Piazza signup:
http://piazza.com/mit/spring2024/6s079

6.S079
Lecture 3

Sam Madden

Key ideas:
More SQL
Indexes and performance tuning

http://dsg.csail.mit.edu/6.5079/

BRACEIOURSEL

/. \ g
HOMEWORK ISICOMING»

Lab 1 Due Friday Monday

Recap: SQL Syntax and Joins

* Bands schema
* Bands: bandid, name, genre
* Shows: showid, show_bandid REFERENCES bands.bid, date, venue
* Fans: fanid, name, birthday
* BandFans: bf bandid REFERENCES bands.bandid, bf fanid REFERENCES fans.fanid

Dates of ‘slipknot’ shows

SELECT date
FROM shows JOIN bands ON show_bandid = bandid
WHERE name = ‘slipknot’

Bands: bandid, name, genre

Shows: showid, show_bandid, date, venue
Altern ately Fans: fanid, name, birthday

BandFans: bf bandid, bf _fanid

SELECT date

FROM shows, bands

WHERE show_bandid = bandid
AND name = ‘slipknot’

Aliases and Ambiguity

Bands: bandid, name, genre
Shows: showid, show_bandid, date, venue
Fans: fanid, name, birthday

o ,
* Fans who like ‘slipknot BandFans: bf bandid, bf fanid

Unclear which “name” we are

SELECT name «—— referring to >

FROM fans JOIN bandfans ON bf fanid = fanid [BilEs >
JOIN bands on bf bandi '
WHERE name = ‘slipknot’

Bands

3 table join
(fans DX bandfans) > bands

This doesn’t work. Why?

Aliases and Ambiguity

Bands: bandid, name, genre
Shows: showid, show_bandid, date, venue
Fans: fanid, name, birthday

. ,
* Fans who like ‘slipknot BandFans: bf bandid, bf fanid

 Solution: disambiguate which table we are referring to

Declare ‘f’ and ‘b’ as aliases for
fans and bands

SELECT Hameﬂf.n}M
FROM fans f Ms ON bf fanid = fanid

JOIN bands b-on bf bandid = bandid
WHERE name-b.name = ‘slipknot’

Poll: SQL Comprehension

* Fill in the blank to complete this query to “find shows by slipknot
after Jan 1 2022”? (Assume syntax for dates is correct)

SELECT date, venue FROM WHERE name = ‘slipknot’
AND date > ‘1/1/2022’

show, bands
shows JOIN bands ON showid = show_bandid

o| o[»

shows JOIN bands ON bandid = show_bandid :
Bands: bandid, name, genre

shows JOIN bands ON bandid = showid Shows: showid, show_bandid, date, venue
Fans: fanid, name, birthday
BandFans: bf bandid, bf _fanid

https://clicker.mit.edu/6.5079/

Aggregation
* Find the number of fans of each band

SELECT bands.name,count(*)
FROM bands JOIN bandfans ON bandid=bf bandid
GROUP BY bands.name

 What about bands with O fans?

Left Join?

* T1 LEFT JOIN T2 ON pred produces all rows in T1 x T2 that satisfy pred, plus all
rows in T1 that don’t join with any row in T2

* For those rows, fields of T2 are NULL

Example:

SELECT bands.name, MAX(bf_fanid) P
slipknot 1 1

FROM bands LEFT JOIN bandfans limp bizkit 5 > 5

ON bandid=bf bandid mariah carey 3 2 3

GROUP BY bands.name
name WA B

Can also use “RIGHT JOIN” and “OUTER SlipKno 1
limp bizkit 3

JOIN” to get all rows of T2 or all rows of
both T1 and T2 mariah carey NULL

Substituting for NULLs
SELECT bands.name, MAX(bf_fanid) mm

FROM bands LEFT JOIN bandfans slipknot 1
ON bandid=bf_bandid . o
GROUP BY bands.name LRI 3

mariah carey NULL

e What if | don’t want the NULL value?
 Use COALESCE

SELECT bands.name, COALESCE(MAX(bf_fanid),-1) (name |[mMAX

FROM bands LEFT JOIN bandfans slipknot 1
ON bandid=bf_bandid . o
GROUP BY bands.name LRI 3

mariah carey -1

COUNT on NULLs

* NULLs are very confusing in SQL

Example:
SELECT bands.name, COUNT(*) ﬁ_
slipknot 1 1
FROM bands LEFT JOIN bandfans imp bizkit 2 5 5
ON bandid=bf_bandid mariah carey 3 2 3
GROUP BY bands.name hame | COUNT |
slipknot 1
limp bizkit 2

mariah carey 1 Not what we wanted!

Solution

* NULLs are very confusing in SQL

Example:
SELECT bands.name, COUNT(bf_bandid)ﬁ_
slipknot 1 1
FROM bands LEFT JOIN bandfans limp bizkit 2 > 2
ON bandid=bf bandid mariah carey 3 2 3
GROUP BY bands.name hame | COUNT |
slipknot 1
limp bizkit 2

COUNT(*) counts all rows including NULLs, COUNT(col) only

)) mariah care 0
counts rows with non-null values in col y

Self Joins

* Fans who like ‘slipknot’ and ‘limp bizkit’

SELECT f.name

FROM fans f JOIN bandfans ON bf_fanid = fanid

JOIN bands b on bf _bandid = bandid

WHERE b.name = 'slipknot' AND b.name = 'limp bizkit'

Doesn’t work!

OR b.name = ‘limp bizkit’?

Also doesn’t work!

Self Joins

* Fans who like ‘slipknot’ and ‘limp bizkit’

* Need to build two tables, one of ‘slipknot’ fans and
one of ‘limp bizkit’ fans, and intersect them

SELECT fl.name BandFans \ []

FROM fans f1 JOIN bandfans bfl ON bf fanid = fanid ik
JOIN bands b1 on bf bandid = bandid

Bands b1 fl.fanid =

JOIN fans f2 ON f1.fanid = f2.fanid f2.fanid
JOIN bandfans bf2 ON bf2.bf _fanid = f2.fanid N
JOIN bands b2 ON b2.bandid = bf2.bf_bandid \
WHERE bl.name = 'slipknot' AND b2.name = 'limp bizkit' BandFans N

bf2

>

Bands b2

Nested Queries
SELECT fansl.name

FRO Vi (Every query is a relation
SELECT fanid, f.name (table)

FROM fans f JOIN bandfans ON bf fanid = fanid Generally anywhere you can

use a table, you can use a

JOIN bands b ON bf bandid = bandid query!
WHERE b.name ='slipknot’) AS fans1,
JOIN (

SELECT fanid, f.name

FROM fans f JOIN bandfans ON bf fanid = fanid
JOIN bands b ON bf bandid = bandid

WHERE b.name ='limp bizkit’) AS fans2

ON fansl.fanid = fans2.fanid

Simplify with Common Table Expressions
(CTEs)

WITH fans1 AS
(SELECT fanid, f.name CTEs work better than nested
FROM fans f JOIN bandfans ON bf_fanid = fanid expressions when the CTE
JOIN bands b ON bf bandid = bandid needs to be referenced in
WHERE b.name = 'slipknot'), multiple places

fans2 AS

(SELECT fanid, f.name

FROM fans f JOIN bandfans ON bf_fanid = fanid
JOIN bands b ON bf bandid = bandid

WHERE b.name ='limp bizkit')

SELECT fansl.name
FROM fansl JOIN fans2 ON fansl.fanid = fans2.fanid

Question

* Write a SQL query to find all the bands who have fans who are fans of

‘limp bizkit’
* |le.:
e Mary is a fan of limp bizkit and korn Bands: bandid, name, genre
..))) Shows: showid, show_bandid, date, venue
e Tim is a fan of creed and justin Bieber Fans: fanid, name, birthday
* Sam is a fan of limp bizkit and nickelback BandFans: bf_bandid, bf_fanid

Janelle is a fan of nickelback and slipknot

Should return korn and nickelback

oo Jume [i
WITH Ib_fans AS

(SELECT bf_fanid fanid 1 mary 1
FROM bandfans 2 tim 3
JOIN bands ON bandid = bf bandid
WHERE bands.name = 'limp bizkit' 3 sam
) _fans
SELECT bands.name & Janelle
FROM bandfans
JOIN |Ib_fans ON bf_fanid = fanid : Need to eliminate duplicates
JOIN bands ON bf_bandid = bandid bf_bandid Filter out limp bizkit
2 1
CON O
limp bizkit 1 slipknot 5 2
korn 2 limp bizkit 6 2
limp bizkit 3 korn 2 3
nickelback 4 nickelback + —— 4 3
5 creed 1 4
6 Justin bieber 4 4

Solution

WITH Ib_fans AS
(SELECT bf_fanid fanid
FROM bandfans
JOIN bands ON bandid = bf _bandid
WHERE bands.name = 'limp bizkit'
)
SELECT DISTINCT bands.name
FROM bandfans
JOIN Ib_fans ON bf_fanid = fanid
JOIN bands ON bf_bandid = bandid
WHERE bands.name !='limp bizkit'

Recursive Queries

* Suppose we want to find all bands connected to a fan who likes ‘limp
bizkit’? -

mary '

N

A: korn, nickelback, slipknot

limp
bizkit

janelle

Justin

el bieber

back

Challenge: each successive join follows
one set of edges. Size of graph is
unbounded!

Recursive Queries

* Recursive WITH clause can join with itself
* Example: define a table t with one column n, iteratively join with with itself

WITH RECURSIVE t(n) AS n I “ I n
1 1 1 1 1

(VALUES (1) “base case”

UNION = Em Bm E
SELECT n+1 Run repeatedly until no change

FROM t WHERE n <100

) 4 4

SELECT sum(n) FROM t; 5

Recursive Queries

* Suppose we want to find all bands connected to a fan who likes ‘limp

bizkit’?

WITH recursive Ib_fan_bands as (
SELECT bf_fanid, bf bandid
FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands
ON (Ib_fan_bands.bf fanid = bandfans.bf fanid
OR Ib_fan_bands.bf bandid = bandfans.bf bandid)
)
SELECT distinct name FROM Ib_fan_bands
JOIN bands ON bf_bandid = bandid
WHERE name !="limp bizkit'

Tricky — add new fans of
bands we already found
and new bands liked by
fans we already found

3

N O

1
2

WITH recursive Ib_fan_bands as (

Recursion Example SELECT bf_fanid, bf_bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'

* Limp bizkit is band 2 UNION

bf_bandid m
2 1

SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands
ON (Ib_fan_bands.bf fanid = bandfans.bf fanid
OR Ib_fan_bands.bf bandid = bandfans.bf _bandid))

Base case

bf _bandid | bf_fanid

2 1
2 3

WITH recursive Ib_fan_bands as (
Recu rsion Example SELECT bf_fanid, bf bandid
FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
* Limp bizkit is band 2 UNION
SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands

bf_bandid m ON (Ib_fan_bands.bf_fanid = bandfans.bf_fanid
2 1

OR Ib_fan_bands.bf bandid = bandfans.bf _bandid))

3 1
3 Iter 1
5 2 bof bandid | bf_fanid bf _bandid | bf_fanid
6 2 2 1
2 3 4 2 3 2 3

WITH recursive Ib_fan_bands as (
Recu rsion Example SELECT bf_fanid, bf bandid
FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
* Limp bizkit is band 2 UNION
SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands

bf_bandid m ON (Ib_fan_bands.bf_fanid = bandfans.bf_fanid
2 1

OR Ib_fan_bands.bf bandid = bandfans.bf _bandid))

3 1
3 Iter 1
5 2 bof bandid | bf_fanid bf _bandid | bf_fanid
6 2 2 1
2 3 4 2 3 2 3

Recursion Example

* Limp bizkit is band 2

bf_bandid m Base case

already got
2 1 these rows
3 1

Base case

5
6
: 3
4 3
1 4

WITH recursive Ib_fan_bands as (
SELECT bf_fanid, bf bandid

FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands
ON (Ib_fan_bands.bf fanid = bandfans.bf fanid
OR Ib_fan_bands.bf bandid = bandfans.bf _bandid))

Ilter 1

bf _bandid | bf_fanid bf _bandid | bf_fanid
2 1 2 1

2 3
3 1
4 3

WITH recursive Ib_fan_bands as (
Recu rsion Example SELECT bf_fanid, bf bandid
FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
* Limp bizkit is band 2 UNION
SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands

bf bandid m Iter 1 already _ _
- got these fans ON (Ib_fan_bands.bf fanid = bandfans.bf_fanid
2 1

OR Ib_fan_bands.bf bandid = bandfans.bf _bandid))

3 1 Base case lter 1 Iter 2

5 2 bf_fanid bf_bandid
6 2 2 1 2 1 2 1

2 3 “ 2 3 2 3 2 3

4 3 3 1 3 1

1 4 4 3 4 3

WITH recursive Ib_fan_bands as (
Recu rsion Example SELECT bf_fanid, bf bandid
FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
* Limp bizkit is band 2 UNION
SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands

bf_bandid m ON (Ib_fan_bands.bf_fanid = bandfans.bf_fanid
2 1

OR Ib_fan_bands.bf bandid = bandfans.bf _bandid))

3 - Base case lter 1 Iter 2

5 2 bf_bandid | bf_fanid
6 2 2 1 2 1 2 1

2 2 3 2 3 2 3

4 3 3 1 3 1

1 N 4 3 4 3

4 —

One new fan found

WITH recursive Ib_fan_bands as (
Recu rsion Example SELECT bf_fanid, bf bandid
FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
* Limp bizkit is band 2 UNION
SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands

bf_bandid m ON (Ib_fan_bands.bf_fanid = bandfans.bf_fanid
2 1

OR Ib_fan_bands.bf bandid = bandfans.bf _bandid))

3 1
Base case lter 1 Iter 2
5 2 bf_bandid | bf_fanid bf_bandid | bf_fanid bf_bandid | bf_fanid
6 2 2 1 2 1 2 1
2 2 3 2 3 2 3

WITH recursive Ib_fan_bands as (
Recu rsion Example SELECT bf_fanid, bf bandid
FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
* Limp bizkit is band 2 UNION
SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands

bf_bandid m ON (Ib_fan_bands.bf_fanid = bandfans.bf_fanid
2 1

OR Ib_fan_bands.bf bandid = bandfans.bf _bandid))

3 1 Do Iter 2 Iter 3

5 2 : bf_bandid
6 2 2 1

2 3 2 3

4 3 3 1

1 4 0

ne new band found 4 3 4 3
4 4 ”4 4 4

Recursion Example

* Limp bizkit is band 2

At this point all bands
have been found!
Recursion stops when no
new records found.

bf_bandid m
2 1

WITH recursive Ib_fan_bands as (
SELECT bf_fanid, bf bandid
FROM bandfans
JOIN bands on bf_bandid = bandid
WHERE bands.name = 'limp bizkit'
UNION
SELECT bandfans.bf fanid, bandfans.bf bandid
FROM bandfans JOIN |b_fan_bands
ON (Ib_fan_bands.bf fanid = bandfans.bf fanid
OR Ib_fan_bands.bf bandid = bandfans.bf _bandid))

3 1
5 2
6 2
2 3
4 3
1 4
4 4

Iter 3
bf_bandid 2 1
2 3
3 1
4 3
4 4

Take a Break

R mmE ’ e

\BREAKSTIMESS

N "™ i
oy
A

Database Tuning Primer

* Sometimes queries don’t run as fast as you would like
* Need to “tune” the database to run faster

* Unlike SQL, most tuning is very specific to the database you are using

* Many different databases out there, e.g., MySQL, Postgres, Oracle, SQLite,
SQLServer (aka AzureDB), Redshift, Snowflake, etc

* Before we explore some of the most common ways to tune, let’s
understand why a query may be slow

If you want to understand this in more detail, take 6.814/6.830!

Analytics vs Transactions

* Analytics is more typical of data science
e E.g., dashboards or ad-hoc queries looking at trends and aggregates
* Queries often read a significant amount of data (> 1% of DB?)
» Updates are infrequent / batch

* Focus is on minimizing the amount of data we need to read, and ensuring sufficient
memory/resources for expensive operations like sorts & joins

Focus in
this class

* Transactions are common in websites, other online applications
* Create, Read, Update, Delete (CRUD) workload
* Less complex queries (often “key/value” is sufficient)
* Requires mechanisms to prevent concurrent updates to same data
* Focus is on eliminating contention in these mechanisms, ensuring queries are indexed

Where Does Time Go?

* In analytics applications, CPU + I/O dominate

e CPU: instructions to compute results
* Most typically the time to join tables

* |/O: transferring data from disk

* Most typically reading data from tables or moving data to / from memory
when results don’t fit into RAM

Example

* Joining a1 GB table T to a 100 MB table R
» 10 Bytes / record (so T = 100M records, R = 10M records)
* System can process 100M records / sec

* Disk can read 100 MB/sec SEE L Join
« 200 MB of memory ‘
Hash Table on R

join attr

* Executing join:
* Load R into a hash table (1 sec 1/O + 0.1 sec to process 10M records)

* Scan through T, looking up each record in hash table (10 sec I/O, + 1 sec to process
100M records)

e Total time 12.1 sec

Tuning Goal

* Reduce the number of and size of records read and processed

* Ensure that we have sufficient memory for joins and other operations

* If neither join result can fit into memory system falls back on much slower
implementations that shuffle data to / from disk

 Surprisingly, database systems still answer queries when tables are larger
than memory!

* Fall back on “external” implementations

Bandfans example

» Created a larger fake version of bandfans
e 1M likes
» 800 fans
e 100K bands

Understanding Database Plans

* Most database systems provide an “explain” .
. This query takes 80ms to execute
command that shows how it executes a query ot siow, but this isn’t a large DB, and

EXPLAIN SELECT cou nt(*) could be painful if we have to run many
FROM bandfans JOIN bands ON bf bandid = bandid
WHERE name = 'limp bizkit'

Example: POSTGRES

Aggregate (cost=18210.82..18210.83 rows=1 width=8)

-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf bandid = bands.bandid)

-> Seqg Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seqg Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Parse tree
Read bottom up

Understanding Database Plans

* Most database systems provide an “explain”
command that shows how it executes a query
EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid

WHERE name = 'limp bizkit' Scan
Bands (name =
Example: POSTGRES ‘limp bizkit’)

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)
Hash Cond: (bandfans.bf bandid = bands.bandid)
-> Seqg Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)
-> Seq Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

* Most database systems provide an “explain”
command that shows how it executes a query
EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid

WHERE name = 'limp bizkit' Scan
Bands (name = Estimated time and number of rows
Exa m p l e. POSTG R ES QRN LGOI Time units are arbitrary

Two numbers: time to produce 1st record
Aggregate (cost=18210.82..18210.83 rows=1 width=8) . time to produce last record
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf bandid = bands.bandid) /1€retimeisacombination of CPU+1/O

-> Seqg Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)

-> Hash (cost=4.59..4.59 rows=1 width=4)

-> Seqg Scan on bands |(cost=0.00..4.59 rows=1 width=4)

Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

* Most database systems provide an “explain”
command that shows how it executes a query
EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid

WHERE name = 'limp bizkit' Scan
Bands (name =
Example: POSTGRES ‘limp bizkit’)

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join cost=4.60..18204.60] rows=2489 width=0)
Hash Cond: (bandfans.bf bandid = bands.bandid) Most expensive steps
-> Seqg Scan on bandfans cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)
-> Seqg Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

* Most database systems provide an “explain”

command that shows how it executes a query
EXPLAIN SELECT count(*)

FROM bandfans JOIN bands ON bf_bandid = bandid

WHERE name = 'limp bizkit' Scan
Bands (name =
Example: POSTGRES ‘limp bizkit’)

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)
Hash Cond: (bandfans.bf bandid = bands.bandid)
-> _Seqg Scan on bandfans (cost=0,00,,14425.08 rows=1000008 width=4)
-> | Hash (cost=4.59..4.59 rows=1 width=4)
-> Seqg Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

Scan
* Most database systems provide an “explain”

command that shows how it executes a query
EXPLAIN SELECT count(*)
FROM bandfans JOIN bands ON bf_bandid = bandid

WHERE name = 'limp bizkit' Scan
Bands (name =
Example: POSTGRES ‘limp bizkit’)

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> Hash Join (cost=4.60..18204.60 rows=2489 width=0)
Hash Cond: (bandfans.bf bandid = bands.bandid)

-> | Seg Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)

-> Hash (cost=4.59..4.59 rows=1 width=4)
-> Seqg Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

Understanding Database Plans

Scan

* Most database systems provide an “explain” FEEUEELE

command that shows how it executes a query
EXPLAIN SELECT count(*)

FROM bandfans JOIN bands ON bf_bandid = bandid

WHERE name = 'limp bizkit' Scan
Bands (name =
Example: POSTGRES ‘limp bizkit’)

Aggregate (cost=18210.82..18210.83 rows=1 width=8)
-> | Hash Join (cost=4.60..18204.60 rows=2489 width=0)

Hash Cond: (bandfans.bf bandid = bands.bandid)
-> Seqg Scan on bandfans (cost=0.00..14425.08 rows=1000008 width=4)
-> Hash (cost=4.59..4.59 rows=1 width=4)
-> Seqg Scan on bands (cost=0.00..4.59 rows=1 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

How Can We Make This Faster?

e Goal: Reduce amount of data read

* What about just scanning bands rows that correspond to ‘limp bizkit’?
* Index on bands.name

* Could we just scan the bandfans rows that correspond to ‘limp bizkit’?
* Index on bandfans.bandid

Creating An Index

 CREATE INDEX band_name ON bands(name);
 CREATE INDEX bf _index ON bandfans(bf bandid);

B-Tree Index Example (B=2)

Hean File” 12 3 4 5 6 7 8
P korn limp slip justin k.d. lilnas x beatles mariah
Unordered records bizkit knot bieber lang carey

B-Tree Index Example (B=2)

<= > korn
korn
” - 1] 2| 3| 4 5] 6] 7] 8|
Heap File korn limp slip justin k.d. lilnas x beatles mariah
Unordered records bizkit ~ knot bieber lang carey

"Heap File”
Unordered records

B-Tree Index Example (B=2)

<= > korn
korn
<= > <= > limp
justin justin limp bizkit
bieber bieber bizkit
1] 2| 3| 4 5] 6l 7] 8|
korn limp slip justin k.d. lilnas x beatles mariah

bizkit knot bieber lang carey

B-Tree Index Example (B=2)

<=
korn
<= >
justin justin
bieber bieber
beatles justin k.d. korn
bieber lang
"Heap File” Ll 2.' 3! .4| .
korn limp slip justin
Unordered records bizkit knot bieber

> korn

——

<= > limp

limp bizkit

bizkit

¥ B—N

lilnas limp mariah slip
X bizkit carey knot
5] 6] 7] 8|
k.d. lilnas x beatles mariah

lang carey

B-Tree Index Example (B=2)

Can lookup a particular record in

== > i log(N) access instead of scanning
korn .
/ \ whole heap file
D = > N=# of records; base of log is B
justin justin limp bizkit
bieber bieber bizkit
beatles justin k.d. korn lilnas limp mariah slip

bieber lang X bizkit
Heap File korn limp slip justin k.d. lilnas x beatles

Unordered records bizkit knot bieber lang

knot

mariah
carey

B-Tree Index Example (B=2)

Find “slipknot”

<= > korn
korn \.\
—
<= > <= > limp
justin justin limp bizkit
bieber bieber bizkit
— ~ ¥
beatles justin k.d. korn lil nas limp

bieber lang X bizkit
Heap File korn limp slip justin k.d. lilnas x beatles

Unordered records bizkit kn& bieber lang

Can lookup a particular record in
log(N) access instead of scanning
whole heap file

N=# of records; base of logis B

mariah slip

knot

mariah
carey

Pros and Cons of Indexing

* Pros:
* Reduces time to lookup specific records

* Cons:
* Uses space
* |Increases insert time
* If heap file isn’t ordered on index, may not speed up I/0O

B-Tree Index Example (B=2)

Find name > ‘lil nas x’ “Random” /O — jumping around on disk
<= > korn Is 10-100x slower than reading in order
korn

— T
<= > <= > limp
justin justin limp bizkit
bieber bieber bizkit
— ~ ¥ N
beatles justin k.d. korn lilnas limp mariah slip
bieber lang X bizkit carey knot
- 1 2 3 4 5 6 7 8
“Heap File k<|)rn Iirlnp sI!p julstin k.ld. Iillnas X bl:atles mlariah

Unordered records bi“ k@ bieber lang ca“

“Clustering” a B-Tree

* Records are in order of index

How this is done is DB specific.

 Alternately called a “primary index”

* Can only have one such index P
— T Find name > ‘lil nas x’
<= > <= > limp
justin justin limp bizkit
bieber bieber bizkit
— ~ 2 E—
beatles justin k.d. korn lilnas limp mariah slip
bieber lang bizkit carey knot
7 | 4| 5 I 1] 6 |
beatles justin korn lil nas x I| marlah sI|p knot

bieber Iang b C

Index-Only Scans

Don’t need to go to

Find name > “lil nas x’ heap file if we just

<= > korn want the artist names
korn \.\)
<= > <= > limp
justin justin limp bizkit
bieber bieber bizkit
¥
beatles ﬁ k.d.\A korn lil ng Iimp‘ m slip ‘ .
i —> — .. > Next block pointers
bieber lang X bizkit carey knot
” S 1] 2| 3| 4 5] 6] 7] 8|
Heap File korn limp slip justin k.d. lilnas x beatles mariah
Unordered records bizkit knot bieber lang carey

Postgres

create index bf_index on bandfans(bf_bandid);

EXPLAIN SELECT count(*)

FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit’

Aggregate (cost=2162.44..2162.45 rows=1 width=8)

_> Nested Loop (cost=0.42..2162.36 rows=30 width=0) Find limp bizkit
record by scanning

bands

-> Seq Scan on bands (cost=0.00..1918.84 rows=3 width=4)

Filter: ((name)::text = 'limp bizkit'::text)

-> 1Index Only Scan using bf index on bandfans (cost=0.42..56.17 rows=2500 width=4)
Index Cond: (bf bandid = bands.bandid)

Postgres

create index bf _index on bandfans(bf_bandid); Estimated cost 2000 vs 12000
Actual 8ms vs 80ms

EXPLAIN SELECT count(*)

FROM bandfans JOIN bands ON bf_bandid = bandid
WHERE name = 'limp bizkit’

Aggregate (cost=2162.44..2162.45 rows=1 width=8) For each limp bizkit

-> | Nested Loop (cost=0.42..2162.36 rows=30 width=0) record (3 estimated)

-> Seq Scan on bands (cost=0.00..1918.84 rows=3 width=4)
Filter: ((name)::text = 'limp bizkit'::text)

-> | Index Only Scanjusing bf index on bandfans (cost=0.42..56.17 rows=2500 width=4)

Index Cond: (bf bandid = bands.bandid)

Do an index only scan to count

Don’t need to go to records at all since index keys have bandid the number of fans

Postgres

create index bf_index on bandfans(bf_bandid); Estimated cost 260 vs 2000 vs 12000
create index band_name on bands(name); Actual .5 ms vs 8 ms vs 80 ms

160 dup!
EXPLAIN SELECT count(*) Hopeedip

FROM bandfans JOIN bands ON bf bandid = bandid
WHERE name = 'limp bizkit’

, Use index to directly
Aggregate (cost=259.94..259.95 rows=1 width=8)

lookup ‘limp bizket’
-> Nested Loop (cost=0.72..259.87 rows=30 width=0)

->] Index Scan using band name on bands (cost=0.29..16.34 rows=3 width=4)
Index Cond: ((name)::text = "limp bizkit'::text)
->"TINaeX ONnly ocan using Dbr IndexX on panarans (COBL-0.282..00.L7 Towa=2500 width=4)

Index Cond: (bf bandid = bands.bandid)

Today’s Reading

* Critique of SQL

* Some specific complaints about, e.g.,
* json and windowing support
* Verbose join syntax
* Pitfalls around, e.g., subqueries

Against SQL

Published 2021-07-09

* More generally:

* Lack of standards for extensions, e.g., new types or procedural support

* New features, e.g., json and windows, are added via new syntax, rather than
libraries as in most languages
* Massive spec, very complex to support, huge burden on developers

Recap: Some Common Data Access
Themes

* SQL provides a powerful set-oriented way to get the data you want
* Joins are the crux of data access and primary performance concern

* To speed up queries, “read what you need”
* Indexing & Index-only Scans
* Predicate pushdown
* E.g., using an index to find ‘limp bizkit’ records
e Column-orientation

* More on this later — we can physically organize data to avoid reading parts of records we
don’t need

Next Time

e Pandas / Python
* When to use SQL vs Python

