
6.S079
EMBEDDINGS,
RAG, AND VECTOR
DATABASES

MARCH 14, 2024
MIKE CAFARELLA

AGENDA

1. Embeddings

2. Applications

3. Retrieval Augmented Generation

4. Vector Databases

Word embeddings

• Idea: learn a high-dimensional
representation of each word
 Cat: {0.002, 0.244, 0.546, …, 0.345}

• Need to have a function W(word) that
returns a vector encoding that word.

• Applications: ???

Word embeddings: properties
Relationships between words correspond
to difference between vectors.

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

Word embeddings: questions

• How big should the embedding space be?
– Trade-offs like any other machine learning problem – greater

capacity versus efficiency and overfitting.

• How do we find W?
– Often as part of a prediction or classification task involving

neighboring words.

Learning word embeddings

• First attempt:
– Input data is sets of 5 words from a meaningful

sentence. E.g., “one of the best places”. Modify
half of them by replacing middle word with a
random word. “one of function best places”

– W is a map (depending on parameters, Q) from
words to 50 dim’l vectors.

– Feed 5 embeddings into a module R to determine
‘valid’ or ‘invalid’

– Optimize over Q to predict better

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

https://arxiv.org/ftp/arxiv/papers/1102/1102.1808.pdf

word2vec
• A set of (relatively) simple methods to produce word

embeddings
• Predict words using context
• Two versions: CBOW and Skip-gram

Bag of Words (BOW)
• Bag of words (BOW)

• A vector representation of word frequency
• Vector has to be as long as vocabulary size
• Very old method
• Gets rid of word order!

• Exploits the “distributional hypothesis”
• The degree of semantic similarity between two words reflects the

similarity of the linguistic contexts in which those words can appear

• Words are points in an n-dimensional boolean space

“Cat jumped on dog”

“Dog jumped on cat”

[1, 0, 0, 1, …. 1, 1, 0]

[1, 0, 0, 1, …. 1, 1, 0]

What are the weaknesses with this approach?

Continuous Bag of Words (CBOW)

• Takes vector embeddings of n words
before target and n words after and
adds them (as vectors).

• It is a “fill-in-the-blank” task

• The embedding describes how the
“missing word” impacts the
probability of seeing the words in its
context window

• It works well even though we remove
word order. The vector sum is
meaningful enough to deduce missing
word.

• Key idea: Use combined
representations of contextual words
to predict the missing word

Continuous Bag of Words -
Window Size 2

10

Continuous Bag of Word

• E.g. “The cat sat on floor”
– Window size = 2

11

the

cat

on

floor

sat

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

COBW

12

13

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

one-hot
vector

one-hot
vector

Index of cat in vocabulary

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

14

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer𝑊!×#

𝑊!×#

V-dim

V-dim

N-dim

𝑊′#×!

V-dim

N will be the size of word vector

We must learn W and W’

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

15

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

𝑊
!×#
$
×𝑥%&' = 𝑣%&'

𝑊!×
#$ ×𝑥(

)
= 𝑣(

)
+ !𝑣 =

𝑣!"# + 𝑣$%
2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

1

0

0

0

0

0

0

…

0

𝑊!×#
$ 	 ×𝑥%&' = 𝑣%&'

2.4

2.6

…

…

1.8

=

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

16

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

𝑊
!×#
$
×𝑥%&' = 𝑣%&'

𝑊!×
#$ ×𝑥(

)
= 𝑣(

)
+ !𝑣 =

𝑣!"# + 𝑣$%
2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

0

0

1

0

0

0

0

…

0

𝑊!×#
$ 	 ×𝑥() = 𝑣()

1.8

2.9

…

…

1.9

=

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

17

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0.1

.1

0.05

0.05

0.1

0.01

0.02

0.4

…

0.03

Input layer

Hidden layer

!𝑦 	

Output layer𝑊!×#

𝑊!×#

V-dim

V-dim

N-dim

𝑊!×#
* ×(𝑣 = 𝑧

V-dim

N will be the size of word vector

!𝑣

(𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

Softmax turns the
vector into
proabilities

18

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

Input layer

Hidden layer

!𝑦 	

Output layer𝑊!×#

𝑊!×#

V-dim

V-dim

N-dim

𝑊!×#
* ×(𝑣 = 𝑧

(𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

V-dim

N will be the size of word vector

!𝑣

0

0

0

0

0

0

0

1

…

0

𝑦 	

We would prefer !𝑦 close to !𝑦&"#

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

0.1

.1

0.05

0.05

0.1

0.01

0.02

0.4

…

0.03

19

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

𝑊!×#

𝑊!×#

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

𝑊!×#
$

Contain word’s vectors

𝑊!×#
*

We can consider either W or W’ as the word’s representation. Or
even take the average.

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

0.1

.1

0.05

0.05

0.1

0.01

0.02

0.4

…

0.03

20
www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

Word analogies

21
www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

Demo!

22

Skip gram
• It’s a different architecture for

implementing word2vec

• Key idea: Use representation of
the input word to predict the
context

– (This is reflection of CBOW, which uses
the context to predict the word)

• Start with a single word
embedding and try to predict the
surrounding words.

• How can this possibly work??? The
embedding is what we’re trying to
find!

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Skip Gram (window 2)

24

Sam likes bikingandCeline Dion

Sam likes bikingandCeline Dion Sam likes
Sam Celine

Sam likes bikingandCeline Dion Sam likes
Sam Celine
likes Sam
likes Celine
likes Dion

Sam likes bikingandCeline Dion Sam likes
Sam Celine
likes Sam
likes Celine
likes Dion

Celine Sam
Celine likes
Celine Dion
Celine and

First, generate a lot of target input/output pairs

Skip Gram Architecture

• Input is a one-hot encoding of the word. It’s size 1xV.
• Hidden layer has size VxE (where E is the embedding size, a hyperparameter)
• Output layer is size 1xE, which we feed into softmax to obtain probabilities
• We have a target value for the output lauer (from previous training data step)

Skip gram example
• Vocabulary of 10,000 words.
• Embedding vectors with 300 features.
• So the hidden layer is going to be represented by a weight matrix

of size 300 with 10,000 rows
• Note that if we want to emit similar results for two words that

appear in similar contexts, their vectors must be similar

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

CBOW vs Skip gram

• CBOW needs less data, typically worse for rare words
• Skip gram needs more data, better for rare words

Word2vec shortcomings

• Problem: 10,000 words and 300 dim embedding gives
a large parameter space to learn. And 10K words is
minimal for real applications.

• Slow to train, and need lots of data, particularly to learn
uncommon words.

Any ideas how to make the approach more scalable?

Word2vec improvements:
word pairs and phrases

• Idea: Treat common word pairs or phrases as single “words.”

– E.g., Boston Globe (newspaper) is different from Boston and
Globe separately. Embed Boston Globe as a single
word/phrase.

• Method: make phrases out of words which occur together often
relative to the number of individual occurrences. Prefer phrases
made of infrequent words in order to avoid making phrases out of
common words like “and the” or “this is”.

• Pros/cons: Increases vocabulary size but decreases training
expense.

Word2vec improvements:
subsample frequent words

• Idea: Subsample frequent words to decrease the number of
training examples.
– The probability that we cut the word is related to the word’s

frequency. More common words are cut more.

– Uncommon words (anything < 0.26% of total words) are kept

– E.g., remove some occurrences of “the.”

• Method: For each word, cut the word with probability related
to the word’s frequency.

• Benefits: If we have a window size of 10, and we remove a
specific instance of “the” from our text:
– As we train on the remaining words, “the” will not appear in any

of their context windows.

Word2vec improvements:
selective updates

• Idea: Use “Negative Sampling”, which causes each training sample
to update only a small percentage of the model’s weights.

• Observation: A “correct output” of the network is a one-hot vector.
That is, one neuron should output a 1, and all of the other
thousands of output neurons to output a 0.

• Method: With negative sampling, randomly select just a small
number of “negative” words (let’s say 5) to update the weights for.
(In this context, a “negative” word is one for which we want the
network to output a 0 for). We will also still update the weights for
our “positive” word.

Agenda
1. Embeddings
2. Applications and Retrieval Augmented

Generation
3. Vector Databases

Vector Similarity Applications
• Clustering
• Next word prediction
• Semantic Search
• Translation

• If we can obtain a joint embedding of
different input types, then we can do
cross-modal similarity

• Image of a cat should map close to the word “cat”

34

LLMs
• Their inner workings are too much for

today. For the moment, let’s consider
them only as systems (not as consumers
of embeddings themselves)

35

LLMs
• “Write me a poem about data science”
• “Summarize the above paragraph”
• “Why is my printer not working? The

answer can be found in one of the above
45,293 technical support articles”

• ”Which product is most relevant? <here
are 14.3M products>”

• Today’s LLM architctures have limited
max context lengths (usually 2k-32k
tokens)

36

Retrieval Augmented Generation
• RAG “pre-builds” the LLM context

https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-customize-rag.html

37

Retrieval Augmented Generation
• Simple, but offers lots of advantages!

• Get around the context length limit
• Improve results by editing your article

database
• Avoid retraining costs
– Expensive in general
– Impossible if the database is changing

• Don’t have to include possibly-sensitive
data in the training set

• Potentially reduces hallucinations
38

Other Uses
• Extended LLM “memory”
–What if you have a ChatGPT conversation

that goes very, very long?
– The chatbot can use RAG to selectively

swap in past memories from the record

• LLM answer cache
– LLM answer generation is extremely

computationally expensive
–When a new query arrives, go back and

check if we’ve ever answered something like
that before

39

So What’s The Problem?
for w in words:
 curDist = distance(q, w)
 if curDist < bestDist:
 bestDist = curDist
 bestAnswer = w

What is len(words)?
What if it was len(products) instead?

40

Query Efficiency

41

• For n points in d dimensions…
– Linear search for nearest-neighbor is O(nd)

• If d is 300, and n is vast, then this is bad
• We need approximate nearest neighbor

Vector Databases
• Relational databases w/VECTOR datatype
• Allows fast querying over 100Ms or even

Bs of data objects
• Handles distributed operation, failure, etc

https://www.pinecone.io/learn/vector-database/

42

RAG Management
with Vector Databases

43

https://www.pinecone.io/learn/vector-database/

Query Efficiency

44

• Three basic ways to make search faster

• Vector Compression
• Hashing
• Indexing

1. Vector Compression

45

• Reduce work by using lower-dim vectors
• “Random projection” is one simple method

2. Hashing

46

• Standard hashing gives lookups in O(1)

• Why won’t they work here?
• We need Locality Sensitive Hashing

Locality Sensitive Hashing

47

• Traditional hashing minimizes collisions
• LSH maximizes collisions (when similar)

Locality Sensitive Hashing

48

• Traditional hashing minimizes collisions
• LSH maximizes collisions (when similar)

Locality Sensitive Hashing

49

• When inserting into database…
– Break input v into subvectors (“signatures”)
– Hash and store each subvector separately

• When querying database…
– Break input q into subvectors
– Hash each subvector separately
–When q and some data object d share a

bucket match, d is a match candidate
– Compute traditional distance between d and

all candidates

Locality Sensitive Hashing

50

More formally…

51

• Assume you have a set of hash functions
where probability of bucket collision goes up
when distance is smaller (aka similarity is
greater)

1. Create L hash tables, each with k hash
functions

2. Hash all n d-size vectors into the L tables
3. For a query q, hash it into the L tables
4. Get candidates from the tables
5. Either evaluate every candidate or

terminate after “enough” items retrieved

More formally…

52

• Important parameters L and k
– L is the number of tables
– k is the “width” of hash functions associated

with each l \in L

• Insert time: O(nLkt) (t is hashing time)
• Storage: O(nL)
• Larger L and k improve probability of

finding a “close” point
• You can tune this probability via L, k

3. Indexing

53

• The same problems we saw in hashing
prevent us from using conventional indexes
– Vectors can be very similar but not identical
– How do we order objects in 300 dimensions?

• Let’s try Navigable Small World graph
search instead, for fast approximate nearest
neighbor search

This Slide Is NSW!

54

Will this always work?

Malkov et al, “Approximate nearest neighbor
algorithm based on navigable small world graphs “

Delaunay Triangulation

55

• We are only
guaranteed to find
the true closest
node if each node’s
neighbors consist
of its Voronoi
neighbors

• If that doesn’t hold,
greedy search is
approximate
Still, what’s the problem?

NSW

56

• Black links are local; red are “long
distance”

Malkov et al, “Approximate nearest neighbor
algorithm based on navigable small world graphs “

How does this work?

57

• The graph is constructed s.t:
• Some links are “short-range” and

approximate the Delaunay graph. This
provides basic connectivity so greedy
search works

• Some links are “long-range” and are used
for logarithmic scaling

Malkov et al, “Approximate nearest neighbor
algorithm based on navigable small world graphs “

Insertion Algorithm

58

• For each new incoming object:
– Find its set of f closest neighbors. (Try w times)
– Connect incoming object to every neighbor (and vice

versa)
• That’s it! Though you have to tune f, w

• Key idea: as objects are inserted, the graph is “filled-
in” and old short-range links are “stretched” to
become long-range ones

• It’s not perfect: f-nearest neighbors aren’t guaranteed
to give us a Delaunay graph. Increasing w gives more
chances to avoid greedy search failure

Malkov et al, “Approximate nearest neighbor algorithm based on navigable small
world graphs “

Behavior

59
Malkov et al, “Approximate nearest neighbor algorithm based on navigable small
world graphs “

Behavior

60
Malkov et al, “Approximate nearest neighbor algorithm based on navigable small
world graphs “

HNSW

61

• Explicitly hierarchical versions --- where
searcher transits different levels --- are also
possible

https://www.pinecone.io/learn/series/faiss/hnsw/

