6.5079 FROM
EMBEDDINGS TO
L ANGUAGE

MARCH 19, 2024 THANKS TO MIKEY SHULMAN
MIKE CAFARELLA FOR SOME SLIDE IDEAS

The Core Thing

* We need a model that can compute
P(someSentence)

* We can use it to build a sequence model

— Input: a sequence of tokens
— Output: a sequence of tokens

» Lots of applications can be built this way

Translation

INPUT: “J'ai vu un chat noir”

OUTPUT A: “l saw a cat black”

VS
OUTPUT B: “l saw a black cat”

Can we compute that P(A) < P(B)?

Speech Recognition

INPUT: <some wavetorm>

OUTPUT A: "Yesterday | met Prince Harry”

VS
OUTPUT B: "Yesterday | met prints hairy”

Can we compute that P(A) > P(B)?

*The GPT image for “prints hairy” is too weird and alarming to put onscreen

Naive Text Generation

* |f you can compute
P(nextWord | precedingWords)...

* P(nextWord | “My favorite food is”):
—nextWora = “pizza”
— nextWord = "“love”

— nextWord = "antagonist”

» Just try every possible word, pick the best

Computing Sentence Probability

» For a sequence with n words

W™ = Wq, Wy, ..., W,

* Every word w is drawn from a fixed
vocabulary

e P(wn,) = P(wq)P(w,lw,)P(wslw2,)...Piw [w-1,)

P(wg|wy™)

n
k=1

The Simplest Model

« Where do we get evidence for P(w,lwk1,)?

* If you want to be really basic, just ignore the
context (that is, a k-gram model where k=1)

Or, put another way, assume that
P(wlwk1y) = P(w)

« Compute as
P(w,) = Count(w,) / TotalTrainingWords

Expanding Context

We can do better with more context

For k=2 ("bigrams”), we model
P(wlwk1.) = P(w,Iw,_,)

Count the bigram P(w,lw,_,), divide by
count of all bigrams starting with w,_;

C(wg—1wr)
P(Wklwk_1) = > Clwg—1w))

Use special tokens for start/end sentence

Discussion
Why does a larger corpus help?

How big does your corpus have to be?

How could we tell if corpus was too small?

Why word-grams? Why not characters?

Evaluation

* How can we tell if the model is good?
— Maybe it helps with a downstream task
— A general-purpose metric would be nice

» "Perplexity” measures the inverse
probability of an unseen test corpus with a
particular language model

— If text is real, then its probability should be high
— Lower is better

PP(W) = P(’wl. . .wN)_%

— It's easy to compute

Perplexity

* What's nice about Perplexity?

— You don't need a concrete task

— You don’t need to understand the language!

Eval. PPL
W w
> o

w
[N

Eval. PPL
SN [0)] (0¢]

w
N

Transformer++ Mamba
o 3
/) cD
= 36F =
&Q_Q},@)’ /4 .
Bl Jaet st
1] D .\0_6//
- 3.2r
07 108 10° 107 10® 10°
Model Size Model Size
Hyena StripedHyena
3.8
w
o
- 3.6f o}
- ° |3.4F .
\.\\’*f\D"(’ S/ ° :?‘10'_‘,9/‘ >~
» :D::j,_(? 32k \\,39%#, <
sl L L1 [1_—]. 1 rul I L1 <> L raal
107 108 109 107 108 10°
Model Size Model Size
FLOPs @8 x 10" @2x10" @4 x 10" @8 x 10"

Optima © Transformer++ {>Mamba [Hyena ¢ StripedHyena

Measures of Perplexity on different language
models’ predictions of single-nucleotide
sequences from prokaryotic genomes

From Ngyuen et al, “Sequence modeling and
design from molecular to genome scale with
Evo”, 2024

Perplexity

* What's bad about Perplexity?

— It only works if your model gives a real
orobability (so: no rule-based methods)

— Can’t compare language models with different
vocabularies

—What is a “good” Perplexity number?

 Discussion: is a bigram language model an

example of supervised or unsupervised
learning?

 Discussion: when might you see overtitting
in this setting?

Data, Models, Features

More context is better

...but we will run out of data for statistics
when k-grams get big enough

We need some combination of:
— More informative features
— Constrained models to avoid overtitting

...but feature engineering for language is
extremely hard

...and expressivity of the model is hard to
engineer

Neural Methods

 Neural methods like CBOW let us avoid
feature engineering

* Managing overtfitting is poorly-understood
but works in practice through model
architecture, dropout, and other methods

Encoder-Decoders

* Most sequence models use Encoder-
Decoder architecture

— The encoder converts the input into a
compressed embedding-style representation

— The decoder converts an encoded
representation back into the target language

* Nice qualities:
— You can train them separately

— You can mix/match them them for different input
and output types

« word2vec has encoder/decoder architecture

Beyond w2v

For a chatbot, what's bad about the w2v
encoder/decoder architecture?

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

CBOW Skip-gram

Beyond w2v

e (Focus on CBOW for now)
 What's bad about this for chat?

INPUT PROJECTION OUTPUT

SUM

R

CcBOwW

Weaknesses of w2v for chat

Input architecture “looks into the future”
(this is easy to fix)

Each word has a single embedding,
regardless of usage

11

— "] am going to stick to it”

11

— "] am going to throw the stick”

— The w2v embedding for stick will reflect both
senses, even though in some contexts the
correct sense is obvious to a human

Can't handle truly huge vocabularies
Sentence modeling is very primitive

BERT, ELMO, and the Transformer

* |deas in these papers led to incredible
improvements in the last 7 years

e We'll cover these after break

