6.S079 LLMS IN A NUTSHELL

APRIL 2, 2024 MIKE CAFARELLA

Agenda

- Text Modeling
- Sequence Models
- Attention
- Transformers
- Fine-Tuning and RLHF

Agenda

- Text Modeling
- Sequence Models
- Attention
- Transformers
- Fine-Tuning and RLHF

The Core Thing

- We need a model that can compute P(someSentence)
- We can use it to build a sequence model
 - Input: a sequence of tokens
 - Output: a sequence of tokens
- Lots of applications can be built this way

Autoregressive Text Generation

- If you can compute P(nextWord | precedingWords)...
- P(nextWord | "My favorite food is"):
 - nextWord = "pizza"
 - nextWord = "love"
 - nextWord = "antagonist"
- Just try every possible word, pick the best

Autoregressive Text Generation

currentCtx = getUserInput()

while True:

w = predictMostLikelyNextWord(currentCtx)
emit(w)
currentCtx += w

if computeTerminationCriterion():
 break

Computing Sentence Probability

- For a sequence with n words $w^n_1 = w_1, w_2, ..., w_n$
- Every word w is drawn from a fixed vocabulary
- $P(w_1^n) = P(w_1)P(w_2|w_1)P(w_3|w_1^2)...P(w_n|w_1^{n-1})$ = $\prod_{k=1}^n P(w_k|w_1^{k-1})$

Evaluation

- How can we tell if the model is good?
 Maybe it helps with a downstream task
 - A general-purpose metric would be nice
- "Perplexity" measures the inverse probability of an unseen test corpus with a particular language model
 - If text is real, then its probability should be high
 - Lower is better

$$PP(W)=P(w_1\dots w_N)^{-rac{1}{N}}$$

Perplexity

- What's nice about Perplexity?
 - It's easy to compute
 - You don't need a concrete task
 - You don't need to understand the language!

Measures of Perplexity on different language models' predictions of single-nucleotide sequences from prokaryotic genomes

From Ngyuen et al, "Sequence modeling and design from molecular to genome scale with Evo", 2024

Perplexity

- What's bad about Perplexity?
 - It only works if your model gives a real probability (so: no rule-based methods)
 - Can't compare language models with different vocabularies
 - What is a "good" Perplexity number?

Data, Models, Features

- More context is better
- ...but we will run out of data for statistics when k-grams get big enough
- We need some combination of:
 More informative features
 Constrained models to avoid overfitt
 - Constrained models to avoid overfitting
- ...but feature engineering for language is extremely hard
- ...and expressivity of the model is hard to engineer

Neural Methods

- Neural methods like CBOW let us avoid feature engineering
- Managing overfitting is poorly-understood but works in practice through model architecture, dropout, and other methods

Encoder-Decoders

- Most sequence models use Encoder-Decoder architecture
 - The encoder converts the input into a compressed embedding-style representation
 - The decoder converts an encoded representation back into the target language
- Nice qualities:
 - You can train them separately
 - You can mix/match them them for different input and output types
- word2vec has encoder/decoder architecture

Beyond w2v

- Remember CBOW? It aims to predict the output word given its context
- What's bad about this for chat?

CBOW

Weaknesses of w2v for chat

- Input architecture "looks into the future" (this is easy to fix)
- Each word has a single embedding, regardless of usage
 - "I am going to stick to it"
 - "I am going to throw the stick"
 - The w2v embedding for stick will reflect both senses, even though in some contexts the correct sense is obvious to a human
- Can't handle truly huge vocabularies
- Sentence modeling is very primitive

Agenda

- Text Modeling
- Sequence Models
- Attention
- Transformers
- Fine-Tuning and RLHF

- The input/output model of w2v is really basic
 - You put in some fixedsize context
 - You get out a word
- What if input/outputs are variable length?
- What if they have complicated structure?

Images thanks to Karpathy, "Unreasonable Effectiveness of Recurrent Neural Networks"

• Sequence models offer more flexibility

- Red: input vectors, blue: output vectors
- Green: internal state

many to many

???

???

ImageTextcaptioninglabelling

Translation

Time-locked translation

(Hold off on chatbots for a bit...)

- Internal state represents summary of inputs
- This breaks out of CBOB's fixed-size context
- Simplest version is a Recurrent Neural Network

Detailed View of Char Model

- Task: predict the next character
- One input word is broken into four "labeled" pairs
- Input is one-hot encoded
- Output is softmax prediction vector
- W_{xh} and W_{hy} are input init'ed randomly, then learned via training

Karpathy, "Unreasonable ..."

RNNs and seq2seq

- Sometimes we have an entire sequence to translate, summarize, or answer
- We can train and combine two RNNs in an encoder/decoder "seq2seq" architecture

Sebastian Raschka, Vahid Mirjalili. Python Machine Learning

 Encoder RNN predicts next input. Decoder RNN takes encoder state and predicts next output

RNNs and seq2seq

Allamar, Visualizing A Neural Machine Translation Model

RNN Problems

- Long-distance information passing isn't great.
 First word of long seq may be "forgotten" by end
- In seq2seq architecture, the entire input sentence must be captured in one vector sent to decoder

Bahdanau, Cho, Bengio, "Neural Machine Translation By Jointly Learning to Align and Translate"

RNN Problems

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Je suis étudiant

Allamar, Visualizing A Neural Machine Translation Model

RNN Problems

- Long-distance information passing isn't great.
 First word of long seq may be "forgotten" by end
- In seq2seq architecture, the entire input sentence must be captured in one vector sent to decoder (the "encoder bottleneck")
- Various mechanisms invented to address this, such as Long Short-Term Memories
- LSTMs had trainable components to intentionally "forget" parts of input and alleviate bottleneck
- The "attention" mechanism was the most successful of these

Agenda

- Text Modeling
- Sequence Models
- Attention
- Transformers
- Fine-Tuning and RLHF

Paying Attention

- Core idea: given some input, figure out the important parts and (mainly) ignore the rest
- How does your attention work when reading?
- The attention mechanism itself should be learned
- First introduced in "Neural Machine Translation By Jointly Learning to Align and Translate", by Bahdanau, Cho, Bengio
- The decoder "chooses a subset of [encoder input] vectors adaptively while decoding the translation"

Bahdanau Attention Current decoder

- Karpathy, Al's bard: "The context vector from encoder is a weighted sum of hidden states of words of the encoding"
- Those attention weights are themselves computed by looking at current decoder state and encoder values

Attention-weighted encoder context vectors

Bahdanau Attention

Time step: 7

Neural Machine Translation SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Т

am

а

Bahdanau Attention

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Je suis étudiant

Allamar, Visualizing A Neural Machine Translation Model

- Consider translating
 English to French
- Pixel values indicate relevance of input word to output word

- Consider translating
 English to French
- Pixel values indicate relevance of input word to output word

- Consider translating English to French
- Pixel values indicate relevance of input word to output word

- Consider translating English to French
- Pixel values indicate relevance of input word to output word

Attention Model

- Think about Queries, Keys, and Values
 - A Query describes what you're trying to do ("find the predator")
 - A Key describes a particular input ("red things")
 - A Value describes the value of that input ("one big red thing near the lower right")

Attention Model

• Queries, Keys, and Values are vectors

- Self-Attention works on an input sequence, allows us to drop the task-specific stuff
- We can encode both local and global dependencies

Query, key, value vectors are result of combining input with learned weights

We combine q2 with each of the key_i in order to obtain the attention we should pay to v_i and we do this for all queries

Multi-Head Attention

- Compute the Self-Attention mechanism multiple times in parallel
- Using different sets of learned W^q, W^k, W^v weights for each head
- More heads let us capture different kinds of attention

Multi-Head Attention

Karpathy's View of Attention

• Consider a directed graph, where each node stores a vector

- During "communication" nodes compute:
 - Key vector: What the node has
 - Query vector: What the node is looking for
 - Value vector: What the node will emit

Karpathy's View of Attention

- Encoder attention creates "communication" or "message-passing" process
 - Loop over the nodes randomly
 - Each node combines its query vector with incoming nodes' key vectors; yields "interestingness" score of each input
 - Each node weights incoming values by score to yield an update to the node
- Attention in left-hand encoder "input" layer is fully connected, but masked MHA in decoder limits connectivity to reflect left-to-right text gen

Agenda

- Text Modeling
- Sequence Models
- Attention
- Transformers
- Fine-Tuning and RLHF

- Most common architecture today is The Transformer
- "Attention is All You Need," by Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (2017)
- Drops recurrence; eats entire input
- Still autoregressive

https://www.researchgate.net/figure/The-Transformer-architecture-29-in-an-encoder-decoder-setting-adapted-to-facilitate_fig3_363085057

https://www.researchgate.net/figure/The-Transformer-architecture-29-in-an-encoder-decoder-setting-adapted-to-facilitate_fig3_363085057

- Multi-Head attention is computed in parallel
- Each "pane" is replicated in series N times
- Different weights in each setting
- Masked MHA disallows attention to "future" tokens

Agenda

- Text Modeling
- Sequence Models
- Attention
- Transformers
- Fine-Tuning and RLHF

Putting It All Together

• We train a big language model, then fine-tune

*Common loss function when training supervised learning model

 FT retrains, using small dataset & limited weight updates
 Ruder, https://www.ruder.io/recent-advances-Im-fine-tuning/

Fine Tuning

- Fine-tuning allows us to adapt to a particular domain or particular task
- Often enables real improvements with relatively small training sets
- **But,** what if we don't have labeled data?
- Also, for a given output text, labeling it might be hard for a human, but choosing A vs B is easy

Reinforcement Learning with Human Feedback

- RLHF lets us use direct human feedback to finetune a model
- Often used to modify LLM tone, content guidelines, reducing "toxicity"
- Reinforcement Learning is AI area that uses "good dog/bad dog" signals instead of supervision

The RLHF Cycle

But how do we turn user preferences into a reward value?

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

The RLHF Cycle

Prompts Dataset

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

Prompts Dataset

1. Human beings rank lots of sample outputs

2. We turn each pairwise element in the ranking into a supervised label

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

Prompts Dataset

3. Build a supervised model that takes an input text and predicts the users' judgment

4. This supervised model is the reward model for the RLHF cycle

Generated text

luctus pulvinar, her

eros faucibus tincio

RLHF Has Its Problems

- How much RL is too much? Hard to figure out when to stop
- Training the reward model is one place we can make mistakes, then fine-tuning adds another
- Direct Preference Optimization (Rafailov et al) is a new scheme that avoids constructing the reward model; part of Lab 5!

