
6.S079
Lecture 4

Sam Madden

Key ideas:
Pandas
Parquet
FARS Example

http://dsg.csail.mit.edu/6.S079/

Lab 2 Out

Recap: Last Two Lectures

• Relational Model
• SQL
• Database Tuning with Indexes

• Bands schema
• Bands: bandid, name, genre
• Shows: showid, show_bandid REFERENCES bands.bid, date, venue
• Fans: fanid, name, birthday
• BandFans: bf_bandid REFERENCES bands.bandid, bf_fanid REFERENCES fans.fanid

Bandfans Database Tuning Example

• Created a larger fake version of bandfans
• 1M likes
• 800 fans
• 100K bands

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
 -> Hash Join (cost=4.60..18204.60 rows=2489 width=0)
 Hash Cond: (bandfans.bf_bandid = bands.bandid)
 -> Seq Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
 -> Hash (cost=4.59..4.59 rows=1 width=4)
 -> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
 Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain”
command that shows how it executes a query

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES

This query takes 80ms to execute
Not slow, but this isn’t a large DB, and
could be painful if we have to run many
times

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
 -> Hash Join (cost=4.60..18204.60 rows=2489 width=0)
 Hash Cond: (bandfans.bf_bandid = bands.bandid)
 -> Seq Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
 -> Hash (cost=4.59..4.59 rows=1 width=4)
 -> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
 Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain”
command that shows how it executes a query

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES

Hash
Table

Scan
bandfans

Scan
Bands (name =

‘limp bizkit’)

Hash
Join

Parse tree
Read bottom up

How Can We Make This Faster?

• Goal: Reduce amount of data read
• What about just scanning bands rows that correspond to ‘limp bizkit’?

• Index on bands.name

• Could we just scan the bandfans rows that correspond to ‘limp bizkit’?
• Index on bandfans.bf_bandid

Creating An Index

• CREATE INDEX band_name ON bands(name);
• CREATE INDEX bf_index ON bandfans(bf_bandid);

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

<=
limp
bizkit

> limp
bizkit

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

Can lookup a particular record in
log(N) access instead of scanning
whole heap file

N=# of records; base of log is B

B-Tree Index Example (B=2)

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

Can lookup a particular record in
log(N) access instead of scanning
whole heap file

N=# of records; base of log is B

Find “slipknot”

Index-Only Scans

1|
korn

2|
limp
bizkit

3|
slip
knot

4|
justin
bieber

5|
k.d.
lang

6|
lil nas x

7|
beatles

8|
mariah
carey

”Heap File”
Unordered records

<=
korn

> korn

<=
justin
bieber

>
justin
bieber

beatles justin
bieber

k.d.
lang

korn

<=
limp
bizkit

> limp
bizkit

lil nas
x

limp
bizkit

mariah
carey

slip
knot

Count # records > ‘lil nas x’
Don’t need to go to
heap file if we just
want the artist names

Next block pointers

Why Does an Index on
Bandfans.bf_bandid Help?

Given the bandid of limp bizkit (determined via a scan or index lookup), we can
directly look up records in bandfans that match

Since there is only 1 record in bands for ‘limp bizkit’, this is a single index lookup
instead of building a hash table on bandfans

Postgres
create index bf_index on bandfans(bf_bandid);

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit’

 Aggregate (cost=2162.44..2162.45 rows=1 width=8)
 -> Nested Loop (cost=0.42..2162.36 rows=30 width=0)

 -> Seq Scan on bands (cost=0.00..1918.84 rows=3 width=4)

 Filter: ((name)::text = 'limp bizkit'::text)

 -> Index Only Scan using bf_index on bandfans (cost=0.42..56.17 rows=2500 width=4)

 Index Cond: (bf_bandid = bands.bandid)

Find limp bizkit
record by scanning
bands

Postgres
create index bf_index on bandfans(bf_bandid);

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit’

 Aggregate (cost=2162.44..2162.45 rows=1 width=8)
 -> Nested Loop (cost=0.42..2162.36 rows=30 width=0)

 -> Seq Scan on bands (cost=0.00..1918.84 rows=3 width=4)

 Filter: ((name)::text = 'limp bizkit'::text)

 -> Index Only Scan using bf_index on bandfans (cost=0.42..56.17 rows=2500 width=4)

 Index Cond: (bf_bandid = bands.bandid)

For each limp bizkit
record (3 estimated)

Do an index only scan to count
the number of fans

Estimated cost 2000 vs 12000
Actual 8ms vs 80ms

Don’t need to go to records at all since index keys have bandid

Postgres
create index bf_index on bandfans(bf_bandid);
create index band_name on bands(name);

EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit’

 Aggregate (cost=259.94..259.95 rows=1 width=8)

 -> Nested Loop (cost=0.72..259.87 rows=30 width=0)

 -> Index Scan using band_name on bands (cost=0.29..16.34 rows=3 width=4)

 Index Cond: ((name)::text = 'limp bizkit'::text)

 -> Index Only Scan using bf_index on bandfans (cost=0.42..56.17 rows=2500 width=4)

 Index Cond: (bf_bandid = bands.bandid)

Use index to directly
lookup ‘limp bizket’

Estimated cost 260 vs 2000 vs 12000
Actual .5 ms vs 8 ms vs 80 ms

160x speedup!

Monday’s Reading

• Critique of SQL
• Some specific complaints about, e.g.,

• json and windowing support
• Verbose join syntax
• Pitfalls around, e.g., subqueries

• More generally:
• Lack of standards for extensions, e.g., new types or procedural support
• New features, e.g., json and windows, are added via new syntax, rather than

libraries as in most languages
• Massive spec, very complex to support, huge burden on developers

Recap: Some Common Data Access
Themes

• SQL provides a powerful set-oriented way to get the data you want
• Joins are the crux of data access and primary performance concern
• To speed up queries, “read what you need”

• Indexing & Index-only Scans
• Predicate pushdown

• E.g., using an index to find ‘limp bizkit’ records
• Column-orientation

• More on this later – we can physically organize data to avoid reading parts of records we
don’t need

Onto Pandas

• Pandas is a python library for working with tabular data
• Set-oriented thinking in Python
• Provides relation-algebra like ability to filter, join, and transform data

Loading a Data Set

Pandas tables are called “data frames”

All dataframes have an “index” – by default, a
monotonically increasing number

As in SQL, columns are named and typed
Unlike SQL, they are also ordered (i.e., can access records
by their position, and the notion of “next record” is well
defined)

Accessing Columns

Dots and brackets are equivalent
Can’t use dots if field names are reserved
keywords (e.g., “type”, “class”)

Accessing Rows

Array of Booleans with
len(df) values in it

Indexing into a dataframe
with a list of bools returns
records where value in list
is true

iloc vs loc

• loc uses the dataframe index
column to access rows and
column names to access data

• iloc uses the position in the
dataframe and index into list of
columns to access data

• By default index column and
position are the same

df.loc[1,’bandid’]
df.iloc[1,0]

Index
column

Changing the Index

Clicker

• Given dataframe with bandname as index

• What is does this statement output?
 print(df.iloc[1,1],df.loc[‘korn’,’bandid’])

 A. rock 2
 B. 2 2
 C. 2 rock
 D. 1 2 https://clicker.mit.edu/6.S079/

Transforming Data

Must Use iloc/loc to Change Data
This works:

This does not (even though it is a legal way to read data):

Grouping

Creates a ”GroupByObject” which supports a variety of
aggregation functions

Apply “count” to all non-grouping columns

Resulting data frame is
indexed by the grouping
column

Multiple Aggregates

Name of column in output data frame
Note funky syntax

Joining (Merge)

Join attributes
”left” data frame is the one we are calling merge on
“right” data frame is the one we pass in

Bands that don’t join (e.g., Nickelback) are missing

Left/Right/Outer Join

Chained Expressions

• All Pandas operations make a copy of their input and return it (unless
you specify inplace=True)
• This makes long chained expressions common

• Inefficient, but syntactically compact

Break

Example: Driving Fatalities in the US

• Motor vehicle crashes are the leading cause of death for people ages 1-54
• 38,000 people die each year
• ~30% of fatal crashes involve alcohol

• The National Highway Traffic Safety Administration publishes detailed
data about every fatal crash (FARS)

Efficient Data Loading: Parquet
• Parquet is a file format that is MUCH more efficient

than CSV for storing tabular data
• Data is stored in binary representation

• Uses less space
• Doesn’t require conversion from strings to internal

types
• Doesn’t require parsing or error detection
• Column-oriented, making access to subsets of

columns much faster

Parquet Format
• Data is partitioned sets of rows, called “row groups”
• Within each row group, data from different columns is stored separately

…

…
Row
Group 1

Row
Group 2

Row
Group N

Col 1 Block 1

Col 1 Block 2

Col 1 Block 3

Col 2 Block 1

Col 2 Block 2

Col 2 Block 3

Col 3 Block 1

Col 3 Block 2

Col 1 Block 4

Col 1 Block 5

Col 1 Block 6

Col 2 Block 4

Col 2 Block 5

Col 3 Block 3

Col 3 Block 4

Col 1 Block i

Col 1 Block i+1

Col 1 Block i+1

Col 2 Block j

Col 2 Block j+1

Col 3 Block k

Col 3 Block k+1

Header: Offset of start of each row / column group, and ranges of
records in each row group

…

…

Using header, can
efficiently read any
subset of columns or
rows without
scanning whole file
(unlike CSV)

Within a row group,
data for each column
is stored together

Predicate Pushdown w/ Parquet & Pandas

pd.read_parquet(‘file.pq’, columns=[‘Col 1’, ‘Col 2’])

• Only reads col1 and col2 from disk
• For a wide dataset (e.g., our vehicle dataset w/ 93 columns), saves a

ton of I/O

Performance Measurement

47x speedup

• Compare reading CSV to parquet to just columns we need

When to Use Parquet?

• Will always be more efficient than CSV
• Converting from Parquet to CSV takes time, so only makes sense to do

so if working repeatedly with a file
• Parquet requires a library to access/read it, whereas many tools can

work with CSV
• Because CSV is text, it can have mixed types in columns, or other

inconsistencies
• May be useful sometimes, but also very annoying!
• Parquet does not support mixed types in a column

Back to FARS Example

• Let’s look at how drunk driving has changed over the years

Example: Driving Fatalities in the US

• Motor vehicle crashes are the leading cause of death for people ages 1-54
• 38,000 people die each year
• ~30% of fatal crashes involve alcohol

• The National Highway Traffic Safety Administration publishes detailed
data about every fatal crash (FARS)

Example

Pandas vs SQL

• Could we have done this analysis in SQL?
• Probably…
• But not the plotting, or data cleaning, or data downloads

• So would need Python to clean up data, reload into SQL, run queries
• Declaring schemas, importing data, etc all somewhat painful in SQL

• So usual workflow is to use SQL to get to the data in the database,
and then python for merging, cleaning and plotting
• Generally, databases will be faster for things SQL does well, and they

can handle data that is much larger than RAM, unlike Python

