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Word embeddings

• Idea:  learn a high-dimensional 
representation of each word
  Cat: {0.002, 0.244, 0.546, …, 0.345}

• Need to have a function W(word) that 
returns a vector encoding that word. 

• Applications: ??? 



Word embeddings: properties
Relationships between words correspond 
to difference between vectors. 

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/



Word embeddings: questions

• How big should the embedding space be?  
– Trade-offs like any other machine learning problem – greater 

capacity versus efficiency and overfitting. 

• How do we find W?
– Often as part of a prediction or classification task involving 

neighboring words.  



Learning word embeddings

• First attempt:
– Input data is sets of 5 words from a meaningful 

sentence.  E.g., “one of the best places”.  Modify 
half of them by replacing middle word with a 
random word.  “one of function best places”

– W is a map (depending on parameters, Q) from 
words to 50 dim’l vectors. 

– Feed 5 embeddings into a module R to determine 
‘valid’ or ‘invalid’  

– Optimize over Q to predict better

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

https://arxiv.org/ftp/arxiv/papers/1102/1102.1808.pdf



word2vec
• A set of (relatively) simple methods to produce word 

embeddings
• Predict words using context
• Two versions: CBOW and Skip-gram



Bag of Words (BOW)
• Bag of words  (BOW)

• A vector representation of word frequency
• Vector has to be as long as vocabulary size
• Very old method
• Gets rid of word order!

• Exploits the “distributional hypothesis” 
• The degree of semantic similarity between two words reflects the 

similarity of the linguistic contexts in which those words can appear

• Words are points in an n-dimensional boolean space

“Cat jumped on dog”

“Dog jumped on cat”

[1, 0, 0, 1, …. 1, 1, 0]

[1, 0, 0, 1, …. 1, 1, 0]

What are the weaknesses with this approach?



Continuous Bag of Words (CBOW)

• Takes vector embeddings of n words 
before target and n words after and 
adds them (as vectors).

• It is a “fill-in-the-blank” task

• The embedding describes how the 
“missing word” impacts the 
probability of seeing the words in its 
context window  

• It works well even though we remove 
word order. The vector sum is 
meaningful enough to deduce missing 
word.

• Key idea: Use combined 
representations of contextual words 
to predict the missing word



Continuous Bag of Words -
Window Size 2
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Continuous Bag of Word

• E.g. “The cat sat on floor”
– Window size = 2
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COBW
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Word analogies
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www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx



Demo!
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Skip gram
• It’s a different architecture for 

implementing word2vec

• Key idea: Use representation of 
the input word to predict the 
context

– (This is reflection of CBOW, which uses 
the context to predict the word)

• Start with a single word 
embedding and try to predict the 
surrounding words. 

• How can this possibly work??? The 
embedding is what we’re trying to 
find!

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



Skip Gram (window 2) 
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First, generate a lot of target input/output pairs



Skip Gram Architecture

• Input is a one-hot encoding of the word. It’s size 1xV.
• Hidden layer has size VxE (where E is the embedding size, a hyperparameter)
• Output layer is size 1xE, which we feed into softmax to obtain probabilities
• We have a target value for the output lauer (from previous training data step)



Skip gram example
• Vocabulary of 10,000 words.
• Embedding vectors with 300 features. 
• So the hidden layer is going to be represented by a weight matrix 

of size 300 with 10,000 rows
• Note that if we want to emit similar results for two words that 

appear in similar contexts, their vectors must be similar

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



CBOW vs Skip gram

• CBOW needs less data, typically worse for rare words
• Skip gram needs more data, better for rare words



Word2vec shortcomings

• Problem:  10,000 words and 300 dim embedding gives 
a large parameter space to learn.  And 10K words is 
minimal for real applications.  

• Slow to train, and need lots of data, particularly to learn 
uncommon words.  

Any ideas how to make the approach more scalable?



Word2vec improvements: 
word pairs and phrases

• Idea: Treat common word pairs or phrases as single “words.”  

– E.g., Boston Globe (newspaper) is different from Boston and 
Globe separately.   Embed Boston Globe as a single 
word/phrase.

• Method:  make phrases out of words which occur together often 
relative to the number of individual occurrences. Prefer phrases 
made of infrequent words in order to avoid making phrases out of 
common words like “and the” or “this is”.

• Pros/cons: Increases vocabulary size but decreases training 
expense.



Word2vec improvements: 
subsample frequent words

• Idea: Subsample frequent words to decrease the number of 
training examples.  
– The probability that we cut the word is related to the word’s 

frequency.  More common words are cut more. 

– Uncommon words (anything < 0.26% of total words) are kept

– E.g., remove some occurrences of “the.” 

• Method: For each word, cut the word with probability related 
to the word’s frequency.

• Benefits: If we have a window size of 10, and we remove a 
specific instance of “the” from our text:
– As we train on the remaining words, “the” will not appear in any 

of their context windows.



Word2vec improvements: 
selective updates

• Idea: Use “Negative Sampling”, which causes each training sample 
to update only a small percentage of the model’s weights.

• Observation: A “correct output” of the network is a one-hot vector. 
That is, one neuron should output a 1, and all of the other 
thousands of output neurons to output a 0.

• Method: With negative sampling, randomly select just a small 
number of “negative” words (let’s say 5) to update the weights for. 
(In this context, a “negative” word is one for which we want the 
network to output a 0 for). We will also still update the weights for 
our “positive” word.



Agenda
1. Embeddings
2. Applications and Retrieval Augmented 

Generation
3. Vector Databases



Vector Similarity Applications
• Clustering
• Next word prediction
• Semantic Search
• Translation

• If we can obtain a joint embedding of 
different input types, then we can do 
cross-modal similarity

• Image of a cat should map close to the word “cat”

34



LLMs
• Their inner workings are too much for 

today. For the moment, let’s consider 
them only as systems (not as consumers 
of embeddings themselves)

35



LLMs
• “Write me a poem about data science”
• “Summarize the above paragraph”
• “Why is my printer not working? The 

answer can be found in one of the above 
45,293 technical support articles”

• ”Which product is most relevant? <here 
are 14.3M products>”

• Today’s LLM architctures have limited 
max context lengths (usually 2k-32k 
tokens)

36



Retrieval Augmented Generation
• RAG “pre-builds” the LLM context

https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-customize-rag.html
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Retrieval Augmented Generation
• Simple, but offers lots of advantages!

• Get around the context length limit
• Improve results by editing your article 

database
• Avoid retraining costs
– Expensive in general
– Impossible if the database is changing

• Don’t have to include possibly-sensitive 
data in the training set

• Potentially reduces hallucinations
38



Other Uses
• Extended LLM “memory”
–What if you have a ChatGPT conversation 

that goes very, very long?
– The chatbot can use RAG to selectively 

swap in past memories from the record

• LLM answer cache
– LLM answer generation is extremely 

computationally expensive
–When a new query arrives, go back and 

check if we’ve ever answered something like 
that before

39



So What’s The Problem?
for w in words:
 curDist = distance(q, w)
 if curDist < bestDist:
  bestDist = curDist
  bestAnswer = w

What is len(words)?
What if it was len(products) instead?

40



Query Efficiency

41

• For n points in d dimensions…
– Linear search for nearest-neighbor is O(nd)

• If d is 300, and n is vast, then this is bad
• We need approximate nearest neighbor



Vector Databases
• Relational databases w/VECTOR datatype
• Allows fast querying over 100Ms or even 

Bs of data objects
• Handles distributed operation, failure, etc

https://www.pinecone.io/learn/vector-database/

42



RAG Management 
with Vector Databases

43

https://www.pinecone.io/learn/vector-database/



Query Efficiency
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• Three basic ways to make search faster

• Vector Compression
• Hashing
• Indexing



1. Vector Compression

45

• Reduce work by using lower-dim vectors
• “Random projection” is one simple method



2. Hashing
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• Standard hashing gives lookups in O(1)

• Why won’t they work here?
• We need Locality Sensitive Hashing



Locality Sensitive Hashing

47

• Traditional hashing minimizes collisions
• LSH maximizes collisions (when similar)



Locality Sensitive Hashing

48

• Traditional hashing minimizes collisions
• LSH maximizes collisions (when similar)



Locality Sensitive Hashing
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• When inserting into database…
– Break input v into subvectors (“signatures”)
– Hash and store each subvector separately

• When querying database…
– Break input q into subvectors
– Hash each subvector separately
–When q and some data object d share a 

bucket match, d is a match candidate
– Compute traditional distance between d and 

all candidates



Locality Sensitive Hashing

50



More formally…
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• Assume you have a set of hash functions 
where probability of bucket collision goes up 
when distance is smaller (aka similarity is 
greater)

1. Create L hash tables, each with k hash 
functions

2. Hash all n d-size vectors into the L tables
3. For a query q, hash it into the L tables
4. Get candidates from the tables
5. Either evaluate every candidate or 

terminate after “enough” items retrieved



More formally…
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• Important parameters L and k
– L is the number of tables
– k is the “width” of hash functions associated 

with each l \in L

• Insert time: O(nLkt) (t is hashing time)
• Storage: O(nL)
• Larger L and k improve probability of 

finding a “close” point
• You can tune this probability via L, k



3. Indexing
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• The same problems we saw in hashing 
prevent us from using conventional indexes
– Vectors can be very similar but not identical
– How do we order objects in 300 dimensions?

• Let’s try Navigable Small World graph 
search instead, for fast approximate nearest 
neighbor search



This Slide Is NSW!
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Will this always work?

Malkov et al, “Approximate nearest neighbor 
algorithm based on navigable small world graphs “



Delaunay Triangulation
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• We are only 
guaranteed to find 
the true closest 
node if each node’s 
neighbors consist 
of its Voronoi 
neighbors

• If that doesn’t hold, 
greedy search is 
approximate
Still, what’s the problem?



NSW

56

• Black links are local; red are “long 
distance”

Malkov et al, “Approximate nearest neighbor 
algorithm based on navigable small world graphs “



How does this work?
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• The graph is constructed s.t:
• Some links are “short-range” and 

approximate the Delaunay graph. This 
provides basic connectivity so greedy 
search works

• Some links are “long-range” and are used 
for logarithmic scaling

Malkov et al, “Approximate nearest neighbor 
algorithm based on navigable small world graphs “



Insertion Algorithm
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• For each new incoming object:
– Find its set of f closest neighbors. (Try w times)
– Connect incoming object to every neighbor (and vice 

versa)
• That’s it! Though you have to tune f, w

• Key idea: as objects are inserted, the graph is “filled-
in” and old short-range links are “stretched” to 
become long-range ones

• It’s not perfect: f-nearest neighbors aren’t guaranteed 
to give us a Delaunay graph. Increasing w gives more 
chances to avoid greedy search failure

Malkov et al, “Approximate nearest neighbor algorithm based on navigable small 
world graphs “



Behavior
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Malkov et al, “Approximate nearest neighbor algorithm based on navigable small 
world graphs “



Behavior
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Malkov et al, “Approximate nearest neighbor algorithm based on navigable small 
world graphs “



HNSW
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• Explicitly hierarchical versions --- where 
searcher transits different levels --- are also 
possible

https://www.pinecone.io/learn/series/faiss/hnsw/


