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The Core Thing

• We need a model that can compute 
P(someSentence)

• We can use it to build a sequence model
– Input: a sequence of tokens
– Output: a sequence of tokens

• Lots of applications can be built this way



Translation

INPUT: “J’ai vu un chat noir”

OUTPUT A: “I saw a cat black”
vs
OUTPUT B: “I saw a black cat”

Can we compute that P(A) < P(B)?



Speech Recognition

INPUT: <some waveform>

OUTPUT A: “Yesterday I met Prince Harry”
vs
OUTPUT B: “Yesterday I met prints hairy”

Can we compute that P(A) > P(B)?

*The GPT image for “prints hairy” is too weird and alarming to put onscreen

*



Naive Text Generation

• If you can compute 
P(nextWord | precedingWords)...

• P(nextWord | “My favorite food is”):
– nextWord = “pizza”
– nextWord = “love”
– nextWord = “antagonist”

• Just try every possible word, pick the best



Computing Sentence Probability

• For a sequence with n words 
wn

1 = w1, w2, …, wn

• Every word w is drawn from a fixed 
vocabulary

• P(wn
1) = P(w1)P(w2|w1)P(w3|w2

1)…P(wn|wn-1
1)

= 



The Simplest Model

• Where do we get evidence for P(wk|wk-1
1)?

• If you want to be really basic, just ignore the 
context (that is, a k-gram model where k=1)

Or, put another way, assume that 
P(wk|wk-1

1) = P(wk)

• Compute as
P(wk) = Count(wk) / TotalTrainingWords



Expanding Context
• We can do better with more context

• For k=2 (“bigrams”), we model
P(wk|wk-1

1) = P(wk|wk-1)

• Count the bigram P(wk|wk-1), divide by 
count of all bigrams starting with wk-1

P(wk|wk-1) = 

• Use special tokens for start/end sentence



Discussion
• Why does a larger corpus help?

• How big does your corpus have to be?

• How could we tell if corpus was too small?

• Why word-grams? Why not characters? 



Evaluation
• How can we tell if the model is good?
–Maybe it helps with a downstream task
– A general-purpose metric would be nice

• “Perplexity” measures the inverse 
probability of an unseen test corpus with a 
particular language model
– If text is real, then its probability should be high
– Lower is better



Perplexity
• What’s nice about Perplexity?
– It’s easy to compute
– You don’t need a concrete task
– You don’t need to understand the language!

Measures of Perplexity on different language 
models’ predictions of single-nucleotide 
sequences from prokaryotic genomes

From Ngyuen et al, “Sequence modeling and 
design from molecular to genome scale with
Evo”, 2024



Perplexity
• What’s bad about Perplexity?
– It only works if your model gives a real 

probability (so: no rule-based methods)
– Can’t compare language models with different 

vocabularies
–What is a “good” Perplexity number?

• Discussion: is a bigram language model an 
example of supervised or unsupervised 
learning?

• Discussion: when might you see overfitting 
in this setting?



Data, Models, Features
• More context is better
• …but we will run out of data for statistics 

when k-grams get big enough

• We need some combination of:
–More informative features
– Constrained models to avoid overfitting

• …but feature engineering for language is 
extremely hard

• …and expressivity of the model is hard to 
engineer 



Neural Methods
• Neural methods like CBOW let us avoid 

feature engineering
• Managing overfitting is poorly-understood 

but works in practice through model 
architecture, dropout, and other methods



Encoder-Decoders
• Most sequence models use Encoder-

Decoder architecture
– The encoder converts the input into a 

compressed embedding-style representation
– The decoder converts an encoded 

representation back into the target language

• Nice qualities:
– You can train them separately
– You can mix/match them them for different input 

and output types

• word2vec has encoder/decoder architecture



Beyond w2v
• For a chatbot, what’s bad about the w2v 

encoder/decoder architecture?



Beyond w2v
• (Focus on CBOW for now)
• What’s bad about this for chat?



Weaknesses of w2v for chat
• Input architecture “looks into the future” 

(this is easy to fix)
• Each word has a single embedding, 

regardless of usage
– “I am going to stick to it”
– “I am going to throw the stick”
– The w2v embedding for stick will reflect both 

senses, even though in some contexts the 
correct sense is obvious to a human

• Can’t handle truly huge vocabularies
• Sentence modeling is very primitive



BERT, ELMO, and the Transformer
• Ideas in these papers led to incredible 

improvements in the last 7 years
• We’ll cover these after break


