Parallelism
6.S079 Lecture 18

Sam Madden
4/11/2022

Lab 5 Due Weds
Parallelism Goal

• Make a job faster by running on multiple processors

• What do we mean by faster?

\[
speed\ up = \frac{old\ time}{new\ time}\ \text{on same problem, with N times more hardware}
\]

\[
scale\ up = \frac{1x\ larger\ problem\ on\ 1x\ hardware}{Nx\ larger\ problem\ on\ Nx\ hardware}
\]

• Not necessarily the same: smaller problem may be harder to parallelize
Speedup Goal

- Linear?
Barriers to Linear Scaling

- Startup times
 - e.g., may take time to launch each parallel executor
- Interference
 - processors depend on some shared resource
 - E.g., input or output queue, or other data item
- Skew
 - workload not of equal size on each processor

Almost all workloads will stop scaling at some point!

What are some barriers in data science workloads?
Properties of Parallelizable Workloads

• Provide linear speedup
• Usually can be decomposed into small units that can be executed independently
 • "embarrassingly parallel"
• As we will see, SQL-style operations generally provide this
• Some ML algorithms support it, but often tricky
Some machines may have 2 levels of cache per core.
Machine 0
Processor 0
Core 0
CPU
L1 Cache
L2 Cache
Processor 1
Core 0
CPU
L1 Cache
L2 Cache
Processor 1
Core 1
CPU
L1 Cache
L2 Cache
Main Memory

Machine 1
Processor 0
Core 0
CPU
L1 Cache
L2 Cache
Processor 1
Core 0
CPU
L1 Cache
L2 Cache
Processor 1
Core 1
CPU
L1 Cache
L2 Cache
Main Memory

Internet 1-100 ms
Local Ethernet 1-10 us
Wide Area Internet / Cloud

Machine 2
Processor 0
Core 0
CPU
L1 Cache
L2 Cache
Processor 1
Core 0
CPU
L1 Cache
L2 Cache
Processor 1
Core 1
CPU
L1 Cache
L2 Cache
Main Memory
Ping Test (Ethernet inside CSAIL)

- csail.mit.edu
 - 0.7 ms
- mit.edu
 - 14.0 ms
- harvard.edu
 - 7.0 ms
- berkeley.edu
 - 65.1 ms
- tsinghua.edu
 - 229.5 ms
Threads vs Processes

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html
Python Threads API

```python
import threading

t = threading.Thread(target=func_name, args=(a1,a2,...))
t.start()  # start thread running – main thread continues
t.join()   # wait for thread to finish

lock = threading.Lock()  # create a lock object
lock.acquire()  # acquire the lock; block if another thread has it
lock.release()  # release the lock
```

Problem: Python Global Interpreter Lock (GIL)
Only one thread can be executing python code at once
Python Multiprocessing API

```python
import multiprocessing

p = multiprocessing.Process(target=func_name, args=(a1,a2,...))
p.start()  # start thread running – main thread continues
p.join()   # wait for thread to finish

lock = multiprocessing.Lock()  # create a lock object
lock.acquire() # acquire the lock; block if another thread has it
lock.release() # release the lock
```
Parallel Aggregation

Task: compute average age across all people

```
{"age": 30, "name": ["Michal", "Sharpe"],
"occupation": "Archivist", "telephone":
"285.290.9033", "address": {"address":
"458 Girard Plantation", "city":
"Wentzville"},
"credit-card": {"number":
"5384 0033 6904 0042", "expiration-date":
"06/23"}}
```
Parallel Aggregation Implementation

- Use multiprocessing, not threading
- Main thread creates a work queue
  ```python
  q = multiprocessing.Queue()
  ```
- Puts work on it, as pointers to files
  ```python
  q.put(file1); q.put(file2)
  ```
- Starts threads, passing them the work queue, as well as a result queue
- Threads pull from queue in a loop:
  ```python
  while True:
      f = q.get(block=False)
      process(f)
  ```
- Threads compute running sum and average
- Once complete, threads put their running sum and average on the result queue:
  ```python
  out_q.put((age_sum, age_cnt))
  ```
- Main thread blocks on result queue to read a result from each worker:
  ```python
  for p in procs:
      (p_sum, p_count) = out_q.get()
  ```
What happened here?

Time (s)

Number of Processes

Only a 3x speedup – why?

What happened here?
Clicker

Why didn’t this program speed up beyond 8 processes? Choose all that apply

a) Not enough memory
b) Not enough processors
c) Startup overheads of launching processes
d) Too much coordination between processes

https://clicker.mit.edu/6.S079
Break
Parallelism Approach

Split given data set split into N partitions
Use M processors to process this data in parallel

We will need to come up with parallel implementations of common operators
Parallel Dataflow
Example

- Directed Acyclic Graph of Operators
 - Data flows from files to output
- Internally each operator is a parallel job
- Intermediate results between jobs typically buffered in mem or on disk between tasks
 - May be possible to pipeline directly

Could send results of filter directly to join instead of buffering
Parallel Dataflow Operations

• Filter
• Project
• Element-wise or row-wise transform
• Join
 • Repartition vs broadcast
• Aggregate
• Sort
• Train an ML model
• Arbitrary python "UDF"s

Which of these are easy to parallelize?
Partitioning Strategies

• Random / Round Robin
 • Evenly distributes data (no skew)
 • Requires us to repartition for joins

• Range partitioning
 • Allows us to perform joins/merges without repartitioning, when tables are partitioned on join attributes
 • Subject to skew

• Hash partitioning
 ▪ Allows us to perform joins/merges without repartitioning, when tables are partitioned on join attributes
 ▪ Only subject to skew when there are many duplicate values
Round Robin Partitioning

Advantages:
Each partition has the same number of records

Disadvantage:
No ability to push down predicates to filter out some partitions
Range Partitioning

Attribute A

- A < 10
- 10 < A < 17
- 98 < A < 109

Advantages:
Easy to push down predicates (on partitioning attribute)

Disadvantage:
Difficult to ensure equal sized partitions, particularly in the face of inserts and skewed data
Hash Partitioning

H(T.A) is a hash function mapping from each record in T to its partition, based on value of attribute A.

Advantages:
- Each partition has about the same number of records, unless one value is very frequent
- Possible to push down equality predicates on partitioning attribute

Disadvantages:
- Can’t push down range predicates
Parallel Join – Random Partitioning Naïve Algo

(1, ...) indicates value of join attribute

Must join each partition with every other partition

Each worker has to read all of T2
Speedup will be limited, unless T2 is much smaller than T1
Parallel Join – Prepartitioned

(1, …) indicates value of join attribute

Only need to join partitions that match

(1, …) ⨝ (1, …)
(1, …) ⨝ (1, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)
(2, …) ⨝ (2, …)

This is what our Postgres example showed

Better speedup, only works if data is properly prepartitioned
Should be 3x faster than single node join
Skew problem (hashing may help)
Parallel Join – Repartitioning
Aka shuffle join

Worker 1
1, ...
2, ...
2, ...
1, ...

Worker 2
3, ...
4, ...
3, ...
4, ...

Worker 3
5, ...
6, ...
5, ...
6, ...

Resulting partitions are divided by range

Following repartitioning, can run prepartitioned join
Here, partitioning can be done in parallel, so better than naïve
No worker has to operate on all of T2
Dask https://dask.org

• General purpose python parallel / distributed computation framework
• Includes parallel implementation of Pandas dataframes
• Usually straightforward to translate a pandas program into a parallel implementation
 • Just use dask.dataframe instead of pandas.dataframe
 • Have to specify a parallel configuration to run on, via Client() object
 • Can be a local machine or distributed cluster
• Also has support for other types of parallelism, e.g., dask.bag class that allows parallel operation on collections of python objects
Large Join Demo

• Changing number of nodes
• Changing join algorithm
Dask Partitioned Join
Dask Shuffle Join
Many alternatives

• MapReduce / Hadoop
 • Rewrite your program as a collection of parallel `map()` and `reduce()` jobs
 • Hard to do, slow()

• Spark
 • Popular library -- similar to Dask, more focused on large scale distributed
 • Includes parallel implementations of ML and other operations
 • Difficult to use
Summary

• Parallelism is a good way to improve performance
• Ideal: linear speedup
 • Difficult to achieve in practice
• Some operations can be trivially parallelized with partitioned parallelism, e.g., filters and maps
• Other operations – like joins – are more difficult
• Dask is a popular open-source parallel programming library for Python
 • Next time – you’ll get to try it out as a part of Lab 6