Query Optimization

Lab 2 due Friday
Signup sheets for final projects
Java tutorial on Monday

Agenda:
Finish discussion of join algos

Query Optimization

Simple hash:

\[i = 0; \]
\[\text{pass size} = v \text{ (e.g., } v = 1) \] // if \(P \) partitions, hash into \([1 \ldots n]\), e.g., \(h(x) = x \mod P \) for partition \(i \) (on hash values in range range \([v^i, v^{i+1})\))

scan \(S \), hash, if in partition, insert into hash table
otherwise, write back out

scan \(R \), hash, if in partition, lookup in hash table, output matches
otherwise, write back out

repeat with reduced \(R \) and \(S \), in round \(i+1 \) ; example:

\(R = 1, 4, 3, 6, 9, 14, 1, 7, 11 \)
\(S = 2, 3, 7, 12, 9, 8, 4, 15, 6 \)
\(h(x) = x \mod 3 \), pass size = 1

Pass 1: \(h(x) \) in range \([0..1)\)
\(R \) hash table: 3 6 9
remainder: 1 4 14 1 7 11
\(S \) probe with: 3 12 9 15 6 \(\rightarrow \) 3 6 9 join
remainder: 2 7 8 4

Pass 2: \(h(x) \) in range \([1..2)\)
\(R \) hash table: 1 4 1 7
remainder: 14 11
\(S \) probe with: 7 4 \(\rightarrow \) 7 4 join
remainder: 2 8

Pass 2: \(h(x) \) in range \([1..2)\)
\(R \) hash table: 14 11
\(S \) probe with: 2 8 \(\rightarrow \) no join

Somewhat complex to analyze:

Read \(R, S \) (seq)
Amount we write depends on number of passes. In pass 1, we write:

\((p-1)/p|R|, (p-1)/p|S| \text{ (seq)}\)

We then read all this data back in (seq), and in pass 2, we write:

\((p-2)/p|R|, (p-2)/p|S| \text{ (seq)}\)

And so on...

So for 2 passes, we get:

Read \(R+S \), Write \((1/2)(|R|+|S|), \text{ Read } (1/2)(|R|+|S|) \) and are done.
Total IO is \(2(|R|+|S|)\)

For 3 passes, total IO is \(3(|R|+|S|)\)
For \(n \) passes, total IO is \(n(|R|+|S|)\)

Is this better than blocked hash?

(Depends on relative size of \(|R| \text{ and } ISI\) – if \(ISI \) is much smaller than \(R \), blocked has will be better since it doesn't rewrite \(R \))

Grace hash:

choose \(P \) partitions, with one page per partition
hash \(R \) into partitions, flushing pages as they fill
hash \(S \) into partitions, flushing pages as they fill
for each partition \(p \)
build a hash table \(T \) on \(R \) tuples in \(p \)
lookup each \(s \) in \(T \) outputting matches

example:

\(R = 1, 4, 3, 6, 9, 14, 1, 7, 11 \)
\(S = 2, 3, 7, 12, 9, 8, 4, 15, 6 \)
\[
\begin{align*}
 h(x) &= x \mod 3 \\
 R_0 &= \{3, 6, 9\} \\
 R_1 &= \{1, 4, 7\} \\
 R_2 &= \{14, 11\} \\
 S_0 &= \{3, 12, 9, 15, 6\} \\
 S_1 &= \{7, 4\} \\
 S_2 &= \{2, 8\}
\end{align*}
\]

Now, join \(R_0 \) with \(S_0 \), \(R_1 \) with \(S_1 \), \(R_2 \) with \(S_2 \)

Because we are using the same hash function for \(R \) and \(S \) we can guarantee that the only tuples that will join with partition \(R_i \) are those in \(S_i \).

How do I pick the partition size?

(Assume uniform distribution of tuples to partitions, make each partition equal to \(M \) pages (minus a couple for active pages of \(S \) being read.)

\[
\sqrt{|R_i|} < M
\]

partition size \(= M > \sqrt{|R_i|} \)

\#parts \(P = \frac{|R_i|}{M} \leq |R_i| / \sqrt{|R_i|} = \sqrt{|R_i|} \)

\(h(v) \rightarrow [1,k] \)

each covers \(k/P \) hash values

Need \(\sqrt{|R_i|} \) pages of memory b/c we need at least one page per partition as we write out (note that simple hash doesn't have this requirement)

I/O:

read \(R + S \) (seq)
write \(R + S \) (semi-random)
read \(R + S \) (seq)
also \(3(|R_i| + |S_i|) \) I/Os

What's hard about this?

Possible that some partitions will overflow -- e.g., if many duplicate values

What do they say we should do?

(Leave some more slop (assign fewer values to each partition) by assuming that each record takes a few more bytes to store in hash table.)
Split partitions that overflow

When does grace outperform simple?

(When there are many partitions, since we avoid the cost of re-reading tuples from disk in building partitions)

When does simple outperform grace?

(When there are few partitions, since grace re-reads hash tables from disk)

So what does Hybrid do?

\(M = \sqrt{|R_i|} + E \)

Make first partition of size \(E \), do it on the fly.
Do remaining partitions as in grace.

Why does grace/hybrid outperform sort-merge?

CPU Costs!
I/O costs are comparable
690 / 1000 seconds in sort merge are due to the costs of sorting
17.4 in the case of CPU for grace/hybrid!

Will this still be true today?

(Yes)
Show example queries in Postgres.

Selinger

Famous paper. Pat Selinger was one of the early System R researchers; still active today.

Lays the foundation for modern query optimization. Some things are weak but have since been improved upon.

Idea behind query optimization:
(Find query plan of minimum cost)

How to do this?
(Need a way to measure cost of a plan (a cost model))

Single table operations

How do I compute the cost of a particular predicate? (Compute the size of its input)

How do I estimate the size of an operators input? (From stats over base tables, or using "selectivity" - fraction F of tuples -- it's children passed)

How does Selinger estimate size of base tables? Using some (simple) statistics:
- NCARD(R) - "relation cardinality" -- number of tuples in R
- TCARD(R) - # pages R occupies
- ICARD(I) - keys (distinct values) in index I
- NINDX(I) - pages occupied by index I
- min and max keys in indexes

(have to realize that the complexity of statistics you could keep in 1978 was pretty simple!)

How does Selinger estimate selectivity F:
col = val
F = 1/ICARD() (if index available)
F = 1/10 (where does this come from?)
col > val
(max key - value) / (max key - min key) (if index available)
1/3 o.w.
col1 = col2
1/MAX(ICARD(col1, col2))
1/10 o.w.

Example: suppose emp has 1000 records, dept has 10 records
Total records is 1000 * 10, selectivity is 1/1000, so 10 tuples expected to pass join
(note that this is wrong if doing key/fk join on emp.did = dept.did, which will produce 1000 results!)

Note that selectivity is defined relative to size of cross product for joins!
p1 and p2
F1 * F2
p1 or p2
1 - (1-F1) * (1-F2)

Estimating the cost of single table operations

How is cost defined? (in terms of number of pages read + a weighted factor of # predicate evals)

(W is CPU cost per predicate eval in terms of fraction of a time to read a page)

Range scan:
Clustered index, boolean factors: F(preds) * (NINDEX + TCARD) + W*(tuples read)
Unclustered index, boolean factors: F(preds) * (NINDEX + NCARD) + W*(tuples read)
unless all pages fit in buffer -- why?
Seq (segment) scan: TCARD + W*(NCARD)

Is an index always better than a segment scan? (no)

Multi-table operations
How do i compute the cost of a particular join?

Algorithms:

\[
NL(A,B,pred) = \text{Cost}(A) + \text{NCARD}(A) \times \text{Cost}(B)
\]

Note that inner is always a relation; cost to access depends on access methods for B; e.g.,

- w/ index -- 1 + 1 + W
- w/out index -- TCARD(B) + W*NCARD(B)

Cost(A) is cost of subtree under outer

How to estimate \# NCARD(outer)? product of F factors of children, cardinalities of children

Example:

\[
\text{Merge _ Join}_x(P;A,B), \text{equality pred}
\]

\[
\text{Cost}(A) + \text{Cost}(B) + \text{sort cost}
\]

(Saw cost models for these last time)

At time of paper, didn't believe hashing was a good idea

Overall plan cost is just sum of costs of all access methods and join operators

Then, need a way to enumerate plans

Iterate over plans, pick one of minimum cost

Problem:

Huge number of plans. Example:

suppose I am joining three relations, A, B, C

Can order them as:

- (AB)C
- A(BC)
- (AC)B
- A(CB)
- (BA)C
- B(AC)
- (CA)B
- (CB)A
- C(BA)

Is C(AB) different from (CA)B?
Is (AB)C different from C(AB)?
yes, inner vs. outer

n! strings * # of parenthetizations

How many parenthetizations are there?

Consider N=1,2,3,4:

\[
A: \ (A) \\
AB: \ ((A)(B)) \\
ABC: \ ((AB)(C)), \ (A(BC)) \\
ABCD: \ (((AB)(C))D), \ ((A(BC))D), \ ((AB)(CD)), \ (A((BC)D)), \ (A(B(CD)))
\]

The numbers of plans for N=1,2,3,4 are:

- plans(1) = 1
- plans(2) = 1
- plans(3) = 2
- plans(4) = 5

(Some of these plans Selinger wouldn't consider because they aren't left deep)

Generally, plans(N) = choose(2(N-1),(N-1))/(N)

* The Art of Computer Programming, Volume 4A, page 440-450

\[\Rightarrow n! \times \text{choose}(2(N-1),(N-1))/(N)\]
4 choose 2 / 3 == 6 / 3 = 2
6 * 2 == 12 for 3 relations

(study break -- postgres)

Ok, so what does Selinger do?

Push down selections and projections to leaves
Now left with a bunch of joins to order.

Selinger simplifies using 2 heuristics? What are they?
- only left deep: e.g., ABCD => ((AB)(C)(D)) show
- ignore cross products
 e.g., if A and B don't have a join predicate, doing consider joining them

still n! orderings. can we just enumerate all of them?

10! ~ 3million
20! ~ 2.4 * 10^18

so how do we get around this?

Estimate cost by dynamic programming:

idea: if I compute join (ABC)DE -- I can find the best way to combine ABC and then consider all the ways to combine that with DE.

I can remember the best way to compute (ABC), and then I don't have to re-evaluate it. Best way to do ABC may be ACB, BCA, etc -- doesn't matter for purposes of this decision.

algorithm: compute optimal way to generate every sub-join of size 1, size 2, ... n (in that order).

R <-- set of relations to join
for a in (1...|R|):
 for S in (all length a subsets of R):
 optjoin(S) = a join (S-a), where a is the single relation that minimizes:
 cost(optjoin(S-a)) + min cost to join (S-a) to a +
 min. access cost for a

example: ABCD

only look at NL join for this example

A = best way to access A (e.g., sequential scan, or predicate pushdown into index...)
B = " " " " B
C = " " " " C
D = " " " " D

(A,B) = AB or BA
(A,C) = AC or CA
(B,C) = BC or CB
(A,D)
(B,D)
(C,D)

(A,B,C) = remove A - compare A((B,C)) to ((B,C))A
remove B - compare ((A,C))B to B((A,C))
remove C - compare C((A,B)) to ((A,B))C

(A,C,D)
(A,B,D)
(B,C,D)

(A,B,C,D) = remove A - compare A((B,C,D)) to ((B,C,D))A
 ... remove B
 remove C
 remove D

Complexity:

number of subsets of size 1 * work per subset = W+
number of subsets of size 2 * W++
...
number of subsets of size n * W+

n + n + n ... n
1 2 3 n

number of subsets of set of size n = power set of n = 2^n
(string of length n, 0 if element is in, 1 if it is out; clearly, 2^n such strings)
(reduced an n! problem to a 2^n problem)

what's W? (at most n)

so actual cost is: 2^n * n

n=12 --> 48K vs 479M

So what's the deal with sort orders? Why do we keep interesting sort orders?

Selinger says: although there may be a 'best' way to compute ABC, there may also be ways that produce interesting orderings -- e.g., that make later joins cheaper or that avoid final sorts.

So we need to keep best way to compute ABC for different possible sort orders.

so we multiply by "k" -- the number of interesting orders

how are things different in the real world?
- real optimizers consider bushy plans (why?)
 - A
 - D B
 - C E

- selectivity estimation is much more complicated than selinger says and is very important.

how does selinger estimate the size of a join?
- selinger just uses rough heuristics for equality and range predicates.
 - what can go wrong?
 - consider ABCD
 - suppose sel (A join B) = .1
 - everything else is .01
 - If I don't leave A join B until last, I'm off by a factor of 10

 - how can we do a better job?
 - (multi-d) histograms, sampling, etc.
 - example: 1d hist

example: 2d hist