for Analytics with Apache Parquet 2.0", Julian Le Dem

## Delta Encoding in Parquet



Source "Efficient Data Storage for Analytics with Apache Parquet 2.0", Julian Le Dem

## Delta Encoding in Parquet



Source "Efficient Data Storage for Analytics with Apache Parquet 2.0", Julian Le Dem

## Delta Encoding in Parquet



Source "Efficient Data Storage for Analytics with Apache Parquet 2.0", Julian Le Dem

## Compression comparison

TPCH: compression of two 64 bits id columns with delta encoding


Primary key

Foreign key

Source "Efficient Data Storage for Analytics with Apache Parquet 2.0", Julian Le Dem

## Delta Encoding Can be Very Fast


https://dl.acm.org/doi/10. 1145/3229710.3229715

## Compression, Con’t: Dictionary Encoding

- Dictionary encoding
- Replace long, frequent values (e.g., strings) with an integer
- Integer comes from a "dictionary" that maps words to ints
- Reduces data sizes
- Increases access efficiency by eliminating variable size data

| Column |
| :--- |
| Red |
| Purple |
| Turquoise |
| Red |
| Red |
| Turquoise |
| Purple |


| Encoded <br> Column | Dictionary |  |
| :--- | :--- | :--- |
| 1 | Val | Decoding |
| 1 | 1 | Red |
| 2 | 2 | Purple |
| 3 | 3 | Turquoise |
| 1 |  |  |
| 1 |  |  |
| 3 |  |  |
| 2 |  |  |

## Compression, Con't: Sparse Data

Table with a lot of NULLs (\{\})
Arises frequently in ML apps,
e.g., due to one-hot encoding

|  |  | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | F |  |  |  |  |  |
| $\mathbf{1}$ | X | $\}$ | $\}$ | $\}$ | $\}$ | Z |
| 2 | $\}$ | $\}$ | $\}$ | $\}$ | $\}$ | Y |
| 3 | $\}$ | $\}$ | $\}$ | $\}$ | $\}$ | U |
| 4 | $\}$ | $\}$ | $\}$ | K | $\}$ | $\}$ |
| 5 | $\}$ | $\}$ | $\}$ | $\}$ | $\}$ | $\}$ |

If we represent NULLs as a value, will waste a lot of space

If $>\mathrm{X} \%$ of data is NULL, store data as a list of non-null tuples, e.g.:

1A: X, 1F: Z, 2F: Y, 3F:U, 4D: K

Need to store row/column identifiers explicitly, but can be much more compact

## Handling New Data

- In most data science applications, we don't update existing data
- Do need need to deal with new data that is arriving
- If we have a complex data layout, e.g., sorted, partitioned, columns, inserting that data will be slow, because we'll have to rewrite all data
- Idea: just create a new partition for new data, and write your program to merge results from all partitions


## Problem: Lots of Partitions

- Performance will degrade as you get many partitions
-Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times



## Problem: Lots of Partitions

- Performance will degrade as you get many partitions
-Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times



## Problem: Lots of Partitions

- Performance will degrade as you get many partitions
-Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times



## Problem: Lots of Partitions

- Performance will degrade as you get many partitions
-Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times



## Problem: Lots of Partitions

- Performance will degrade as you get many partitions
-Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times


P1 has merged 2 times, but won't merge again until after 8 more partitions arrive

## Log Structure Merge Tree

$\int$ Exponentially
Larger \& Less
Frequent
Merges


## Summary

- Proper data layouts can dramatically increase performance of data accesses
- Looked at many variations:
- Column vs row-orientation
- Multidimensional layouts
- Quad trees
- Z-Order
- Compression
- Log-structured merging

