
6.S079 LLMS IN A
NUTSHELL

APRIL 2, 2024
MIKE CAFARELLA

Agenda

• Text Modeling
• Sequence Models
• Attention
• Transformers
• Fine-Tuning and RLHF

Agenda

• Text Modeling
• Sequence Models
• Attention
• Transformers
• Fine-Tuning and RLHF

The Core Thing

• We need a model that can compute
P(someSentence)

• We can use it to build a sequence model
– Input: a sequence of tokens
–Output: a sequence of tokens

• Lots of applications can be built this way

Autoregressive Text Generation

• If you can compute
P(nextWord | precedingWords)...

• P(nextWord | “My favorite food is”):
– nextWord = “pizza”
– nextWord = “love”
– nextWord = “antagonist”

• Just try every possible word, pick the best

Autoregressive Text Generation

currentCtx = getUserInput()

while True:

 w = predictMostLikelyNextWord(currentCtx)

 emit(w)

 currentCtx += w

 if computeTerminationCriterion():

 break

Computing Sentence Probability

• For a sequence with n words
wn

1 = w1, w2, …, wn

• Every word w is drawn from a fixed
vocabulary

• P(wn
1) = P(w1)P(w2|w1)P(w3|w2

1)…P(wn|wn-1
1)

=

Evaluation
• How can we tell if the model is good?
–Maybe it helps with a downstream task
– A general-purpose metric would be nice

• “Perplexity” measures the inverse
probability of an unseen test corpus with a
particular language model
– If text is real, then its probability should be high
– Lower is better

Perplexity
• What’s nice about Perplexity?
– It’s easy to compute
– You don’t need a concrete task
– You don’t need to understand the language!

Measures of Perplexity on different language
models’ predictions of single-nucleotide
sequences from prokaryotic genomes

From Ngyuen et al, “Sequence modeling and
design from molecular to genome scale with
Evo”, 2024

Perplexity
• What’s bad about Perplexity?
– It only works if your model gives a real

probability (so: no rule-based methods)
– Can’t compare language models with different

vocabularies
–What is a “good” Perplexity number?

Data, Models, Features
• More context is better
• …but we will run out of data for statistics

when k-grams get big enough

• We need some combination of:
–More informative features
– Constrained models to avoid overfitting

• …but feature engineering for language is
extremely hard

• …and expressivity of the model is hard to
engineer

Neural Methods
• Neural methods like CBOW let us avoid

feature engineering
• Managing overfitting is poorly-understood

but works in practice through model
architecture, dropout, and other methods

Encoder-Decoders
• Most sequence models use Encoder-

Decoder architecture
– The encoder converts the input into a

compressed embedding-style representation
– The decoder converts an encoded

representation back into the target language

• Nice qualities:
– You can train them separately
– You can mix/match them them for different input

and output types

• word2vec has encoder/decoder architecture

Beyond w2v
• Remember CBOW? It

aims to predict the
output word given its
context

• What’s bad about this
for chat?

Weaknesses of w2v for chat
• Input architecture “looks into the future”

(this is easy to fix)
• Each word has a single embedding,

regardless of usage
– “I am going to stick to it”
– “I am going to throw the stick”
– The w2v embedding for stick will reflect both

senses, even though in some contexts the
correct sense is obvious to a human

• Can’t handle truly huge vocabularies
• Sentence modeling is very primitive

Agenda

• Text Modeling
• Sequence Models
• Attention
• Transformers
• Fine-Tuning and RLHF

Sequence Modeling
• The input/output

model of w2v is really
basic
– You put in some fixed-

size context
– You get out a word

• What if input/outputs
are variable length?

• What if they have
complicated
structure? Images thanks to Karpathy, “Unreasonable

Effectiveness of Recurrent Neural Networks”

Sequence Modeling
• Sequence models offer more flexibility

• Red: input vectors, blue: output vectors
• Green: internal state

Sequence Modeling

??? ???

Sequence Modeling

Image
captioning

Text
labelling

Sequence Modeling

????

Sequence Modeling

Translation

Sequence Modeling

?????

Sequence Modeling

Time-locked
translation

(Hold off on chatbots for a bit…)

Sequence Modeling

• Internal state represents summary of inputs
• This breaks out of CBOB’s fixed-size context
• Simplest version is a Recurrent Neural Network

Detailed View of Char Model
• Task: predict the next

character
• One input word is

broken into four
“labeled” pairs

• Input is one-hot
encoded

• Output is softmax
prediction vector

• Wxh and Why are
init’ed randomly, then
learned via training Karpathy, “Unreasonable …”

RNNs and seq2seq
• Sometimes we have an entire sequence to

translate, summarize, or answer
• We can train and combine two RNNs in an

encoder/decoder “seq2seq” architecture

• Encoder RNN predicts next input. Decoder RNN
takes encoder state and predicts next output

Sebastian Raschka, Vahid Mirjalili. Python Machine Learning

RNNs and seq2seq

Allamar, Visualizing A Neural Machine Translation Model

RNN Problems
• Long-distance information passing isn’t great.

First word of long seq may be “forgotten” by end
• In seq2seq architecture, the entire input sentence

must be captured in one vector sent to decoder

Bahdanau, Cho, Bengio, “Neural Machine Translation By Jointly Learning to Align and Translate”

RNN Problems

Allamar, Visualizing A Neural Machine Translation Model

RNN Problems
• Long-distance information passing isn’t great.

First word of long seq may be “forgotten” by end
• In seq2seq architecture, the entire input sentence

must be captured in one vector sent to decoder
(the “encoder bottleneck”)

• Various mechanisms invented to address this,
such as Long Short-Term Memories

• LSTMs had trainable components to intentionally
“forget” parts of input and alleviate bottleneck

• The “attention” mechanism was the most
successful of these

Agenda

• Text Modeling
• Sequence Models
• Attention
• Transformers
• Fine-Tuning and RLHF

Paying Attention
• Core idea: given some input, figure out the

important parts and (mainly) ignore the rest
• How does your attention work when reading?

• The attention mechanism itself should be
learned

• First introduced in “Neural Machine Translation
By Jointly Learning to Align and Translate”, by
Bahdanau, Cho, Bengio

• The decoder “chooses a subset of [encoder input]
vectors adaptively while decoding the translation”

Bahdanau Attention
• Karpathy, AI’s bard: “The

context vector from encoder
is a weighted sum of hidden
states of words of the
encoding”

• Those attention weights are
themselves computed by
looking at current decoder
state and encoder values

Attention-weighted encoder context vectors

Current decoder
output

Bahdanau, Cho, Bengio, “Neural Machine Translation By Jointly Learning to Align and Translate”

Bahdanau Attention

Allamar, Visualizing A Neural Machine Translation Model

Bahdanau Attention

Allamar, Visualizing A Neural Machine Translation Model

Attention Visualization
• Consider

translating
English to French

• Pixel values
indicate
relevance of
input word to
output word

Attention Visualization
• Consider

translating
English to French

• Pixel values
indicate
relevance of
input word to
output word

Attention Visualization
• Consider

translating
English to French

• Pixel values
indicate
relevance of
input word to
output word

Attention Visualization
• Consider

translating
English to French

• Pixel values
indicate
relevance of
input word to
output word

Attention Model
• Think about Queries, Keys, and Values
• A Query describes what you’re trying to do

(“find the predator”)
• A Key describes a particular input (“red

things”)
• A Value describes the value of that input (“one

big red thing near the lower right”)

Attention Model

• Queries, Keys, and Values are vectors

Self-Attention
• Self-Attention works on an input sequence,

allows us to drop the task-specific stuff
• We can encode both local and global

dependencies

Self-Attention

Intro to Deep Learning by Sebastian Raschka

Self-Attention

Intro to Deep Learning by Sebastian Raschka
Input elements

Self-Attention

Intro to Deep Learning by Sebastian Raschka
Trainable weights

Self-Attention

Intro to Deep Learning by Sebastian Raschka
Query, key, value vectors are result of
combining input with learned weights

Self-Attention

We combine q2 with each of the keyi in order to obtain the attention we should pay to vi
and we do this for all queries

Multi-Head Attention
• Compute the Self-Attention mechanism multiple

times in parallel
• Using different sets of learned Wq, Wk, Wv

weights for each head
• More heads let us capture different kinds of

attention

Multi-Head Attention

Allamar, The Illustrated Transformer

Karpathy’s View of Attention
• Consider a directed graph, where each node

stores a vector

• During “communication” nodes compute:
• Key vector: What the node has
• Query vector: What the node is looking for
• Value vector: What the node will emit

Karpathy’s View of Attention
• Encoder attention creates ”communication” or

“message-passing” process
• Loop over the nodes randomly
• Each node combines its query vector with

incoming nodes’ key vectors; yields
“interestingness” score of each input

• Each node weights incoming values by score to
yield an update to the node

• Attention in left-hand encoder “input” layer is
fully connected, but masked MHA in decoder
limits connectivity to reflect left-to-right text gen

Agenda

• Text Modeling
• Sequence Models
• Attention
• Transformers
• Fine-Tuning and RLHF

Transformers
• Most common architecture today is The

Transformer
• “Attention is All You Need,” by Vaswani,

Shazeer, Parmar, Uszkoreit, Jones, Gomez,
Kaiser, Polosukhin (2017)

• Drops recurrence; eats entire input
• Still autoregressive

Transformers
• Most common architecture today is The

Transformer
• “Attention is All You Need,” by Vaswani,

Shazeer, Parmar, Uszkoreit, Jones, Gomez,
Kaiser, Polosukhin (2017)

• Drops recurrence; eats entire input
• Still autoregressive

https://www.researchgate.net/figure/The-Transformer-architecture-29-in-an-encoder-decoder-setting-adapted-to-facilitate_fig3_363085057

Transformers
• Most common architecture today is The

Transformer
• “Attention is All You Need,” by Vaswani,

Shazeer, Parmar, Uszkoreit, Jones, Gomez,
Kaiser, Polosukhin (2017)

• Drops recurrence; eats entire input
• Still autoregressive

MLP: Multilayer Perceptron,
or, a fully-connected layer

https://www.researchgate.net/figure/The-Transformer-architecture-29-in-an-encoder-decoder-setting-adapted-to-facilitate_fig3_363085057

Transformers
• Multi-Head attention is computed in parallel
• Each “pane” is replicated in series N times
• Different weights in each setting
• Masked MHA disallows attention to “future”

tokens

Transformers

Allamar, The Illustrated Transformer

Transformers

Allamar, The Illustrated Transformer

Transformers

Allamar, The Illustrated Transformer

Agenda

• Text Modeling
• Sequence Models
• Attention
• Transformers
• Fine-Tuning and RLHF

Putting It All Together
• We train a big language model, then fine-tune

• FT retrains, using small dataset & limited weight
updates Ruder, https://www.ruder.io/recent-advances-lm-fine-tuning/

*Masked Language Modelling

*Common loss function when training
supervised learning model

Fine Tuning
• Fine-tuning allows us to adapt to a particular

domain or particular task
• Often enables real improvements with relatively

small training sets

• But, what if we don’t have labeled data?
• Also, for a given output text, labeling it might be

hard for a human, but choosing A vs B is easy

Reinforcement Learning with
Human Feedback

• RLHF lets us use direct human feedback to fine-
tune a model

• Often used to modify LLM tone, content
guidelines, reducing “toxicity”

• Reinforcement Learning is AI area that uses
“good dog/bad dog” signals instead of
supervision

The RLHF Cycle

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

But how do we turn user preferences into a reward value?

The RLHF Cycle

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

The RLHF Cycle

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

1. Human beings rank lots of sample outputs

2. We turn each pairwise element in the ranking
into a supervised label

The RLHF Cycle

https://www.ionio.ai/blog/a-comprehensive-guide-to-fine-tuning-llms-using-rlhf-part-1#reinforcement-learning-with-human-feedback-rlhf

3. Build a supervised model
that takes an input text and
predicts the users’ judgment

4. This supervised model is the
reward model for the RLHF
cycle

RLHF Has Its Problems

• How much RL is too much? Hard to figure out
when to stop

• Training the reward model is one place we can
make mistakes, then fine-tuning adds another

• Direct Preference Optimization (Rafailov et al) is
a new scheme that avoids constructing the
reward model; part of Lab 5!

