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The Core Thing

• We need a model that can compute 
P(someSentence)

• We can use it to build a sequence model
– Input: a sequence of tokens
–Output: a sequence of tokens

• Lots of applications can be built this way



Autoregressive Text Generation

• If you can compute 
P(nextWord | precedingWords)...

• P(nextWord | “My favorite food is”):
– nextWord = “pizza”
– nextWord = “love”
– nextWord = “antagonist”

• Just try every possible word, pick the best



Autoregressive Text Generation

currentCtx = getUserInput()

while True:

 w = predictMostLikelyNextWord(currentCtx)

 emit(w)

 currentCtx += w

 if computeTerminationCriterion():

  break



Computing Sentence Probability

• For a sequence with n words 
wn

1 = w1, w2, …, wn

• Every word w is drawn from a fixed 
vocabulary

• P(wn
1) = P(w1)P(w2|w1)P(w3|w2

1)…P(wn|wn-1
1)

= 



Evaluation
• How can we tell if the model is good?
–Maybe it helps with a downstream task
– A general-purpose metric would be nice

• “Perplexity” measures the inverse 
probability of an unseen test corpus with a 
particular language model
– If text is real, then its probability should be high
– Lower is better



Perplexity
• What’s nice about Perplexity?
– It’s easy to compute
– You don’t need a concrete task
– You don’t need to understand the language!

Measures of Perplexity on different language 
models’ predictions of single-nucleotide 
sequences from prokaryotic genomes

From Ngyuen et al, “Sequence modeling and 
design from molecular to genome scale with
Evo”, 2024



Perplexity
• What’s bad about Perplexity?
– It only works if your model gives a real 

probability (so: no rule-based methods)
– Can’t compare language models with different 

vocabularies
–What is a “good” Perplexity number?



Data, Models, Features
• More context is better
• …but we will run out of data for statistics 

when k-grams get big enough

• We need some combination of:
–More informative features
– Constrained models to avoid overfitting

• …but feature engineering for language is 
extremely hard

• …and expressivity of the model is hard to 
engineer 



Neural Methods
• Neural methods like CBOW let us avoid 

feature engineering
• Managing overfitting is poorly-understood 

but works in practice through model 
architecture, dropout, and other methods



Encoder-Decoders
• Most sequence models use Encoder-

Decoder architecture
– The encoder converts the input into a 

compressed embedding-style representation
– The decoder converts an encoded 

representation back into the target language

• Nice qualities:
– You can train them separately
– You can mix/match them them for different input 

and output types

• word2vec has encoder/decoder architecture



Beyond w2v
• Remember CBOW? It 

aims to predict the 
output word given its 
context

• What’s bad about this 
for chat?



Weaknesses of w2v for chat
• Input architecture “looks into the future” 

(this is easy to fix)
• Each word has a single embedding, 

regardless of usage
– “I am going to stick to it”
– “I am going to throw the stick”
– The w2v embedding for stick will reflect both 

senses, even though in some contexts the 
correct sense is obvious to a human

• Can’t handle truly huge vocabularies
• Sentence modeling is very primitive
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Sequence Modeling
• The input/output 

model of w2v is really 
basic
– You put in some fixed-

size context
– You get out a word

• What if input/outputs 
are variable length?

• What if they have 
complicated 
structure? Images thanks to Karpathy, “Unreasonable 

Effectiveness of Recurrent Neural Networks”



Sequence Modeling
• Sequence models offer more flexibility

• Red: input vectors, blue: output vectors
• Green: internal state



Sequence Modeling

??? ???



Sequence Modeling

Image 
captioning

Text
labelling
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Translation
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Sequence Modeling

Time-locked 
translation

(Hold off on chatbots for a bit…)



Sequence Modeling

• Internal state represents summary of inputs
• This breaks out of CBOB’s fixed-size context
• Simplest version is a Recurrent Neural Network



Detailed View of Char Model
• Task: predict the next 

character
• One input word is 

broken into four 
“labeled” pairs

• Input is one-hot 
encoded

• Output is softmax 
prediction vector

• Wxh and Why are 
init’ed randomly, then 
learned via training Karpathy, “Unreasonable …”



RNNs and seq2seq
• Sometimes we have an entire sequence to 

translate, summarize, or answer
• We can train and combine two RNNs in an 

encoder/decoder “seq2seq” architecture

• Encoder RNN predicts next input. Decoder RNN 
takes encoder state and predicts next output

Sebastian Raschka, Vahid Mirjalili. Python Machine Learning



RNNs and seq2seq

Allamar, Visualizing A Neural Machine Translation Model



RNN Problems
• Long-distance information passing isn’t great. 

First word of long seq may be “forgotten” by end
• In seq2seq architecture, the entire input sentence 

must be captured in one vector sent to decoder

Bahdanau, Cho, Bengio, “Neural Machine Translation By Jointly Learning to Align and Translate”



RNN Problems

Allamar, Visualizing A Neural Machine Translation Model



RNN Problems
• Long-distance information passing isn’t great. 

First word of long seq may be “forgotten” by end
• In seq2seq architecture, the entire input sentence 

must be captured in one vector sent to decoder 
(the “encoder bottleneck”)

• Various mechanisms invented to address this, 
such as Long Short-Term Memories

• LSTMs had trainable components to intentionally 
“forget” parts of input and alleviate bottleneck

• The “attention” mechanism was the most 
successful of these
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Paying Attention
• Core idea: given some input, figure out the 

important parts and (mainly) ignore the rest
• How does your attention work when reading?

• The attention mechanism itself should be 
learned

• First introduced in “Neural Machine Translation 
By Jointly Learning to Align and Translate”, by 
Bahdanau, Cho, Bengio

• The decoder “chooses a subset of [encoder input] 
vectors adaptively while decoding the translation”



Bahdanau Attention
• Karpathy, AI’s bard: “The 

context vector from encoder 
is a weighted sum of hidden 
states of words of the 
encoding” 

• Those attention weights are 
themselves computed by 
looking at current decoder 
state and encoder values

Attention-weighted encoder context vectors

Current decoder
output

Bahdanau, Cho, Bengio, “Neural Machine Translation By Jointly Learning to Align and Translate”



Bahdanau Attention

Allamar, Visualizing A Neural Machine Translation Model
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Allamar, Visualizing A Neural Machine Translation Model



Attention Visualization
• Consider 

translating 
English to French 

• Pixel values 
indicate 
relevance of 
input word to 
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Attention Model
• Think about Queries, Keys, and Values
• A Query describes what you’re trying to do 

(“find the predator”)
• A Key describes a particular input (“red 

things”)
• A Value describes the value of that input (“one 

big red thing near the lower right”)



Attention Model

• Queries, Keys, and Values are vectors



Self-Attention
• Self-Attention works on an input sequence, 

allows us to drop the task-specific stuff
• We can encode both local and global 

dependencies



Self-Attention

Intro to Deep Learning by Sebastian Raschka



Self-Attention

Intro to Deep Learning by Sebastian Raschka
Input elements



Self-Attention

Intro to Deep Learning by Sebastian Raschka
Trainable weights



Self-Attention

Intro to Deep Learning by Sebastian Raschka
Query, key, value vectors are result of 
combining input with learned weights



Self-Attention

We combine q2 with each of the keyi in order to obtain the attention we should pay to vi
and we do this for all queries



Multi-Head Attention
• Compute the Self-Attention mechanism multiple 

times in parallel
• Using different sets of learned Wq, Wk, Wv 

weights for each head
• More heads let us capture different kinds of 

attention



Multi-Head Attention

Allamar, The Illustrated Transformer



Karpathy’s View of Attention
• Consider a directed graph, where each node 

stores a vector

• During “communication” nodes compute:
• Key vector: What the node has
• Query vector: What the node is looking for
• Value vector: What the node will emit



Karpathy’s View of Attention
• Encoder attention creates ”communication” or 

“message-passing” process
• Loop over the nodes randomly
• Each node combines its query vector with 

incoming nodes’ key vectors; yields 
“interestingness” score of each input

• Each node weights incoming values by score to 
yield an update to the node

• Attention in left-hand encoder “input” layer is 
fully connected, but masked MHA in decoder 
limits connectivity to reflect left-to-right text gen
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Transformers
• Most common architecture today is The 

Transformer
• “Attention is All You Need,” by Vaswani, 

Shazeer, Parmar, Uszkoreit, Jones, Gomez, 
Kaiser, Polosukhin (2017)

• Drops recurrence; eats entire input
• Still autoregressive
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Transformers
• Most common architecture today is The 

Transformer
• “Attention is All You Need,” by Vaswani, 

Shazeer, Parmar, Uszkoreit, Jones, Gomez, 
Kaiser, Polosukhin (2017)

• Drops recurrence; eats entire input
• Still autoregressive

MLP: Multilayer Perceptron, 
or, a fully-connected layer

https://www.researchgate.net/figure/The-Transformer-architecture-29-in-an-encoder-decoder-setting-adapted-to-facilitate_fig3_363085057



Transformers
• Multi-Head attention is computed in parallel
• Each “pane” is replicated in series N times
• Different weights in each setting
• Masked MHA disallows attention to “future” 

tokens



Transformers

Allamar, The Illustrated Transformer
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Transformers

Allamar, The Illustrated Transformer
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Putting It All Together
• We train a big language model, then fine-tune

• FT retrains, using small dataset & limited weight 
updates Ruder, https://www.ruder.io/recent-advances-lm-fine-tuning/

*Masked Language Modelling

*Common loss function when training
supervised learning model



Fine Tuning
• Fine-tuning allows us to adapt to a particular 

domain or particular task
• Often enables real improvements with relatively 

small training sets

• But, what if we don’t have labeled data?
• Also, for a given output text, labeling it might be 

hard for a human, but choosing A vs B is easy



Reinforcement Learning with 
Human Feedback

• RLHF lets us use direct human feedback to fine-
tune a model 

• Often used to modify LLM tone, content 
guidelines, reducing “toxicity”

• Reinforcement Learning is AI area that uses 
“good dog/bad dog” signals instead of 
supervision



The RLHF Cycle

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

But how do we turn user preferences into a reward value?



The RLHF Cycle

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf



The RLHF Cycle

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

1. Human beings rank lots of sample outputs

2. We turn each pairwise element in the ranking 
into a supervised label



The RLHF Cycle

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

3. Build a supervised model 
that takes an input text and 
predicts the users’ judgment

4. This supervised model is the 
reward model for the RLHF 
cycle



RLHF Has Its Problems

• How much RL is too much? Hard to figure out 
when to stop

• Training the reward model is one place we can 
make mistakes, then fine-tuning adds another

• Direct Preference Optimization (Rafailov et al) is 
a new scheme that avoids constructing the 
reward model; part of Lab 5!


