6.5830 / 6.5831
Quiz 2 Review ‘A

November 27, 2023

Logistics

What: Covers lectures 10 to 20 (inclusive)

When: Wednesday during lecture (November 29, 2023 at 2:30 pm)
Where: Lecture classroom (32-155)

Length: 80 minutes

How: Quiz will be on paper

e Open book/notes/laptop, but no Googling / LLMs please.
Only class website is permitted.
Email staff for special accommodation (6.5830-staff@mit.edu)

Topics

Transactions
Logging and recovery (ARIES)
Parallel/distributed databases (analytics and transactions)

Systems “potpourri”
o High-performance transactional systems (H-Store / Calvin /)
o Eventual consistency (DynamoDB)

Cluster computing (Spark)

@)

@)

e Cardinality estimation

Transactions

e + Groups a sequence of operations into an all-or-nothing unit
o A powerful abstraction!

e Desirable properties (ACID)

o Atomicity: All or nothing

o Consistency: Maintains application-specific invariants

o Isolation: Transaction “appears” to run alone on the database

o Durability: Committed transactions’ writes persist even if the system crashes

-
-

e Transactions can be aborted by the user or DBMS

#" denotes a key idea 4

Transaction Isolation

e Want: Run transactions in parallel for performance reasons
e How to ensure “correctness”?

e / Create illusion of transactions running alone, one-by-one, on the database

Serial

Serializable

Conflict Serializability

Not conflict serializable:

A schedule is conflict serializable if it is possible

to swap non-conflicting operations to derive a % 2
serial schedule. RA
WA

Equivalently wa

For all pairs of conflicting operations {O1 in T1, WB

02 in T2} either o
* 01 always precedes 02, or
* 02 always precedes O1.

Two Phase Locking (2PL) Protocol

* Before every read, acquire a shared lock
N S X
S

» Before every write, acquire an exclusive lock v X
(or "upgrade") a shared to an exclusive lock X X X

Lock Compatibility Table

+~ » Release locks only after last lock has been
acquired, and ops on that object are finished

Problem: Cascading aborts

e If T1 aborts, T2, T3 and T4
also need to abort

e Solution: Just keep write
locks until the end!

Growing
phase

T
'{:VVA

ABORT

T2

RA

ABORT

T3 T4
RA
RA
ABORT

ABORT

10

Strict Two-Phase Locking Protocol

Before every read, acquire a shared lock

Before every write, acquire an exclusive lock (or "upgrade")
a shared to an exclusive lock

Release shared locks only after last lock has been acquired,
and ops on that object are finished

Release exclusive locks only after the transaction commits

Ensures cascadeless-ness

11

Rigorous Two-Phase Locking
Protocol

Before every read, acquire a shared lock

Before every write, acquire an exclusive lock (or
"upgrade") a shared to an exclusive lock

Release locks only after the transaction commits

Ensures cascadeless-ness, and
Commit order = serialization order

12

Example

e Permitted under strict 2PL but not rigorous 2PL.:

T1: T2:
RA
WA
COMMIT

COMMIT

13

Deadlocks

* Possible for Ti to hold a lock Tj needs, and vice

versd

T1 waits for T2 =2

RB
WB

WA

Waits-for graph
Cycle = Deadlock

"
-

& T2 waits for T1

14

Complex Deadlocks Are Possible

5512

T1 waits for T2 > RB
WB

2 3
RC
RB
WB
RA & T3 waits for T1
WA
RC € T2 waits for T3 . Waits-for graph
WC) Cycle = Deadlock

- ;

Resolving Deadlock

e Solution: abort one of the transactions
— Recall: users can abort too

Tl T2
RA
WA
RB
WB
T1 waits for T2 - RB - Waits-for graph
WB (£ \ Cycle > Deadlock
RC ; ,
WwC

Equivalentto T2 -T1

16

Final Wrinkle: Phantoms @

* T1 scans a range; T2 later inserts into that range
* If T1 scans the range again, it will see a new value

o 12
BEGIIN , BEGIN
SELECT * FROM emp WHERE SAL>100 ___.|NSERT INTO EMP VALUES(...,sal=225)
END

SELECT * FROM emp WHERE SAL > 200
END

If we are just locking, e.g., records, this insertion would be
allowed in all 2PL algos we have studied, but is not serializable
(since this couldn’t happen in a serial execution).

17

Preventing phantom reads

Easy way: Acquire table locks
But if we have a clustered index we don’t need to scan the whole table for the
range query. We can do better using “gap locks” / next key locking.

e Example:
o DB Entries: 10, 11, 13, 20
o T1: Scan entries > 18 — Also lock “gaps”, i.e. lock gap 14 - 20 and 20 - <.

o T2:Insert record 19 — Also needs to acquire the gap lock that T1 holds.
o T1: Scan entries > 18 — No phantom read since T2 is waiting on the gap lock.

18

Locking Granularity / Intention Locks

* Suppose T1 wants to read record R1

* Needs to acquire intention lock on the Table and
—— Page that T1 is in

* Intention lock marks higher levels with the fact that a
transaction has a lock on a lower level

* Intention locks
ol - - Can be read intention or write intention locks
n el owerieel

holds g y e /+ Prevent transactions from writing or reading the whole
object when another transaction is working on a lower level

- New compatibility table

T2 trying
to acquire S

Y N N Y

X N N N N

IX N N v .

Optimistic Concurrency Control
(OCC)

* Alternative to locking for isolation
. Approach

Store writes in a per-transaction buffer
Track read and write sets

At commit, check if transaction conflicted with
earlier (concurrent) transactions

Abort transactions that conflict
Install writes at end of transaction

* “Optimistic” in that it does not block, hopes to
“get lucky” arrive in serial interleaving

21

OCC Implementation

* Divide transaction execution in 3 phases

Read: transaction executes on DB, stores local
state

Validate: transaction checks if it can commit
Write: transaction writes state to DB

22

What If Serializability Isn’t Needed?

* E.g., application only needs to read committed data
» Databases provide different isolation levels

— READ UNCOMMITTED — # Do not acquire read locks.
* Ok to read other transaction’s dirty data

— READ COMMITTED — # “Short” read locks.
* Only read committed values

— REPEATABLE READS — # No gap locks.

* |fR1read A=x, R2 will read A=xV A

* Many database systems default to READ COMMITTED

23

Topics

Transactions
Logging and recovery (ARIES)
Parallel/distributed databases (analytics and transactions)

Systems “potpourri”

o High-performance transactional systems (H-Store / Calvin / Aurora)
o Eventual consistency (DynamoDB)

o Cluster computing (Spark)

o Cloud analytics (Snowflake)

Cardinality estimation

24

Assumptions about crash

e Assume any data in memory is gone
e Data on disk is preserved
e — Recovery algorithms depend on when your system flushes pages

25

STEAL/NO FORCE <-> UNDO/REDO

* If we STEAL pages, we will need to UNDO

* If we don't FORCE pages, we will need to REDO

NO

FORCE

UNDO &

STEAL | unbo = “TES

NO UI‘:':DO REDO
STEAL

N
Steal: Can write dirty pages to
disk before the txn commits.
Force: Force writes to disk on
txn commit. P

N\ J

In GoDB, we do All commercial DBs

FORCE /NO STEAL do NO FORCE /

and assume DB STEAL for

won’t crash between

FORCE and f::; ‘;rn ': ance

COMMIT

* If we FORCE pages, we will need to be able to UNDO if we crash

between the FORCE and the COMMIT

26

Database State During Query
ExeCUtion Log records start and end of transactions,

and contents of writes done to tables so we
can solve both problems

/” Write-ahead
log!

Buffer Manager
Memory Disk
. /4’ Problem 1: Some Problem 2: Some
After crash, memory is gone! transactions may ~ transactions may not

have written their have flushed all of
uncommitted state their state to tables

to tables - need to prior to commit —

UNDO need to REDO .

Simplistic protocol

WAB WC
]]] 1 | | | | |
e Normal execution: Physical write- , 1w wm
. ™ I | |
ahead-logging 3 y w%B v?e
e Recovery: Replay log from beginning. cp Flush
We can recover the exact state at the = e LS it
1 1 2 UP 1 1
crash (physical logging) : o 1 :
I
5 SOT 3
6 UP 1 3
7 SOT 2
8 UP 2 7
9 EOT 1 6
10 UP 3 5
11 UP 2 8
12 EOT 2 11
13 UP 3 10

Simplistic protocol: Problem #1

e We don’t want to REDO things that are already reflected on disk (i.e. do an

operation twice). That's a problem for escrows (e.g. record += 1).
o Easy: Just keep a pageLSN field in the page header that tells you the last LSN that modified
the page (at the time the page was flushed).

LSN Type Tid PrevLSN Data ;

1 SOt ! - RERO Page DISakgeLSN

2 UP 1 1 A

3 UP 1 2 B A 2
l______________________ | B 3

5 SOT 3 C 6

6 UP 1 3 C D 0

7 SOT 2 = 0

8 UP 2 7 D

9 EOT 1 6

10 UP 3 -] B

11 UP 2 8 A #” Skip if LSN <= pagelLSN 4

12 EOT 2 11

13 UP 3 10 E

Simplistic protocol: Problem #2

e \We want to recover to a state from which the user can resume normal

operation (no pending transactions that were uncommitted at crash).

o Easy: Just keep track of which transactions were not committed at crash and UNDO them.

Can undo them logically (makes our life easier).

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 1 A

3 UP 1 2 B

l____________ |

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D
9 EOT 1 6

10 UP 3 S B
11 UP 2 8 A
12 EOT 2 11

13 UP 3 10 E

1. REDO

xactionTable

lastLSN

TID

13

3

ot

2. UNDO #~

30

Simplistic protocol: Problem #3 (last one!)

e This is super slow! Imagine we need to replay a log containing months of
transactions.

e / Only the last couple of log entries really need to be REDOne and UNDOne
(with time pages get flushed & transactions commit)

LSN Type Tid PrevLSN Data Disk

1 SOt ! 1 REDO Page pageLSN

2 UP 1 1 A

3 UP 1 2 B A 2
l____________ | B 3

5 SOT 3 C 6

6 UP 1 3 C D 0

7 SOT 2 B 0

8 UP 2 7 D

9 EOT 1 6

10 UP 3 S B

11 UP 2 8 A #” Skip if LSN <= pagelLSN 4

12 EOT 2 11

13 UP 3 10 E 31

Simplistic protocol: Problem #3 (last one!)

e This is super slow! Image we need to replay a log containing months of
transactions.

e Only the last couple of log entries really need to be REDOne and UNDOne

e + For each dirty page in the buffer pool, we keep track which was the first

LSN that dirtied it. — For this page, we only need to REDO the log from there.

LSN

Type

PrevLSN

Data

SOT

UP

1

S
1
2
3

UP

][
o

2

B

dirtyPgTable

SOT

pgNo

recLSN

UP

W

A

2

e o) Nl Ko N U]

SOT

UP

O

EOT

UP

e RO, 1 Ko Y BN

11

UP

12

EOT

B
C
D

3
6
8

13

UP

WININ|W =N N =W

| -
(=3

32

Simplistic protocol: Problem #3 (last one!)

e For each dirty page in the buffer pool, we keep track which was the first LSN
that dirtied it. — For this page, we only need to REDO the log from there.
o But where to keep this “dirty page table™?
o Persist: Lots of logging and we need to force these writes to disk.
o Memory: It will be lost at crash, so we need to start scanning the log from beginning again to
build it.

o # Solution: Checkpoints: Keep in memory but periodically write to disk.

You will need to scan some of the log to rebuild the dirty pages table, but not all of it!
At the same time you avoid doing a lot of forced writes!

33

Simplistic protocol: Problem #3 (last one!)

e \What do we need to checkpoint to only re-scan some of the log?
o Dirty page table
o Transaction table

xactionTable dirtyPgTable
lastLSN TID pgNo recLSN
13 3 A 2
B 3
C 6
\ E—
|

Checkpoint

Simplistic protocol: Problem #3 (last one!)

e \What do we need to checkpoint to only re-scan some of the log?

o Dirty page table

o Transaction table

s‘\)“oo

@

xactionTable

dirtyPgTable

lastLSN

TID

pgNo

recLSN

13

3

A

2

Iafe'L

B
C
D

3
6
8

tab/e Iy

I

Checkpoint

35

Summary / ARIES

e Normal operation:

@)

@)

@)

Physical write-ahead-logging
Include LSN of last update in page headers (pageLSN)

Keep track of active transactions (for UNDO) and LSNs that first dirtied a page (for REDO) —
checkpoint that periodically.

e Recovery:

@)

Analysis phase: Start from last checkpoint in log and reconstruct transaction table and dirty
page table at time of crash.

REDO phase: Physically REDO log records that haven’t been flushed before crash. After that,
your system will be in the state at the crash.

UNDO phase: UNDO transactions that weren’t committed at the time of the crash (“losers”).

36

Redo

e Where to begin?
— Min(recLSN)! — earliest unflushed update
* Redo an update UNLESS:
— Page is not in dirtyPgTable
* Page flushed prior to checkpoint,
didn’t re-dirty
— LSN < recLSN

* Page flushed & re-dirtied prior to
checkpoint

— LSN <= pagelLSN
* Page flushed after checkpoint
e Only step that requires going to disk

dirtyPgTable
pgNo I recLSN
.
B 3

C 6

D 8

E 13

Disk

Page pageLSN
A 2

B 3

C 6

D 0

E 0

37

UNDO

e Check where to start UNDO (lastLSN in Transaction Table) and UNDO each

#" We need to log UNDOs

o If we crash during recovery

o If we crash while rolling back an aborted transaction

o These log records are called Compensation Log Records (CLRs)

update going backwards using the prevLSN field in log

xactionTable
lastLSN TID
13 3

s

LSN Type Tid PrevLSN | Data
10 UP 3 5 B
11 UP 2 8 A
12 EOT 2 11
13 UP 3 10 E

38

UNDO

e + We needtolog UNDOs

o If we crash during recovery
o If we crash while rolling back an aborted transaction
o These log records are called Compensation Log Records (CLRs)

e Check where to start UNDO (lastLSN in Transaction Table) and UNDO each
update going backwards using the prevLSN field in log

xactionTable
LSN Type Tid PrevLSN | Data lastLSN TID
10 Up 3 5 B 10 3
11 Up 2 8 A g rs
12 EOT 2 11 I o
13 UupP 3 10 E
14 CLR 3 13 E, 10

39

V ARIES

10. [10 points]: Which of the following statements about ARIES recovery are true?

A. True / False If a CLR (Compensation Log Record) is found in the log, the system must have crashed
during the REDO phase of the ARIES Algorithm.

B. True / False In theory, if the recovery algorithm keeps crashing during recovery forever, then due to
the CLR logs being added the size of the log can keep on increasing forever.

C. True / False Dirty pages are flushed to the disk at checkpoints.
D. True / False We can always get rid of the log before the second last checkpoint.

E. True / False PrevLSN is used to determine where to start the REDO phase from.

40

Topics

Parallel/distributed databases (analytics and transactions)

o O O O

41

Distributed and Parallel Databases

e / Same semantics as a single-node ACID SQL database, but on multiple
cores/machines

e Distributed databases must deal with node failures

42

Ways to Partition the Data

e Round-robin
o Perfect load-balancing (data-wise)
o Often all nodes need to participate in a query

e Hash

o Pretty good load balancing (unless many duplicates)
o Bad at range analytical queries (cannot easily skip partitions)

e Range
o Good at range / localized analytical queries
o Can be bad at load-balancing (data skew)

43

Parallel Joins (Hash Partitioning and Equijoins)

e Partitioned on join attributes? Run join locally on each partition.
e Otherwise, two options (non-exhaustive):

e Re-partition (one or both tables): “shuffle join”
o Each node transmits and receives (|T| / n) / n * (n - 1) bytes per repartitioned table

e Replicate table across all nodes
o Each node transmits and receives (|T|/ n) * (n - 1) bytes

44

Distributed Transactions: Two Phase Commit

e / Distributed algorithm used to make a commit/abort decision for multiple

“sites”
o “Commit only if all participants agree to commit”

e Requires a coordinator

e Often considered a performance bottleneck

45

Two Phase Commit

Coordinator Worker

uk PREPARE(T) °

> FW(PREPARE)
VOTE(T)YES/NO) B e

°4—f

FW(COMMIT/ABORT)

e COMMIT/ABORT(T)
FW(COMMIT/ABORT)

ACK — °

4_f

W(DONE), once all W’s ACK

46

Topics

Systems “potpourri”

@)

@)
@)
@)

High-performance transactional systems (H-Store / Calvin

47

High-Performance Transactions

e Running old code on new 1M - —
1.6M - <7° hand-coded
hardware # speed-up optimizations
1.4M 11.9% logging
e New performance bottlenecks 1.2M - T63%
= oM locking
. o 1. .
o = -
2PC is slow 5 A - 14.2% B
e Consider new architectures! 2 M- S
AM 4 buffer manager
2M 4
N N —— L - - - -useful work

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden,
and Michael Stonebraker. OLTP through the looking
glass, and what we found there. SIGMOD 2008

H-Store
Client 1 | [Client 2 | [Client 3 | [Client 4

Database

A A v

\d
. Distributed in_memory DBMS |TaDlel |[TaDIeZ|[TaDIe3HTabIe4

o Often enough memory to store the entire dataset cwe || coe [[coe [[oo

e / Partition the data; single-thread per partition “Classical” design
o Eliminate coordination overhead within a partition

e Stored-procedure transactions) (T (s (o
o Optimize partitioning for the workload

v v v v
Table 1 | | [Table2 | [| [Table3 | | | [Table 4

o Avoid waiting for the client

Core Core Core Core

e Weaknesses

o Stored-procedure assumption

o Multi-partition transactions? Thread-per-partition

Diagrams courtesy of Prof. Andy Pavlo

49

Calvin

e Distributed DBMS

e + Deterministic execution
o Avoid distributed coordination (2PC) during transaction execution by determining a non-
conflicting, deterministic execution order up front!
o Ordering performed in batches

e Weaknesses
o Need to know transactions & read/write sets up front
o Stored-procedure assumption
o If lot of contention (e.g. all txns contend for one record) you can only issue them one at a time
(no other way to avoid conflicts)

50

Topics

Transactions
Logging and recovery (ARIES)
Parallel/distributed databases (analytics and transactions)

Systems “potpourri”

o High-performance transactional systems (H-Store / Calvin / Aurora)
o Eventual consistency (DynamoDB)

o Cluster computing (Spark)

o Cloud analytics (Snowflake)

Cardinality estimation

51

CAP theorem

e Consistency, availability, partition-tolerance: You can have 2, not all 3 #°

e ACID has strong consistency but will appear down if machines go down or
network becomes partitioned

e Many systems choose availability over consistency (e.g. NoSQL)

52

Dynamo

e Availability
e Partitioning
o for scaling
o consistent hashing 4~

e Replication
o for fault tolerance and performance
o ‘N’ successors in the ring stores the key

e Vector clocks for detecting conflicting writes

53

Vector Clock Updates

e FEach coordinator maintains a version counter for each data item that

increments for every write it coordinates

® [f a node stores m objects, it stores m vector clocks along with them
® Each vector clock has n entries, which denote the number of writes done by each of n
coordinators

+° o Clock for one data item A at coordinator i
o before: V,[1], ..., Vylil, ..., V4[n]
o after:: V,[1], ..., V4[i]+1, ..., V4[n]

54

Vector Clock

e Read - Read from the quorums
e E.g.:Read V1, V2, V3 - If one of these, say V1, is greater than the others for

every component, V1 is the latest value and we can reconcile based on

vector clocks
e What if they are incomparable? ---> i.e., can’t decide which is the latest

version of the data
o V1=[1,1],V2=]2, 0]
o Return both data versions, and use application-specific reconciliation #

55

Dynamo Question (2015)

Which of the following statements are true?

V1=<R1:0,R2:3,R3:2>
V2=<R1:1,R2:3,R3:2>
V3=<R1:0,R2:0,R3:3>

A) The writer that produced V1 observed V2
B) The writer that produced V2 observed V1

C) V2 and V3 are :"concurrent writes” (cannot be
reconciled)

56

Topics

Transactions
Logging and recovery (ARIES)
Parallel/distributed databases (analytics and transactions)

Systems “potpourri”

o High-performance transactional systems (H-Store / Calvin / Aurora)
o Eventual consistency (DynamoDB)

Cluster computing (Spark)

o Cloud analytics (Snowflake)

Cardinality estimation

@)

57

Spark L s

— ' groupBy

Distributed “dataflow” language
Resilient Distributed Dataset (RDD) which you can
perform operations on

e Programs operate on partitions of data in parallel

(

: ‘,"C; u D:(g F:
(.

|
|
|\ Stage 2 union

Spark: Memory use

4" e Intermediate results are kept in-memory (e.g. in contrast to MapReduce)
e Very useful for interactive or iterative workloads, e.g., ML tasks that train over
same data periodically

59

Spark: Lineage

e Limit operations to coarse-grained transformations and only log the
transformations instead of replicating data for recovering ---> Lineages

Use cases to recover from failure:

e Short lineage chain? #°
o Just recompute from lineage
e Long lineage chain?
o Checkpoint intermediate results to stable storage!

60

Topics

Transactions
Logging and recovery (ARIES)
Parallel/distributed databases (analytics and transactions)

Systems “potpourri”

o High-performance transactional systems (H-Store / Calvin / Aurora)
o Eventual consistency (DynamoDB)

o Cluster computing (Spark)

o Cloud analytics (Snowflake)

Cardinality estimation

61

Equal-width histograms

* Histograms can approximate any distribution (pdf) for
a single attribute.

* Easy to build (ANALYZE): scan (sample of) one table.

#” Assume within a bin,

values are uniformly
distributed

Density (PDF)

—_—

0 5k 10k 15k 20k 25k 30k 35k 40k ... 485k
Value of X

62

Cardinality Estimation for one column

Selectivity

Equal width vs Equal depth histograms

Pros
100 bins with ~similar #values P More d_etail yvhere there.is more data
---> uniformity assumption more
. accurate

- Fast to compute

0.008 Cons
- Less detail in other regions (e.g., in
00 the large bins)

30-96 96-128 128-155 155-177 177-204 .. 813-860 195.5K-242K 242K - 485K

Value Bins l

Source of error: Within this large
bucket, assume uniformity

Cardinality Estimation for 2 columns

- Take selectivity estimates for single columns, and assume they are
+” independent, i.e. multiply selectivities.

Pros
- Fast to compute
- Don’t need to store 2d distributions etc.

Cons
- Columns are often correlated (might severely misestimate then)
- Errors will accumulate as more columns / joins added

Main Assumptions

- Uniformity
- Within a bin of histogram; (or when computing joins)

- Independence
- When combining selectivities for multiple columns

