
6.5830 / 6.5831
Quiz 2 Review 🔍

November 27, 2023

Logistics

● What: Covers lectures 10 to 20 (inclusive)
● When: Wednesday during lecture (November 29, 2023 at 2:30 pm)
● Where: Lecture classroom (32-155)
● Length: 80 minutes
● How: Quiz will be on paper

● Open book/notes/laptop, but no Googling / LLMs please.
● Only class website is permitted.
● Email staff for special accommodation (6.5830-staff@mit.edu)

2

Topics

● Transactions
● Logging and recovery (ARIES)
● Parallel/distributed databases (analytics and transactions)
● Systems “potpourri”

○ High-performance transactional systems (H-Store / Calvin / Aurora)
○ Eventual consistency (DynamoDB)
○ Cluster computing (Spark)
○ Cloud analytics (Snowflake)

● Cardinality estimation

3

Transactions

● 🔑 Groups a sequence of operations into an all-or-nothing unit
○ A powerful abstraction!

● Desirable properties (ACID)
○ Atomicity: All or nothing
○ Consistency: Maintains application-specific invariants
○ Isolation: Transaction “appears” to run alone on the database
○ Durability: Committed transactions’ writes persist even if the system crashes

● Transactions can be aborted by the user or DBMS

4🔑 denotes a key idea

Transaction Isolation

● Want: Run transactions in parallel for performance reasons

● How to ensure “correctness”?

● 🔑 Create illusion of transactions running alone, one-by-one, on the database

5

Serializable

Serial

8

🔑

Not conflict serializable:

9

🔑

Problem: Cascading aborts

● If T1 aborts, T2, T3 and T4
also need to abort

● Solution: Just keep write
locks until the end!

10

T1 T2 T3 T4

WA

RA

RA

RA

ABORT

ABORT

ABORT

ABORT

Growing
phase

11

🔑

12

🔑

Example

● Permitted under strict 2PL but not rigorous 2PL:

13

T1: T2:

RA

WA

COMMIT

COMMIT

14

15

16

17

Preventing phantom reads

● Easy way: Acquire table locks
● But if we have a clustered index we don’t need to scan the whole table for the

range query. We can do better using “gap locks” / next key locking.
● Example:

○ DB Entries: 10, 11, 13, 20

○ T1: Scan entries > 18 → Also lock “gaps”, i.e. lock gap 14 - 20 and 20 -∞.
○ T2: Insert record 19 → Also needs to acquire the gap lock that T1 holds.
○ T1: Scan entries > 18 → No phantom read since T2 is waiting on the gap lock.

18

🔑

20

Locking Granularity / Intention Locks

🔑

21

🔑

22

23

🔑 Do not acquire read locks.

🔑 “Short” read locks.

🔑 No gap locks.

Topics

● Transactions
● Logging and recovery (ARIES)
● Parallel/distributed databases (analytics and transactions)
● Systems “potpourri”

○ High-performance transactional systems (H-Store / Calvin / Aurora)
○ Eventual consistency (DynamoDB)
○ Cluster computing (Spark)
○ Cloud analytics (Snowflake)

● Cardinality estimation

24

Assumptions about crash

● Assume any data in memory is gone
● Data on disk is preserved
● → Recovery algorithms depend on when your system flushes pages

25

26

Steal: Can write dirty pages to
disk before the txn commits.

Force: Force writes to disk on
txn commit. 🔑

In GoDB, we do
FORCE / NO STEAL
and assume DB
won’t crash between
FORCE and
COMMIT

27

🔑

🔑Write-ahead
log!

Simplistic protocol

● Normal execution: Physical write-
ahead-logging

● Recovery: Replay log from beginning.
We can recover the exact state at the
crash (physical logging)

28

Simplistic protocol: Problem #1

● We don’t want to REDO things that are already reflected on disk (i.e. do an
operation twice). That’s a problem for escrows (e.g. record += 1).

○ Easy: Just keep a pageLSN field in the page header that tells you the last LSN that modified
the page (at the time the page was flushed).

29

1. REDO

🔑 Skip if LSN <= pageLSN

Simplistic protocol: Problem #2

● We want to recover to a state from which the user can resume normal
operation (no pending transactions that were uncommitted at crash).

○ Easy: Just keep track of which transactions were not committed at crash and UNDO them.
Can undo them logically (makes our life easier).

30

1. REDO 2. UNDO 🔑

Simplistic protocol: Problem #3 (last one!)

● This is super slow! Imagine we need to replay a log containing months of
transactions.

● 🔑 Only the last couple of log entries really need to be REDOne and UNDOne
(with time pages get flushed & transactions commit)

31

1. REDO

🔑 Skip if LSN <= pageLSN

Simplistic protocol: Problem #3 (last one!)

● This is super slow! Image we need to replay a log containing months of
transactions.

● Only the last couple of log entries really need to be REDOne and UNDOne
● 🔑 For each dirty page in the buffer pool, we keep track which was the first

LSN that dirtied it. → For this page, we only need to REDO the log from there.

32

Simplistic protocol: Problem #3 (last one!)

● For each dirty page in the buffer pool, we keep track which was the first LSN
that dirtied it. → For this page, we only need to REDO the log from there.

○ But where to keep this “dirty page table”?
○ Persist: Lots of logging and we need to force these writes to disk.
○ Memory: It will be lost at crash, so we need to start scanning the log from beginning again to

build it.

○ 🔑 Solution: Checkpoints: Keep in memory but periodically write to disk.
○ You will need to scan some of the log to rebuild the dirty pages table, but not all of it!
○ At the same time you avoid doing a lot of forced writes!

33

Simplistic protocol: Problem #3 (last one!)

● What do we need to checkpoint to only re-scan some of the log?
○ Dirty page table
○ Transaction table

34

Simplistic protocol: Problem #3 (last one!)

● What do we need to checkpoint to only re-scan some of the log?
○ Dirty page table
○ Transaction table

35

“UNDO table” “REDO table”

Summary / ARIES

● Normal operation:
○ Physical write-ahead-logging
○ Include LSN of last update in page headers (pageLSN)
○ Keep track of active transactions (for UNDO) and LSNs that first dirtied a page (for REDO) →

checkpoint that periodically.

● Recovery:
○ Analysis phase: Start from last checkpoint in log and reconstruct transaction table and dirty

page table at time of crash.
○ REDO phase: Physically REDO log records that haven’t been flushed before crash. After that,

your system will be in the state at the crash.
○ UNDO phase: UNDO transactions that weren’t committed at the time of the crash (“losers”).

36

37

UNDO

● 🔑We need to log UNDOs
○ If we crash during recovery
○ If we crash while rolling back an aborted transaction
○ These log records are called Compensation Log Records (CLRs)

● Check where to start UNDO (lastLSN in Transaction Table) and UNDO each
update going backwards using the prevLSN field in log

38

UNDO

● 🔑We need to log UNDOs
○ If we crash during recovery
○ If we crash while rolling back an aborted transaction
○ These log records are called Compensation Log Records (CLRs)

● Check where to start UNDO (lastLSN in Transaction Table) and UNDO each
update going backwards using the prevLSN field in log

39

40

Topics

● Transactions
● Logging and recovery (ARIES)
● Parallel/distributed databases (analytics and transactions)
● Systems “potpourri”

○ High-performance transactional systems (H-Store / Calvin / Aurora)
○ Eventual consistency (DynamoDB)
○ Cluster computing (Spark)
○ Cloud analytics (Snowflake)

● Cardinality estimation

41

Distributed and Parallel Databases

● 🔑 Same semantics as a single-node ACID SQL database, but on multiple
cores/machines

● Distributed databases must deal with node failures

42

Ways to Partition the Data

● Round-robin
○ Perfect load-balancing (data-wise)
○ Often all nodes need to participate in a query

● Hash
○ Pretty good load balancing (unless many duplicates)
○ Bad at range analytical queries (cannot easily skip partitions)

● Range
○ Good at range / localized analytical queries
○ Can be bad at load-balancing (data skew)

43

Parallel Joins (Hash Partitioning and Equijoins)

● Partitioned on join attributes? Run join locally on each partition.

● Otherwise, two options (non-exhaustive):

● Re-partition (one or both tables): “shuffle join”
○ Each node transmits and receives (|T| / n) / n * (n - 1) bytes per repartitioned table

● Replicate table across all nodes
○ Each node transmits and receives (|T| / n) * (n - 1) bytes

44

Distributed Transactions: Two Phase Commit

● 🔑 Distributed algorithm used to make a commit/abort decision for multiple
“sites”

○ “Commit only if all participants agree to commit”

● Requires a coordinator

● Often considered a performance bottleneck

45

Two Phase Commit

46

Topics

● Transactions
● Logging and recovery (ARIES)
● Parallel/distributed databases (analytics and transactions)
● Systems “potpourri”

○ High-performance transactional systems (H-Store / Calvin / Aurora)
○ Eventual consistency (DynamoDB)
○ Cluster computing (Spark)
○ Cloud analytics (Snowflake)

● Cardinality estimation

47

High-Performance Transactions

● Running old code on new
hardware ⇏ speed-up

● New performance bottlenecks

● 2PC is slow

● Consider new architectures!

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden,
and Michael Stonebraker. OLTP through the looking
glass, and what we found there. SIGMOD 2008

H-Store

● Distributed in-memory DBMS
○ Often enough memory to store the entire dataset

● 🔑 Partition the data; single-thread per partition
○ Eliminate coordination overhead within a partition

● Stored-procedure transactions
○ Optimize partitioning for the workload
○ Avoid waiting for the client

● Weaknesses
○ Stored-procedure assumption
○ Multi-partition transactions?

49Diagrams courtesy of Prof. Andy Pavlo

“Classical” design

Thread-per-partition

Calvin

● Distributed DBMS

● 🔑 Deterministic execution
○ Avoid distributed coordination (2PC) during transaction execution by determining a non-

conflicting, deterministic execution order up front!
○ Ordering performed in batches

● Weaknesses
○ Need to know transactions & read/write sets up front
○ Stored-procedure assumption
○ If lot of contention (e.g. all txns contend for one record) you can only issue them one at a time

(no other way to avoid conflicts)

50

Topics

● Transactions
● Logging and recovery (ARIES)
● Parallel/distributed databases (analytics and transactions)
● Systems “potpourri”

○ High-performance transactional systems (H-Store / Calvin / Aurora)
○ Eventual consistency (DynamoDB)
○ Cluster computing (Spark)
○ Cloud analytics (Snowflake)

● Cardinality estimation

51

CAP theorem

● Consistency, availability, partition-tolerance: You can have 2, not all 3

● ACID has strong consistency but will appear down if machines go down or
network becomes partitioned

● Many systems choose availability over consistency (e.g. NoSQL)

52

🔑

Dynamo

● Availability
● Partitioning

○ for scaling
○ consistent hashing

● Replication
○ for fault tolerance and performance
○ ‘N’ successors in the ring stores the key

● Vector clocks for detecting conflicting writes

53

🔑

Vector Clock Updates

● Each coordinator maintains a version counter for each data item that
increments for every write it coordinates
● If a node stores m objects, it stores m vector clocks along with them
● Each vector clock has n entries, which denote the number of writes done by each of n

coordinators

● Clock for one data item A at coordinator i
○ before: 𝑉![1], …, 𝑉![i], …, 𝑉![n]
○ after: : 𝑉![1], …, 𝑽𝑨[i]+1, …, 𝑉![n]

54

🔑

Vector Clock

● Read - Read from the quorums
● E.g.: Read V1, V2, V3 - If one of these, say V1, is greater than the others for

every component, V1 is the latest value and we can reconcile based on
vector clocks

● What if they are incomparable? ---> i.e., can’t decide which is the latest
version of the data

○ V1 = [1, 1], V2 = [2, 0]
○ Return both data versions, and use application-specific reconciliation 🔑

55

Dynamo Question (2015)

V1 =< R1 : 0, R2 : 3, R3 : 2 >

V2 =< R1 : 1, R2 : 3, R3 : 2 >

V3 =< R1 : 0, R2 : 0, R3 : 3 >

56

A) The writer that produced V1 observed V2
B) The writer that produced V2 observed V1
C) V2 and V3 are :”concurrent writes” (cannot be
reconciled)

Which of the following statements are true?

Topics

● Transactions
● Logging and recovery (ARIES)
● Parallel/distributed databases (analytics and transactions)
● Systems “potpourri”

○ High-performance transactional systems (H-Store / Calvin / Aurora)
○ Eventual consistency (DynamoDB)
○ Cluster computing (Spark)
○ Cloud analytics (Snowflake)

● Cardinality estimation

57

Spark

● Distributed “dataflow” language
● Resilient Distributed Dataset (RDD) which you can

perform operations on
● Programs operate on partitions of data in parallel

58

Spark: Memory use

59

● Intermediate results are kept in-memory (e.g. in contrast to MapReduce)
● Very useful for interactive or iterative workloads, e.g., ML tasks that train over

same data periodically

🔑

Spark: Lineage

● Limit operations to coarse-grained transformations and only log the
transformations instead of replicating data for recovering ---> Lineages

Use cases to recover from failure:

● Short lineage chain? 🔑
○ Just recompute from lineage

● Long lineage chain?
○ Checkpoint intermediate results to stable storage!

60

Topics

● Transactions
● Logging and recovery (ARIES)
● Parallel/distributed databases (analytics and transactions)
● Systems “potpourri”

○ High-performance transactional systems (H-Store / Calvin / Aurora)
○ Eventual consistency (DynamoDB)
○ Cluster computing (Spark)
○ Cloud analytics (Snowflake)

● Cardinality estimation

61

62

🔑

Cardinality Estimation for one column

Equal width vs Equal depth histograms

Source of error: Within this large
bucket, assume uniformity

🔑

Pros
- More detail where there is more data

---> uniformity assumption more
accurate

- Fast to compute

Cons
- Less detail in other regions (e.g., in

the large bins)

Cardinality Estimation for 2 columns

- Take selectivity estimates for single columns, and assume they are
independent, i.e. multiply selectivities.

Pros
- Fast to compute
- Don’t need to store 2d distributions etc.

Cons
- Columns are often correlated (might severely misestimate then)
- Errors will accumulate as more columns / joins added

🔑

Main Assumptions

- Uniformity
- Within a bin of histogram; (or when computing joins)

- Independence
- When combining selectivities for multiple columns

