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Lab 2 Out



Recap:  Last Two Lectures

• Relational Model
• SQL
• Database Tuning with Indexes

• Bands schema
• Bands:  bandid, name, genre
• Shows:  showid, show_bandid REFERENCES bands.bid, date, venue
• Fans: fanid, name, birthday
• BandFans: bf_bandid REFERENCES bands.bandid, bf_fanid REFERENCES fans.fanid



Bandfans Database Tuning Example

• Created a larger fake version of bandfans
• 1M likes
• 800 fans
• 100K bands



Aggregate  (cost=18210.82..18210.83 rows=1 width=8)
   ->  Hash Join  (cost=4.60..18204.60 rows=2489 width=0)
         Hash Cond: (bandfans.bf_bandid = bands.bandid)
         ->  Seq Scan on bandfans  (cost=0.00..14425.08 rows=1000008 width=4)
         ->  Hash  (cost=4.59..4.59 rows=1 width=4)
               ->  Seq Scan on bands  (cost=0.00..4.59 rows=1 width=4)
                     Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

• Most database systems provide an “explain” 
command that shows how it executes a query

EXPLAIN SELECT count(*) 
FROM bandfans JOIN bands ON bf_bandid = bandid 
WHERE name = 'limp bizkit'

Example: POSTGRES
 

This query takes 80ms to execute
Not slow, but this isn’t a large DB, and 
could be painful if we have to run many 
times
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How Can We Make This Faster?

• Goal: Reduce amount of data read
• What about just scanning bands rows that correspond to ‘limp bizkit’?

• Index on bands.name

• Could we just scan the bandfans rows that correspond to ‘limp bizkit’?
• Index on bandfans.bf_bandid



Creating An Index

• CREATE INDEX band_name ON bands(name);
• CREATE INDEX bf_index ON bandfans(bf_bandid);



B-Tree Index Example (B=2)

1| 
korn

2| 
limp 
bizkit

3| 
slip
knot

4| 
justin 
bieber

5| 
k.d. 
lang

6| 
lil nas x

7| 
beatles

8| 
mariah 
carey

”Heap File”
Unordered records
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Index-Only Scans

1| 
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Next block pointers



Why Does an Index on 
Bandfans.bf_bandid Help?

Given the bandid of limp bizkit (determined via a scan or index lookup), we can 
directly look up records in bandfans that match 

Since there is only 1 record in bands for ‘limp bizkit’, this is a single index lookup 
instead of building a hash table on bandfans 



Postgres
create index bf_index on bandfans(bf_bandid);

EXPLAIN SELECT count(*) 
FROM bandfans JOIN bands ON bf_bandid = bandid 
WHERE name = 'limp bizkit’

 Aggregate  (cost=2162.44..2162.45 rows=1 width=8)
   ->  Nested Loop  (cost=0.42..2162.36 rows=30 width=0)

         ->  Seq Scan on bands  (cost=0.00..1918.84 rows=3 width=4)

               Filter: ((name)::text = 'limp bizkit'::text)

         ->  Index Only Scan using bf_index on bandfans  (cost=0.42..56.17 rows=2500 width=4)

               Index Cond: (bf_bandid = bands.bandid)

Find limp bizkit 
record by scanning 
bands



Postgres
create index bf_index on bandfans(bf_bandid);

EXPLAIN SELECT count(*) 
FROM bandfans JOIN bands ON bf_bandid = bandid 
WHERE name = 'limp bizkit’

 Aggregate  (cost=2162.44..2162.45 rows=1 width=8)
   ->  Nested Loop  (cost=0.42..2162.36 rows=30 width=0)

         ->  Seq Scan on bands  (cost=0.00..1918.84 rows=3 width=4)

               Filter: ((name)::text = 'limp bizkit'::text)

         ->  Index Only Scan using bf_index on bandfans  (cost=0.42..56.17 rows=2500 width=4)

               Index Cond: (bf_bandid = bands.bandid)

For each limp bizkit 
record (3 estimated)

Do an index only scan to count 
the number of fans

Estimated cost 2000 vs 12000
Actual 8ms vs 80ms

Don’t need to go to records at all since index keys have bandid



Postgres
create index bf_index on bandfans(bf_bandid);
create index band_name on bands(name);

EXPLAIN SELECT count(*) 
FROM bandfans JOIN bands ON bf_bandid = bandid 
WHERE name = 'limp bizkit’

 Aggregate  (cost=259.94..259.95 rows=1 width=8)

   ->  Nested Loop  (cost=0.72..259.87 rows=30 width=0)

         ->  Index Scan using band_name on bands  (cost=0.29..16.34 rows=3 width=4)

               Index Cond: ((name)::text = 'limp bizkit'::text)

         ->  Index Only Scan using bf_index on bandfans  (cost=0.42..56.17 rows=2500 width=4)

               Index Cond: (bf_bandid = bands.bandid)

Use index to directly 
lookup ‘limp bizket’ 

Estimated cost 260 vs 2000 vs 12000
Actual .5 ms vs 8 ms vs 80 ms

160x speedup!



Monday’s Reading

• Critique of SQL
• Some specific complaints about, e.g., 

• json and windowing support
• Verbose join syntax
• Pitfalls around, e.g., subqueries

• More generally:
• Lack of standards for extensions, e.g., new types or procedural support
• New features, e.g., json and windows, are added via new syntax, rather than 

libraries as in most languages
• Massive spec, very complex to support, huge burden on developers



Recap: Some Common Data Access 
Themes

• SQL provides a powerful set-oriented way to get the data you want
• Joins are the crux of data access and primary performance concern
• To speed up queries, “read what you need”

• Indexing & Index-only Scans
• Predicate pushdown

• E.g., using an index to find ‘limp bizkit’ records
• Column-orientation

• More on this later – we can physically organize data to avoid reading parts of records we 
don’t need



Onto Pandas

• Pandas is a python library for working with tabular data
• Set-oriented thinking in Python
• Provides relation-algebra like ability to filter, join, and transform data



Loading a Data Set

Pandas tables are called “data frames”

All dataframes have an “index” – by default, a 
monotonically increasing number

As in SQL, columns are named and typed
Unlike SQL, they are also ordered (i.e., can access records 
by their position, and the notion of “next record” is well 
defined)



Accessing Columns

Dots and brackets are equivalent
Can’t use dots if field names are reserved 
keywords (e.g., “type”,  “class”)



Accessing Rows

Array of Booleans with 
len(df) values in it

Indexing into a dataframe 
with a list of bools returns 
records where value in list 
is true



iloc vs loc

• loc uses the dataframe index 
column to access rows and 
column names to access data

• iloc uses the position in the 
dataframe and index into list of 
columns to access data

• By default index column and 
position are the same

df.loc[1,’bandid’]
df.iloc[1,0]

Index 
column



Changing the Index



Clicker

• Given dataframe with bandname as index

• What is does this statement output?
 print(df.iloc[1,1],df.loc[‘korn’,’bandid’]) 

 A.  rock 2 
 B.  2 2
 C.  2 rock
 D.  1 2 https://clicker.mit.edu/6.S079/



Transforming Data



Must Use iloc/loc to Change Data
This works:

This does not (even though it is a legal way to read data):



Grouping

Creates a ”GroupByObject” which supports a variety of 
aggregation functions

Apply “count” to all non-grouping columns

Resulting data frame is 
indexed by the grouping 
column



Multiple Aggregates

Name of column in output data frame
Note funky syntax



Joining (Merge)

Join attributes
”left” data frame is the one we are calling merge on
“right” data frame is the one we pass in 

Bands that don’t join (e.g., Nickelback) are missing



Left/Right/Outer Join



Chained Expressions

• All Pandas operations make a copy of their input and return it (unless 
you specify inplace=True)
• This makes long chained expressions common

• Inefficient, but syntactically compact



Break



Example: Driving Fatalities in the US

• Motor vehicle crashes are the leading cause of death for people ages 1-54
• 38,000 people die each year
• ~30% of fatal crashes involve alcohol

• The National Highway Traffic Safety Administration publishes detailed 
data about every fatal crash (FARS)



Efficient Data Loading: Parquet
• Parquet is a file format that is MUCH more efficient 

than CSV for storing tabular data
• Data is stored in binary representation

• Uses less space
• Doesn’t require conversion from strings to internal 

types
• Doesn’t require parsing or error detection 
• Column-oriented, making access to subsets of 

columns much faster



Parquet Format
• Data is partitioned sets of rows, called “row groups”
• Within each row group, data from different columns is stored separately

…

…
Row 
Group 1

Row 
Group 2

Row 
Group N

Col 1 Block 1

Col 1 Block 2

Col 1 Block 3

Col 2 Block 1

Col 2 Block 2

Col 2 Block 3

Col 3 Block 1

Col 3 Block 2

Col 1 Block 4

Col 1 Block 5

Col 1 Block 6

Col 2 Block 4

Col 2 Block 5

Col 3 Block 3

Col 3 Block 4

Col 1 Block i

Col 1 Block i+1

Col 1 Block i+1

Col 2 Block j

Col 2 Block j+1

Col 3 Block k

Col 3 Block k+1

Header:  Offset of start of each row / column group, and ranges of 
records in each row group

…

…

Using header, can 
efficiently read any 
subset of columns or 
rows without 
scanning whole file 
(unlike CSV)

Within a row group, 
data for each column 
is stored together



Predicate Pushdown w/ Parquet & Pandas

pd.read_parquet(‘file.pq’, columns=[‘Col 1’, ‘Col 2’])

• Only reads col1 and col2 from disk
• For a wide dataset (e.g., our vehicle dataset w/ 93 columns), saves a 

ton of I/O



Performance Measurement

47x speedup

• Compare reading CSV to parquet to just columns we need



When to Use Parquet?

• Will always be more efficient than CSV
• Converting from Parquet to CSV takes time, so only makes sense to do 

so if working repeatedly with a file
• Parquet requires a library to access/read it, whereas many tools can 

work with CSV
• Because CSV is text, it can have mixed types in columns, or other 

inconsistencies
• May be useful sometimes, but also very annoying!
• Parquet does not support mixed types in a column



Back to FARS Example

• Let’s look at how drunk driving has changed over the years



Example: Driving Fatalities in the US

• Motor vehicle crashes are the leading cause of death for people ages 1-54
• 38,000 people die each year
• ~30% of fatal crashes involve alcohol

• The National Highway Traffic Safety Administration publishes detailed 
data about every fatal crash (FARS)



Example



Pandas vs SQL

• Could we have done this analysis in SQL?
• Probably…
• But not the plotting, or data cleaning, or data downloads

• So would need Python to clean up data, reload into SQL,  run queries
• Declaring schemas, importing data, etc all somewhat painful in SQL

• So usual workflow is to use SQL to get to the data in the database, 
and then python for merging, cleaning and plotting
• Generally, databases will be faster for things SQL does well, and they 

can handle data that is much larger than RAM, unlike Python


