
6.S079 FROM
EMBEDDINGS TO
LANGUAGE

MARCH 19, 2024
MIKE CAFARELLA

THANKS TO MIKEY SHULMAN
FOR SOME SLIDE IDEAS

The Core Thing

• We need a model that can compute
P(someSentence)

• We can use it to build a sequence model
– Input: a sequence of tokens
– Output: a sequence of tokens

• Lots of applications can be built this way

Translation

INPUT: “J’ai vu un chat noir”

OUTPUT A: “I saw a cat black”
vs
OUTPUT B: “I saw a black cat”

Can we compute that P(A) < P(B)?

Speech Recognition

INPUT: <some waveform>

OUTPUT A: “Yesterday I met Prince Harry”
vs
OUTPUT B: “Yesterday I met prints hairy”

Can we compute that P(A) > P(B)?

*The GPT image for “prints hairy” is too weird and alarming to put onscreen

*

Naive Text Generation

• If you can compute
P(nextWord | precedingWords)...

• P(nextWord | “My favorite food is”):
– nextWord = “pizza”
– nextWord = “love”
– nextWord = “antagonist”

• Just try every possible word, pick the best

Computing Sentence Probability

• For a sequence with n words
wn

1 = w1, w2, …, wn

• Every word w is drawn from a fixed
vocabulary

• P(wn
1) = P(w1)P(w2|w1)P(w3|w2

1)…P(wn|wn-1
1)

=

The Simplest Model

• Where do we get evidence for P(wk|wk-1
1)?

• If you want to be really basic, just ignore the
context (that is, a k-gram model where k=1)

Or, put another way, assume that
P(wk|wk-1

1) = P(wk)

• Compute as
P(wk) = Count(wk) / TotalTrainingWords

Expanding Context
• We can do better with more context

• For k=2 (“bigrams”), we model
P(wk|wk-1

1) = P(wk|wk-1)

• Count the bigram P(wk|wk-1), divide by
count of all bigrams starting with wk-1

P(wk|wk-1) =

• Use special tokens for start/end sentence

Discussion
• Why does a larger corpus help?

• How big does your corpus have to be?

• How could we tell if corpus was too small?

• Why word-grams? Why not characters?

Evaluation
• How can we tell if the model is good?
–Maybe it helps with a downstream task
– A general-purpose metric would be nice

• “Perplexity” measures the inverse
probability of an unseen test corpus with a
particular language model
– If text is real, then its probability should be high
– Lower is better

Perplexity
• What’s nice about Perplexity?
– It’s easy to compute
– You don’t need a concrete task
– You don’t need to understand the language!

Measures of Perplexity on different language
models’ predictions of single-nucleotide
sequences from prokaryotic genomes

From Ngyuen et al, “Sequence modeling and
design from molecular to genome scale with
Evo”, 2024

Perplexity
• What’s bad about Perplexity?
– It only works if your model gives a real

probability (so: no rule-based methods)
– Can’t compare language models with different

vocabularies
–What is a “good” Perplexity number?

• Discussion: is a bigram language model an
example of supervised or unsupervised
learning?

• Discussion: when might you see overfitting
in this setting?

Data, Models, Features
• More context is better
• …but we will run out of data for statistics

when k-grams get big enough

• We need some combination of:
–More informative features
– Constrained models to avoid overfitting

• …but feature engineering for language is
extremely hard

• …and expressivity of the model is hard to
engineer

Neural Methods
• Neural methods like CBOW let us avoid

feature engineering
• Managing overfitting is poorly-understood

but works in practice through model
architecture, dropout, and other methods

Encoder-Decoders
• Most sequence models use Encoder-

Decoder architecture
– The encoder converts the input into a

compressed embedding-style representation
– The decoder converts an encoded

representation back into the target language

• Nice qualities:
– You can train them separately
– You can mix/match them them for different input

and output types

• word2vec has encoder/decoder architecture

Beyond w2v
• For a chatbot, what’s bad about the w2v

encoder/decoder architecture?

Beyond w2v
• (Focus on CBOW for now)
• What’s bad about this for chat?

Weaknesses of w2v for chat
• Input architecture “looks into the future”

(this is easy to fix)
• Each word has a single embedding,

regardless of usage
– “I am going to stick to it”
– “I am going to throw the stick”
– The w2v embedding for stick will reflect both

senses, even though in some contexts the
correct sense is obvious to a human

• Can’t handle truly huge vocabularies
• Sentence modeling is very primitive

BERT, ELMO, and the Transformer
• Ideas in these papers led to incredible

improvements in the last 7 years
• We’ll cover these after break

