
6.5830
Lecture 9

Column Stores
10/2/2024

Quiz 1 10/9

PS2 Due 10/7

Plan for Next Few Lectures

Admission Control

Connection Management

Query System

Storage System

Parser

Rewriter

Planner

Executor

– Optimizer (last time and more today)

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

Lec 8/9

Lec 9 – Column Stores

Lec 7 – Join Algos

Recap - Join Algorithm

Grace hash is generally a safe bet, unless memory is close to size of tables, in which
case simple can be preferable

Extra cost of sorting makes sort merge unattractive unless there is a way to access
tables in sorted order (e.g., a clustered index), or a need to output data in sorted order
(e.g., for a subsequent ORDER BY)

Algo I/O cost CPU cost In Mem?

Nested loops |R|+|S| O({R}x{S}) R in mem

Nested loops {S}|R| + |S| O({R}x{S}) No

Index nested loops (R index) |S| + {S}c (c <5) O({S}log{R}) No

Block nested loops |S| + B|R| (B=|S|/M) O({R}x{S}) No

Sort-merge |R|+|S| O({S}log{S}) Both

Hash (Hash R) |R|+|S| O({S} + {R}) R in mem

Blocked hash (Hash S) |S| + B|R| (B=|S|/M) O({S} + B{R}) (*) No

External Sort-merge 3(|R| + |S|) O(P x {S}/P log {S}/P) No

Simple hash (not covered) P(|R|+|S|) (P=|S|/M) O({R} + {S}) No

Grace hash 3(|R| + |S|) O({R} + {S}) No

Recap Selinger Optimizer
Selinger Statistics
NCARD(R) - "relation cardinality" - number of records
in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

NINDX(I) - pages occupied by index I

Min and max keys in indexes

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

Selectivity Estimates:

1. col = val

F = 1/ICARD() (if index available)

F = 1/10 otherwise

2. col > val

(max key - value) / (max key - min key) (if index available)

1/3 otherwise

3. col1 = col2

1/MAX(ICARD(PK table)) (if index available)

1/10 otherwise

P1 and P2:

 F(P1) x F(P2)

P1 or P2

1 – P(neither predicate is satisfied) =

1 – (1-F(P1)) x (1-F(P2))

Note uniformity assumption

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

30000

NCARDd=100
ICARDd=100

NCARDe=10000

F1 = 0.1

Clicker (http://clicker.mit.edu/6.5830)
What is the selectivity of F2

A) 1
B) 0.1
C) 0.01
D) 0.001

F2

http://clicker.mit.edu/6.5830

Selinger Statistics
NCARD(R) - "relation cardinality" - number of records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

NINDX(I) - pages occupied by index I

Min and max keys in indexes

http://clicker.mit.edu/6.5830
http://clicker.mit.edu/6.5830

Clicker - Intermediate Sizes

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

30000

NCARD(R) - "relation cardinality" - number of
records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

NINDX(I) - pages occupied by index I

Min and max keys in indexes

NCARDd=100 NCARDe=10000

F1 = 0.1

?
What is the intermediate size after the
Dep-Emp Join?
A) 100 × (10000 × 0.1) × 0.01 = 1000
B) 10000 × 0.1 = 1000
C) 10000 × 0.1 × 0.01 = 10
D) 10000 × 0.1 × 100 = 100000

F2=0.01

http://clicker.mit.edu/6.5830

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

http://clicker.mit.edu/6.5830

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k100

10000

1000

1000 30000

3000

NCARD(R) - "relation cardinality" - number of
records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

NINDX(I) - pages occupied by index I

Min and max keys in indexes

NCARDd=100 NCARDe=10000

F1 = 0.1

F2 = 0.01

?
𝑁𝐶𝐴𝑅𝐷𝑑 × 𝑁𝐶𝐴𝑅𝐷𝑒 × 𝐹1 × 𝐹2 =
100 × 10000 × 0.1 × 0.01 =
1000

Intermediate Sizes

Cost of Base Table
Operations

Cost = pages read +

weight x (records evaluated)

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan NCARD(R) - "relation cardinality" - number of

records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

NINDX(I) - pages occupied by index I

Min and max keys in indexes

W: weight of CPU operations

Equality predicate with unique index: 1 + 1 + W
B+Tree
lookup

Heap File
lookup

Predicate
evaluation

Cost of Base Table
Operations

Cost = pages read +

weight x (records evaluated)

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan NCARD(R) - "relation cardinality" - number of

records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

NINDX(I) - pages occupied by index I

Min and max keys in indexes

W: weight of CPU operations

Equality predicate with unique index: 1 + 1 + W
B+Tree
lookup

Heap File
lookup

Predicate
evaluation

Clustered index, range w/ selectivity F

Clicker (http://clicker.mit.edu/6.5830)

A: F x TCARD + W x (tuples read)

B: F x (NINDX + NCARD) + W x (tuples read)

C: F x NINDX + W x (tuples read)

D: F x (NINDX + TCARD) + W x (tuples read)

http://clicker.mit.edu/6.5830

Cost of Base Table
Operations

Cost = pages read +

weight x (records evaluated)

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan NCARD(R) - "relation cardinality" - number of

records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

NINDX(I) - pages occupied by index I

Min and max keys in indexes

W: weight of CPU operations

Equality predicate with unique index: 1 + 1 + W
B+Tree
lookup

Heap File
lookup

Predicate
evaluation

Clustered index, range w/ selectivity F: F x (NINDX + TCARD) + W x (tuples read)

Unclustered index, range w/ selectivity F :

Seq (segment) scan: TCARD + W x (NCARD)

One I/O per record

One I/O per page

F x (NINDX + NCARD) + W x (tuples read)

Cost of Joins

NestedLoops(A,B,pred)

 Cost(A) + NCARD(A) x Cost(B)

• Selinger only considers “left deep” plans, i.e., B is always a base
table Tright

• In an index on Tright, Cost(B) = 1 + 1 + W

• If no index, Cost(B) = TCARD(Tright) + W x NCARD(Tright)

• Cost(A) is just cost of outer subtree

Outer Plan Inner Plan

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

NCARD(R) - "relation cardinality" - number of
records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

W: weight of CPU operations

⨝

⨝

A

C

BC

⨝

⨝
A

B

“right deep” “left deep”

⨝

⨝

A B

“bushy”

⨝
C D

Cost of Joins

Merge(A,B,pred)

 Cost(A) + Cost(B) + sort cost

If either table is a base table, cost is just the
sequential scan cost

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

Varies depending on whether sort is in
memory or on disk, and whether one or
both tables are already sorted

Enumerating Plans

• Selinger combines several heuristics with a
search over join orders

• Heuristics

– Push down selections

– Don’t consider cross products

– Only “left deep” plans

• Right side of all joins is base relation

• Still have to order joins!

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

⨝ eno=eno

⨝ dno=dno

dept emp

kids
𝛔sal>10k

Predicate
push down

Join ordering

• Suppose I have 3 tables, A ⨝ B ⨝ C
– Predicates between all 3 (no cross products)

• How many orderings?

ABC
ACB
BAC
BCA
CAB
CBA

A(BC)
A(CB)
B(AC)
B(CA)
C(AB)
C(BA)

(AB)C
(AC)B
(BA)C
(BC)A
(CA)B
(CB)A

⨝

⨝

A

C

BC

⨝

⨝
A

B

vs

This plan is not
left deep!

Left deep plans are all of
the form (…(((AB)C)D)E)…)

n! left deep plans
10! = 3.6 M
15! = 1.3 T

Can we do
better?n!

(not even factoring in

choice of join method)

Dynamic Programming Algorithm

• Idea: compute the best way to join each sub-
plan, from smallest to largest
– Don’t need to reconsider subplans in larger plans

• For example, if the best way to join ABC is
(AC)B, that will always be the best way to join
ABC, whenever* these three relations occur as
a part of a subplan.

* Except when considering interesting orders

Postgres example
explain select * from emp join kids using (eno);

 Hash Join (cost=34730.02..132722.07 rows=3000001 width=35)

 Hash Cond: (kids.eno = emp.eno)

 -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)

 -> Hash (cost=16370.01..16370.01 rows=1000001 width=21)

 -> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)

Default PostgreSQL valueS:
• single sequential page read costing 1.0 units (seq_page_cost)
• Each row processed adds 0.01 (cpu_tuple_cost),
• each non-sequential page read adds 4.0 (random_page_cost).
• … ///there are many many more constants like this

First number is startup cost (i.e., cost to fetch the first row)
Second number is total cost

Postgres example
explain select * from emp join kids using (eno);

 Hash Join (cost=34730.02..132722.07 rows=3000001 width=35)

 Hash Cond: (kids.eno = emp.eno)

 -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)

 -> Hash (cost=16370.01..16370.01 rows=1000001 width=21)

 -> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)

explain select * from dept join emp using(dno) join kids using (eno);

 Hash Join (cost=35000.04..140870.43 rows=3000001 width=39)

 Hash Cond: (emp.dno = dept.dno)

 -> Hash Join (cost=34730.02..132722.07 rows=3000001 width=35)

 Hash Cond: (kids.eno = emp.eno)

 -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)

 -> Hash (cost=16370.01..16370.01 rows=1000001 width=21)

 -> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)

 -> Hash (cost=145.01..145.01 rows=10001 width=8)

 -> Seq Scan on dept (cost=0.00..145.01 rows=10001 width=8)

Identical
subplans

Selinger Algorithm
1. Find all plans for accessing each base relation

• Include index scans when available on push-down predicates

2. For each relation, save cheapest unordered plan (, and cheapest plan for each

"interesting order”.) Discard all others.

3. Now, try all ways of joining all pairs of 1-table plans saved so far.
Save cheapest unordered 2-table plans (and cheapest "interesting ordered" 2-table
plans)

4. Now try all ways of combining a 2-table plan with a 1-table plan.
Save cheapest unordered (and interestingly ordered 3-way plans). You can now
throw away the 2-way plans.

4. Continue combining k-way and 1-way plans until you have a
collection of full plan trees

5. At top, satisfy GROUP BY and ORDER BY either by using
interestingly ordered plan, or by adding a sort node to unordered
plan, whichever is cheapest.

don’t combine a k-way plan with a 1-way plan if there’s no predicate between them,

unless all predicates have been used up (i.e. postpone Cartesian products)

Selinger Algorithm

R set of relations to join

For i in {1...|R|}:

 for S in {all length i subsets of R}:

 optcosts = ∞

 optjoinS = ø

 for a in S: //a is a relation

 csa = optcosts-a +

 min. cost to join (S-a) to a +

 min. access cost for a

 if csa < optcosts :

 optcosts = csa

 optjoins = optjoin(S-a) joined optimally w/ a

Cached in previous step!

don’t combine a k-way plan

with a 1-way plan if there’s

no predicate between them,

unless all predicates have

been used up (i.e. postpone

Cartesian products)

Example
4 Relations: ABCD

Optjoin:

A = best way to access A

 (e.g., sequential scan,

 or predicate pushdown into index...)

B = " " " " B

C = " " " " C

D = " " " " D

{A,B} = AB or BA

{A,C} = AC or CA

{B,C} = BC or CB

{A,D}

{B,D}

{C,D}

Dynamic Programming Table

Relations Best Plan Cost

A Index Scan 5

B Seq Scan 15

…

{A,B} BA 75

{A,C} AC 12

{B,C} CB 22

Example (con’t)

Optjoin

{A,B,C} = compare ({B,C})A to ({A,C})B to ({A,B})C

{A,B,D} = …

{B,C,D} = …

…

{A,B,C,D} = compare ({B,C,D})A to ({A,C,D})B to

 ({A,B,D})C to ({A,B,C})D

Already computed!

Relations Best Plan Cost

A Index Scan 5

B Seq Scan 15

…

{A,B} BA 75

{A,C} AC 12

{B,C} CB 22

..

{A,B,C} (CB)A 35

…

{B,C,D} (CB)D 42

..

{A,B,C,D} ((CB)D)A 57

Complexity (cont.)

2n Subsets

How much work per subset?

Have to iterate through each element of each
subset, so this at most n

n2n complexity (vs n!)

n=12 ➔ 49K vs 479M

Interesting Orders

• Some query plans produce data in sorted order –
E.g scan over a primary index, merge-join
– Called an interesting order

• Next operator may use this order – E.g. can be
another merge-join

• For each subset of relations, compute multiple
optimal plans, one for each interesting order

• Increases complexity by factor k+1, where
k=number of interesting orders

Optimization Recap

• Selinger Optimizer is the foundation of
modern cost-based optimizers

– Simple statistics

– Several heuristics, e.g., left-deep

– Dynamic programming algo for join ordering

• Easy to extend, e.g., with:

– More sophisticated statistics

– Fewer heuristics

Rest of today:
Column Stores
A different way to build a
database system

Typical Database Setup

Transactional database
Lots of writes/updates
Reads of individual records

Analytics / Reporting Database
“Warehouse”

Lots of reads of many records
Bulk updates

Typical query touches a few columns

“Extract, Transform, Load”

PROBLEM

• You are the new Data Scientist at New Market
• New Market is tracking all customer purchases with their membership card or

credit card
• They also have data about their customers (estimated income, family

status,…)
• Recently, they are trying to improve their image for young mothers
• As a start they want to know the following information for mothers under 30

for 2013:
• How much do they spend?
• How much do they spend per state?
• How does this compare to all customers under 30?
• What are their favorite products?
• How much do they spend per year?

Your first project: Design the schema for New Market!

TYPICAL OLTP SCHEMA

Line
Item

Order

TOID

usedCredit Card

NBCRID

assigned

Member Card

MID

Product

TOID

Amount

Price

N

1

1

1

N

N

Fact Table

- Shop_ID

- Customer_I

D

- Date_ID

- Product_ID

- Amount

- Volume

- Profit

- …

Shop

- Shop_ID

- Business_Type

- City

- City_Population

- State

- …

Customer

- Customer_ID

- Name

- Segment

- Group_Name

- …

Time

- Date_ID

- Month

- Quarter

- Year

- …

Product

- Product_ID

- Type

- Brand

- Description

- …

OLAP
Star Schema

Shop

- Shop_ID

- City_ID

- Business_Type

City

- City_ID

- State_ID

- Name

- Population

- …

State

- State_ID

- Name

- …

Customer

- Customer_ID

- Name

- …

Customer Group

- Group_ID

- Segment

- Name

Month

- Month_ID

- Quarter_ID

- Name

- …

Quarter

- Quarter_ID

- Year_ID

- Name

- …

Product

- Product_ID

- Type_ID

- Brand

- …

Product_Type

- Tyoe_ID

- Name

- Description

- …

Brand

- Brand_ID

- Name

- …

Day

- Date_ID

- Month_ID

- Week_ID

- …

Fact Table

- Shop_ID

- Customer_

ID

- Date_ID

- Product_ID

- Amount

- Volume

- Profit

- …

Week

- Week_ID

- Year_ID

- Name

- …

Year

- Year_ID

- Name

- …

OLAP
Snowflake

Schema

STAR VS. SNOWFLAKE SCHEMA

Snowflake Star
Normalization/
De-Normalization

Dimension Tables are in
Normalized form but Fact Table
is still in De-Normalized form

Both Dimension and Fact Tables are in
De-Normalized form

Space Smaller Bigger (Redundancy)

Query Performance More Joins → slower Fewer Joins → faster

Ease of Use Complex Queries Pretty Simply Queries

When to use When dimension table is
relatively big in size, snowflaking
is better as it reduces space.

When dimension table contains less
number of rows, we can go for Star
schema.

Shop

- Shop_ID

- Business_Typ

e

- City

- State

- …

Customer

- Customer_ID

- Name

- Segment

- Group_Name

- …

Time

- Date_ID

- Month

- Quarter

- Year

- …

Product

- Product_ID

- Type

- Brand

- Description

- …

Galaxy / Fact Constellation
Schema

Shipping Fact

Table

- Customer_ID

- Product_ID

- Shipper_ID

- Price

- …

Sales Fact Table

- Shop_ID

- Customer_ID

- Date_ID

- Product_ID

- Amount

- Volume

- Profit

- …

Shipper

- Shipper_ID

- Name

- Type

- …

2 DIMENSIONAL CASE

Total annual sales

of TV in U.S.A.
Quarter

C
o
u

n
tr

y

All, All, All

sum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

TYPICAL OLAP OPERATIONS

Roll up (drill-up): summarize data

by climbing up hierarchy or by dimension reduction

Drill down (roll down): reverse of roll-up

from higher level summary to lower level summary or

detailed data, or introducing new dimensions

Slice and dice: project and select

Pivot (rotate): reorient the cube, visualization, 3D to series

of 2D planes.

Other operations

drill across: involving (across) more than one fact table

drill through: through the bottom level of the cube to its

back-end relational tables (using SQL)

ROLLUP

All, All, All

How Long Does a Scan Take?

• Time proportional to amount of data read

• Example

GM 30.77 1,000 NYSE 1/17/2007

GM 30.77 10,000 NYSE 1/17/2007

GM 30.78 12,500 NYSE 1/17/2007

AAPL 93.24 9,000 NQDS 1/17/2007

“Row” Representation

Even though we only need price, date and symbol,
if data is on disk, must scan over all columns

SELECT avg(price) FROM tickstore WHERE symbol =

‘GM’ and date = ‘1/17/2007’

price quantity exchange datesymbol

Magnetic Disk

Memory and SSD also transfer a block at a time, so
same issue arises.

Column Representation Reduces Scan Time

• Idea: Store each column in a separate file

30.77

30.77

30.78

93.24

GM

GM

GM

AAPL

1,000

10,000

12,500

9,000

NYSE

NYSE

NYSE

NQDS

1/17/2007

1/17/2007

1/17/2007

1/17/2007

Column Representation

Reads Just 3

Columns

Assuming each column is same size, reduces bytes read from
disk by factor of 3/5

In reality, databases are often 100’s of columns

Linearizing a Table – Row

store

C1 C2 C3 C4 C5 C6

R1 C1
R1 C2
R1 C3
R1 C4
R1 C5
R1 C6
R2 C1
R2 C2
R2 C3
R2 C4
R2 C5
R2 C6
R3 C1
R3 C2
R3 C3
R3 C4
R3 C5
R3 C6
R4 C1
R4 C2
R4 C3
R4 C4
R4 C5
R4 C6

Memory/Disk
(Linear Array)

Linearizing a Table –

Column Store

C1 C2 C3 C4 C5 C6

R1 C1
R2 C1
R3 C1
R4 C1
R5 C1
R6 C1
R1 C2
R2 C2
R3 C2
R4 C2
R5 C2
R6 C2
R1 C3
R2 C3
R3 C3
R4 C3
R5 C3
R6 C3
R1 C4
R2 C4
R3 C4
R4 C4
R5 C4
R6 C4

Memory/Disk
(Linear Array)

Tables Often Super Wide

• Data warehouse at Cambridge Mobile

Telematics

Table #columns

 t1 | 251

 t2 | 248

 t3 | 134

 t4 | 107

 t5 | 87

 t6 | 83

 t7 | 71

 t8 | 54

 t9 | 52

 t10 | 45

Average query access 4-5 fields

Top 2-3 tables involved in nearly every query

Using a row-store would impose ~200/4 =
50x performance overhead

46

When Are Columns Right?

• Warehousing (OLAP)

• Read-mostly; batch update

• Queries: Scan and aggregate a few columns

• Vs. Transaction Processing (OLTP)

• Write-intensive, mostly single record ops.

• Column-stores: OLAP optimized

• In practice >10x performance on comparable HW,

for many real world analytic applications

• True even if w/ Flash or main memory!

Different architectures for different workloads

47

C-Store: Rethinking Database Design

from the Ground Up

Separate Files
Column-based Compression

Write
optimized

storage

Inserts

Tuple
Mover

Column-oriented
query executor

SYM PRICE VOL EXCH TIME

IBM 100
1024

4
NYSE 1.17.07

IBM 102 11245 NYSE 1.17.07

SUN 58 3455 NQDS 1.17.07

SYM PRICE VOL EXCH TIME

IBM 100 10244 NYSE 1.17.07

IBM 102 11245 NYSE 1.17.07

SUN 58 3455 NQDS 1.17.07

“C-Store: A Column-oriented DBMS” -- VLDB 05

Shared nothing
horizontal partitioning

48

Query Processing Example

• Traditional

Row Store

SELECT avg(price)

FROM tickstore

WHERE symbol = ‘GM’

AND date = ‘1/17/2007’

Disk
GM 30.77 1,000 NYSE 1/17/2007

GM 30.77 10,000 NYSE 1/17/2007

GM 30.78 12,500 NYSE 1/17/2007

AAPL 93.24 9,000 NQDS 1/17/2007

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Complete tuples

Complete tuples

Complete tuples

49

Query Processing Example

• Basic Column

Store

• “Early

Materialization”

SELECT avg(price)

FROM tickstore

WHERE symbol = ‘GM’

AND date = ‘1/17/2007’

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Disk
30.77

30.77

30.78

93.24

GM

GM

GM

AAPL

1,000

10,000

12,500

9,000

NYSE

NYSE

NYSE

NQDS

1/17/2007

1/17/2007

1/17/2007

1/17/2007

Construct Tuples

GM 30.77 1/17/07

Fields from same

tuple at same index

(position) in each

column file

Row-oriented

plan
Complete tuples

Complete tuples

Complete tuples

50

Query Processing Example

• C-Store

• “Late

Materialization”

Disk
30.77

30.77

30.78

93.24

GM

GM

GM

AAPL

1,000

10,000

12,500

9,000

NYSE

NYSE

NYSE

NQDS

1/17/2007

1/17/2007

1/17/2007

1/17/2007

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND

Position Bitmap

(1,1,1,1)

Position Bitmap

(1,1,1,0)

Position Bitmap

(1,1,1,0)

Position Lookup

Prices

AVG

Much less data

flowing through

memory

See Abadi et al

ICDE 07

51

Why Compress?

• Database size is 2x-5x larger than the volume of data

loaded into it

• Database performance is proportional to the amount

of data flowing through the system

Abadi et al, SIGMOD 06

52

◆ Query engine processes compressed data

◆ Transfers load from disk to CPU

◆ Multiple compression types

◆ Run-Length Encoding (RLE), LZ, Delta

Value, Block Dictionary Bitmaps, Null

Suppression

◆ System chooses which to apply

◆ Typically see 50% - 90% compression

◆ NULLs take virtually no space

Column-Oriented Compression

30.77

+0

+.01

+62.47

GM

GM

GM

AAPL

1,000

10,000

12,500

9,000

3xGM

1XAPPL

30.77

30.77

30.78

93.24

1/17/2007

1/17/2007

1/17/2007

1/17/2007

4 x 1/17/2007NYSE

NYSE

NYSE

NQDS

3xNYSE

1XNQDS

1,000

10,000

12,500

9,000

RLE Delta LZ RLE RLE

Columns

contain

similar data,

which makes

compression

easy

Run Length Encoding

• Replace repeated values with a count and a

value

• For single values, use a run length of 1

• Naively, can increase storage space

• Can use a shorter bit sequence for 1s, at

the cost of more expensive

decompression

• E.g., 1110002 → 3x1, 3x0, 1x2

• Works well for mostly-sorted, few-valued

columns
53

Dictionary Encoding

• Many variants; simplest is to replace string

values with integers and maintain a

dictionary

• I.e., AAPL, AAPL, IBM, MSFT →

1,1,2,3 + 1:AAPL, 2:IBM, 3:MSFT

• Works well for few-valued string columns

• Choice of dictionary not obvious

• Words? Records?

54

Lempel Ziv Encoding

• LZ (“Lempel Ziv”) Compression

• General purpose lossless data compression

• Builds data dictionary dynamically as it runs

• Add new bit strings to the dictionary as

they are encountered

• Treat entire column as a document

55

Delta Encoding

• Consecutive values encoding as difference to

previous values

• 1.1, 1.2, 1.3 → 1.1, +.1, +1

• After encoding as deltas, bit-pack

• Works if deltas can be represented in fewer

bits than whole values

• Works well for e.g., floats with small variations

76

Bitmap Encoding

• Encode few valued columns as bitmaps

• M M M F F → 11100, 00011

• If fewer distinct values than bitwidth of

field, saves space

• Bitmaps can be further compressed, e.g.,

using RLE

• Bitmaps are very good for certain kinds of

operations, e.g., filtering

77

Sorted Data

• Delta and RLE work great on sorted data

• Trick: Secondary sorting

78

X Y

a 2

b 2

a 1

b 1

X Y

a 1

a 2

b 1

b 2

Sort on X,

then Y

Y is not

sorted,

but if

many

duplicates
of X, will

be

“mostly”

sorted

79

Operating on Compressed Data

Disk
30.77

+0

+.01

+62.47

3xGM

1xAPPL

1,000

10,000

12,500

9,000

NYSE

NYSE

NYSE

NQDS

4x1/17/2007

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND

Position Bitmap

(4x1)

Position Bitmap

(3x1,1x0)

Position Bitmap

(3x1,1x0)

Position Lookup

Prices

AVG

Only possible

with late

materialization!

Compression

Aware

80

Direct Operation Optimizations

• Compressed data used directly for position lookup

• RLE, Dictionary, Bitmap

• Direct Aggregation and GROUP BY on

compressed blocks

• RLE, Dictionary

• Join runs of compressed blocks

• RLE, Dictionary

• Min/max directly extracted from sorted data

82

Compression + Sorting is a Huge Win

▪ How can we get more sorted data?

▪ Store duplicate copies of data

▪ Use different physical orderings

▪ Improves ad-hoc query performance

▪ Due to ability to directly operate on sorted,

compressed data

▪ Supports fail-over / redundancy

Study Break: Compression

• For each of the following columns, what

compression method would you recommend?

(Choose from A. RLE, B. Dictionary, C. Bitmap,

D. Delta, E. Bit-packing)

https://clicker.mit.edu/6.5830/

An unsorted column of integers in the range 0-

100

A mostly sorted column of arbitrary strings

A mostly sorted column of integers in the range

0-10

A sorted column of floats 83

Delta/Bit-packing (LZ/dictionary also OK)

LZ

RLE

Delta

Bitmap

84

Write Performance

Tuple Mover
Asynchronous Data

 Movement

Queries read

from both WOS

and ROS

Batched

Amortizes seeks

Amortizes

recompression

Enables continuous
load

Trickle load: Very

Fast Inserts
> Read-optimized

Column Store (ROS)

 Disk: data is sorted and

compressed

(A B C | A)

A B C

Memory: mirrored

projections in

insertion order

(uncompressed)

> Write-optimized

Column Store

(WOS)

When to Rewrite ROS Objects?

• Store multiple ROS objects, instead of just one

• Each of which must be scanned to answer a query

• Tuple mover writes new objects

• Avoids rewriting whole ROS on merge

• Periodically merge ROS objects to limit number of

distinct objects that must be scanned (“Log structured

merge tree”)

> Read-optimized

Column Store (ROS)

 Disk: data is sorted and

compressed

(A B C | A)

A B C

> Read-optimized

Column Store (ROS)

 Disk: data is sorted and

compressed

(A B C | A)

A B C

> Read-optimized

Column Store (ROS)

 Disk: data is sorted and

compressed

(A B C | A)

A B C

> Read-optimized

Column Store (ROS)

 Disk: data is sorted and

compressed

(A B C | A)

A B C

> Read-optimized

Column Store (ROS)

 Disk: data is sorted and

compressed

(A B C | A)

A B CTuple Mover

Memory: mirrored

projections in

insertion order

(uncompressed)

> Write-optimized

Column Store

(WOS)

WOS ROS

Older objects

Problem: Lots of Partitions

• Performance will degrade as you get many partitions

• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1 P2 P3

Problem: Lots of Partitions

• Performance will degrade as you get many partitions

• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1-2
P3 P4 P5

Problem: Lots of Partitions

• Performance will degrade as you get many partitions

• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1-2 P3-4
P6 P7P5

Problem: Lots of Partitions

• Performance will degrade as you get many partitions

• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1-2 P3-4 P5-6
P7

Problem: Lots of Partitions

• Performance will degrade as you get many partitions

• Idea: merge some partitions together, but how?

• Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1-4

P1 has merged 2 times, but won’t merge again until after 8
more partitions arrive

P5-6
P7

P1 P2 P3 P4 P5 P6 P7 P8

1-2 3-4

1-4

5-6 7-8

Exponentially

Larger & Less

Frequent Merges

Log Structure Merge Tree

Column-Oriented Data In Modern Systems

• C-Store commercialized as Vertica

• Although it wasn’t the first column-oriented
DB, it led to a proliferation of commercial
column-oriented systems

• Now the de-facto way that analytic database
systems are built, including Snowflake,
Redshift, and others.

• One popular open-source option: Parquet

Efficient Data Loading: Parquet

• Parquet is column-oriented file format that is MUCH
more efficient than CSV for storing tabular data

• Vs CSV, Parquet is stored in binary representation

• Uses less space

• Doesn’t require conversion from strings to internal
types

• Doesn’t require parsing or error detection

• Column-oriented, making access to subsets of
columns much faster

Parquet Format

• Data is partitioned sets of rows, called “row groups”

• Within each row group, data from different columns is stored separately

…

…
Row
Group
1

Row
Group
2

Row
Group N

Col 1 Block 1

Col 1 Block 2

Col 1 Block 3

Col 2 Block 1

Col 2 Block 2

Col 2 Block 3

Col 3 Block 1

Col 3 Block 2

Col 1 Block 4

Col 1 Block 5

Col 1 Block 6

Col 2 Block 4

Col 2 Block 5

Col 3 Block 3

Col 3 Block 4

Col 1 Block i

Col 1 Block
i+1Col 1 Block
i+1

Col 2 Block j

Col 2 Block
j+1

Col 3 Block k

Col 3 Block k+1

Header: Offset of start of each row / column group, and ranges of
records in each row group

…

…

Using header, can
efficiently read any
subset of columns or
rows without
scanning whole file
(unlike CSV)

Within a row group,
data for each column
is stored together

Predicate Pushdown w/ Parquet & Pandas

pd.read_parquet(‘file.pq’, columns=[‘Col 1’, ‘Col 2’])

• Only reads col1 and col2 from disk

• For a wide dataset saves a ton of I/O

Performance Measurement

47x speedup

• Compare reading CSV to parquet to just columns we need

When to Use Parquet?

• Will always be more efficient than CSV

• Converting from Parquet to CSV takes time, so only makes sense to
do so if working repeatedly with a file

• Parquet requires a library to access/read it, whereas many tools can
work with CSV

• Because CSV is text, it can have mixed types in columns, or other
inconsistencies
• May be useful sometimes, but also very annoying!

• Parquet does not support mixed types in a column

Summary

• Column oriented databases are a different way to “linearize” data to
disk than the row-oriented representation we have studied

• A good fit for “warehousing” workloads that mostly read many
records of a few tables

• C-Store system implements many additional ideas:
• “Late materialization” execution
• Column-specific compression and direct execution on compressed data
• Read/write optimized stores

• Ideas have found their way into many modern systems and libraries,
e.g., Parquet

	Slide 1: 6.5830 Lecture 9
	Slide 2: Plan for Next Few Lectures
	Slide 3: Recap - Join Algorithm
	Slide 4: Recap Selinger Optimizer
	Slide 5
	Slide 6: Clicker - Intermediate Sizes
	Slide 7
	Slide 8: Cost of Base Table Operations
	Slide 9: Cost of Base Table Operations
	Slide 10: Cost of Base Table Operations
	Slide 11: Cost of Joins
	Slide 12: Cost of Joins
	Slide 13: Enumerating Plans
	Slide 15: Join ordering
	Slide 16: Dynamic Programming Algorithm
	Slide 17: Postgres example
	Slide 18: Postgres example
	Slide 20: Selinger Algorithm
	Slide 21: Selinger Algorithm
	Slide 22: Example
	Slide 23: Example (con’t)
	Slide 25: Complexity (cont.)
	Slide 26: Interesting Orders
	Slide 27: Optimization Recap
	Slide 28: Rest of today: Column Stores
	Slide 29: Typical Database Setup
	Slide 30: Problem
	Slide 31: Typical OLTP Schema
	Slide 32
	Slide 33
	Slide 34: Star vs. Snowflake Schema
	Slide 35
	Slide 36: 2 Dimensional Case
	Slide 37
	Slide 38: Typical OLAP Operations
	Slide 39: Rollup
	Slide 41: How Long Does a Scan Take?
	Slide 42: Column Representation Reduces Scan Time
	Slide 43: Linearizing a Table – Row store
	Slide 44: Linearizing a Table – Column Store
	Slide 45: Tables Often Super Wide
	Slide 46: When Are Columns Right?
	Slide 47: C-Store: Rethinking Database Design from the Ground Up
	Slide 48: Query Processing Example
	Slide 49: Query Processing Example
	Slide 50: Query Processing Example
	Slide 51: Why Compress?
	Slide 52: Column-Oriented Compression
	Slide 53: Run Length Encoding
	Slide 54: Dictionary Encoding
	Slide 55: Lempel Ziv Encoding
	Slide 76: Delta Encoding
	Slide 77: Bitmap Encoding
	Slide 78: Sorted Data
	Slide 79: Operating on Compressed Data
	Slide 80: Direct Operation Optimizations
	Slide 82: Compression + Sorting is a Huge Win
	Slide 83: Study Break: Compression
	Slide 84: Write Performance
	Slide 85: When to Rewrite ROS Objects?
	Slide 86: Problem: Lots of Partitions
	Slide 87: Problem: Lots of Partitions
	Slide 88: Problem: Lots of Partitions
	Slide 89: Problem: Lots of Partitions
	Slide 90: Problem: Lots of Partitions
	Slide 91
	Slide 99: Column-Oriented Data In Modern Systems
	Slide 100: Efficient Data Loading: Parquet
	Slide 101: Parquet Format
	Slide 102: Predicate Pushdown w/ Parquet & Pandas
	Slide 103: Performance Measurement
	Slide 104: When to Use Parquet?
	Slide 105: Summary

