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Plan for Next Few Lectures
Admission Control

Connection Management

Query System

Parser

Rewriter

Planner

Executor

– Optimizer (Last Time)

Access 
Methods

Buffer 
Manager

Lock 
Manager

Log 
Manager

Lec 8

Lec 9 – Column Stores (This 
Lecture) 

Lec 7 – Join Algos



Optimization Recap

• Selinger Optimizer is the foundation of 
modern cost-based optimizers
– Simple statistics
– Several heuristics, e.g., left-deep
– Dynamic programming algo for join ordering

• Easy to extend, e.g., with:
– More sophisticated statistics
– Fewer heuristics



Optimization Steps

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

100 tuples/page
10 pages RAM
10 KB/page 

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

100

10K (cardinality)

0.1 (selectivity)

1000

1000 30000

3000

SELECT * FROM emp, dept, kids
WHERE sal > 10k
AND emp.dno = dept.dno
AND emp.eid = kids.eid

Steps:
For each plan alternative:
1.  Estimate sizes of relations
2.  Estimate selectivities
3.  Compute intermediate sizes
4.  Evaluate cost of plan operations

5. Select best plan
Index vs scan?

Join algo?

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
!"""

!""×!"""
 = 0.01

Kids is foreign key;
Each kid joins w/ 3 
emps

Join  Ordering?  Why not kids / emp first? 



Today: 
Column 
Stores
A different way to 
build a database 
system



Typical Database Setup

Transactional database
Lots of writes/updates
Reads of individual records

Analytics / Reporting Database
“Warehouse”

Lots of reads of many records
Bulk updates

Typical query touches a few columns

“Extract, Transform, Load”



Example Warehouse: TPC-H

All use through lineitem_orders – I.e., products purchased by day, or by customer … 

“star schema”



How Long Does a Scan Take?

• Time proportional to amount of data read
• Example

GM 30.77 1,000 NYSE 1/17/2007
GM 30.77 10,000 NYSE 1/17/2007
GM 30.78 12,500 NYSE 1/17/2007

AAPL 93.24 9,000 NQDS 1/17/2007

“Row” Representation

Even though we only need price, date and symbol, 
if data is on disk, must scan over all columns

SELECT avg(price) FROM tickstore  WHERE symbol = 
‘GM’ and date = ‘1/17/2007’

price quantity exchange datesymbol

x
x
x
x

Magnetic Disk

Head

Record 
about to be 

read

Memory and SSD also transfer a block at a time, so 
same issue arises. 



Column Representation Reduces Scan Time

• Idea:  Store each column in a separate file

30.77
30.77
30.78
93.24

GM
GM
GM

AAPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

1/17/2007
1/17/2007
1/17/2007
1/17/2007

Column Representation

Reads Just 3 
Columns

Assuming each column is same size, reduces bytes read from 
disk by factor of 3/5

In reality, databases are often 100’s of columns



Linearizing a Table – Row 
store

C1 C2 C3 C4 C5 C6

R1 C1
R1 C2
R1 C3
R1 C4
R1 C5
R1 C6
R2 C1
R2 C2
R2 C3
R2 C4
R2 C5
R2 C6
R3 C1
R3 C2
R3 C3
R3 C4
R3 C5
R3 C6
R4 C1
R4 C2
R4 C3
R4 C4
R4 C5
R4 C6

Memory/Disk 
(Linear Array)



Linearizing a Table – 
Column Store

C1 C2 C3 C4 C5 C6

R1 C1
R2 C1
R3 C1
R4 C1
R5 C1
R6 C1
R1 C2
R2 C2
R3 C2
R4 C2
R5 C2
R6 C2
R1 C3
R2 C3
R3 C3
R4 C3
R5 C3
R6 C3
R1 C4
R2 C4
R3 C4
R4 C4
R5 C4
R6 C4

Memory/Disk 
(Linear Array)



Tables Often Super Wide

• Data warehouse at Cambridge Mobile 
Telematics

Table #columns 
 t1 |   251
 t2 |   248
 t3 |   134
 t4 |   107
 t5 |    87
 t6 |    83
 t7 |    71
 t8 |    54
 t9 |    52
 t10 |    45

Average query access 4-5 fields

Top 2-3 tables involved in nearly every query

Using a row-store would impose ~200/4 = 
50x performance overhead
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When Are Columns Right?

• Warehousing (OLAP)
• Read-mostly;  batch update
• Queries: Scan and aggregate a few columns

• Vs. Transaction Processing (OLTP)
• Write-intensive, mostly single record ops.

• Column-stores: OLAP optimized
• In practice >10x performance on comparable HW, for 

many real world analytic applications
• True even if w/ Flash or main memory!

Different architectures for different workloads
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C-Store: Rethinking Database Design 
from the Ground Up

Separate Files
Column-based Compression

Write 
optimized 

storage

Inserts

Tuple
Mover

Column-oriented 
query executor

SYM PRICE VOL EXCH TIME

IBM 100 1024
4 NYSE 1.17.07

IBM 102 11245 NYSE 1.17.07

SUN 58 3455 NQDS 1.17.07

SYM PRICE VOL EXCH TIME

IBM 100 10244 NYSE 1.17.07

IBM 102 11245 NYSE 1.17.07

SUN 58 3455 NQDS 1.17.07

“C-Store: A Column-oriented DBMS” -- VLDB 05

Shared nothing 
horizontal partitioning
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Query Processing Example

• Traditional 
Row Store

SELECT avg(price)
FROM tickstore 
WHERE symbol = ‘GM’ 
AND date = ‘1/17/2007’

Disk
GM 30.77 1,000 NYSE 1/17/2007
GM 30.77 10,000 NYSE 1/17/2007
GM 30.78 12,500 NYSE 1/17/2007

AAPL 93.24 9,000 NQDS 1/17/2007

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Complete tuples

Complete tuples

Complete tuples



16

Query Processing Example
• Basic Column  

Store

• “Early 
Materialization”

SELECT avg(price)
FROM tickstore 
WHERE symbol = ‘GM’ 
AND date = ‘1/17/2007’

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Disk
30.77
30.77
30.78
93.24

GM
GM
GM
AAPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

1/17/2007
1/17/2007
1/17/2007
1/17/2007

Construct Tuples

GM 30.77 1/17/07

Fields from same 
tuple at same index 
(position) in each 

column file

Row-oriented 
plan

Complete tuples

Complete tuples

Complete tuples
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Query Processing Example

• C-Store

• “Late 
Materialization”

Disk
30.77
30.77
30.78
93.24

GM
GM
GM
AAPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

1/17/2007
1/17/2007
1/17/2007
1/17/2007

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND
Position Bitmap

(1,1,1,1)

Position Bitmap
(1,1,1,0)

Position Bitmap
(1,1,1,0)

Position Lookup

Prices

AVG

Much less data 
flowing through 

memory

See Abadi et al
ICDE 07
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Why Compress?

• Database size is 2x-5x larger than the volume of data 
loaded into it

• Database performance is proportional to the amount of 
data flowing through the system

Abadi et al, SIGMOD 06
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u Query engine processes compressed data
u Transfers load from disk to CPU
u Multiple compression types

u Run-Length Encoding (RLE), LZ, Delta 
Value, Block Dictionary Bitmaps, Null 
Suppression

u System chooses which to apply
u Typically see 50% - 90% compression

u NULLs take virtually no space

Column-Oriented Compression

30.77
+0

+.01
+62.47

GM
GM
GM

AAPL

1,000
10,000
12,500
9,000

3xGM
1XAPPL

30.77
30.77
30.78
93.24

1/17/2007
1/17/2007
1/17/2007
1/17/2007

4 x 1/17/2007NYSE
NYSE
NYSE
NQDS

3xNYSE
1XNQDS

1,000
10,000
12,500
9,000

RLE Delta LZ RLE RLE

Columns 
contain 

similar data, 
which makes 
compression 

easy



Run Length Encoding

• Replace repeated values with a count and a 
value

• For single values, use a run length of 1

• Naively, can increase storage space

• Can use a shorter bit sequence for 1s, at the 
cost of more expensive decompression

• E.g., 1110002 à 3x1, 3x0, 1x2

• Works well for mostly-sorted, few-valued 
columns

20



Dictionary Encoding

• Many variants;  simplest is to replace string 
values with integers and maintain a dictionary

• I.e., AAPL, AAPL, IBM, MSFT à 

1,1,2,3  +   1:AAPL, 2:IBM, 3:MSFT

• Works well for few-valued string columns

• Choice of dictionary not obvious

• Words?  Records? 

21



Lempel Ziv Encoding

• LZ (“Lempel Ziv”) Compression

• General purpose lossless data compression

• Builds data dictionary dynamically as it runs

• Add new bit strings to the dictionary as they 
are encountered

• Treat entire column as a document

22



LZ Example

• AAPLAAPLIBMAAPL

23

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16
Output:  



LZ Example

• AAPLAAPLIBMAAPL

24

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16
Output:  1 



LZ Example

• AAPLAAPLIBMAAPL

25

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27
Output:  1 



LZ Example

• AAPLAAPLIBMAAPL

26

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28

Output:  1 1



LZ Example

• AAPLAAPLIBMAAPL

27

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28

Output:  1 1 16



LZ Example

• AAPLAAPLIBMAAPL

28

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29

Output:  1 1 16 12



LZ Example

• AAPLAAPLIBMAAPL

29

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30

Output:  1 1 16 12



LZ Example

• AAPLAAPLIBMAAPL

30

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30

Output:  1 1 16 12 27



LZ Example

• AAPLAAPLIBMAAPL

31

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31

Output:  1 1 16 12 27



LZ Example

• AAPLAAPLIBMAAPL

32

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31

Output:  1 1 16 12 27



LZ Example

• AAPLAAPLIBMAAPL

33

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31, PLI: 32

Output:  1 1 16 12 27 29



LZ Example

• AAPLAAPLIBMAAPL

34

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31, PLI: 32, LI: 33, IB: 34

Output:  1 1 16 12 27 29 9



LZ Example

• AAPLAAPLIBMAAPL

35

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31, PLI: 32, LI: 33, IB: 34, BM: 35

Output:  1 1 16 12 27 29 9 2



LZ Example

• AAPLAAPLIBMAAPL

36

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31, PLI: 32, LI: 33, IB: 34, BM: 35, MA:36

Output:  1 1 16 12 27 29 9 2 13



LZ Example

• AAPLAAPLIBMAAPL

37

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31, PLI: 32, LI: 33, IB: 34, BM: 35, MA:36

Output:  1 1 16 12 27 29 9 2 13



LZ Example

• AAPLAAPLIBMAAPL

38

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31, PLI: 32, LI: 33, IB: 34, BM: 35, MA:36

Output:  1 1 16 12 27 29 9 2 13 31



LZ Example

• AAPLAAPLIBMAAPL

39

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31, PLI: 32, LI: 33, IB: 34, BM: 35, MA:36 
AAPL:37

Output:  1 1 16 12 27 29 9 2 13 31



LZ Example

• AAPLAAPLIBMAAPL

40

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31, PLI: 32, LI: 33, IB: 34, BM: 35, MA:36 
AAPL:37

Output:  1 1 16 12 27 29 9 2 13 31 12



LZ Example

• AAPLAAPLIBMAAPL

41

Dictionary: A:1, B:2, … ,F:6, … ,I:9, …, L:12, M:13, …, P:16, .., AA:27, 
AP:28, PL: 29, LA: 30, AAP:31, PLI: 32, LI: 33, IB: 34, BM: 35, MA:36 
AAPL:37

Output:  1 1 16 12 27 29 9 2 13 31 12

Reduced from 15 to 11 symbols

But future AAPL patterns will be emitted as 1 byte instead of 4

Dictionary can be further encoded, e.g., using entropy encoding to make 
most common patterns use least bits (“Huffman encoding”)



Bit Packing

• Encode values with fewest possible bits
• Each value becomes bit-length (e.g., 0-8 or 0-32), 

followed by value in that many bits
• E.g.,: 1 2 37 7

• Need 1, 2, 6, and 3 bits respectively
• Each number becomes 3 bit header and encoded 

value
• 1:  0x001, 0x1

• 2: 0x010, 0x10

• 37: 0x110, 0x100101

• 7: 0x011, 0x111

• 3 x 4 + 12 = 24 bits to encode, vs e.g., 8x4 = 32 42



Delta Encoding

• Consecutive values encoding as difference to 
previous values

• 1.1, 1.2, 1.3 à 1.1, +.1, +1

• After encoding as deltas, bit-pack

• Works if deltas can be represented in fewer 
bits than whole values

• Works well for e.g., floats with small variations

43



Bitmap Encoding

• Encode few valued columns as bitmaps

• M M M F F à 11100, 00011

• If fewer distinct values than bitwidth of field, 
saves space

• Bitmaps can be further compressed, e.g., 
using RLE

• Bitmaps are very good for certain kinds of 
operations, e.g., filtering

44



Sorted Data

• Delta and RLE work great on sorted data

• Trick: Secondary sorting

45

X Y
a 2
b 2
a 1
b 1

X Y
a 1
a 2
b 1
b 2

Sort on X, 
then Y

Y is not 
sorted, but 
if many 
duplicates 
of X, will 
be “mostly” 
sorted
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Operating on Compressed Data

Disk
30.77
+0
+.01
+62.47

3xGM
1xAPPL

1,000
10,000
12,500
9,000

NYSE
NYSE
NYSE
NQDS

4x1/17/2007

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND
Position Bitmap

(4x1)

Position Bitmap
(3x1,1x0)

Position Bitmap
(3x1,1x0)

Position Lookup

Prices

AVG

Only possible 
with late 

materialization!

Compression 
Aware
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Direct Operation Optimizations

• Compressed data used directly for position lookup
• RLE, Dictionary, Bitmap

• Direct Aggregation and GROUP BY on compressed 
blocks
• RLE, Dictionary

• Join runs of compressed blocks
• RLE, Dictionary

• Min/max directly extracted from sorted data
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TPC-H Compression Performance
Query: SELECT colY, SUM(colX) 

                  FROM lineItem GROUP BY colY
• TPC-H Scale 10 (60M records)
• Sorted on colY, then colX
• colY uncompressed, cardinality varies

Y X
1 A
1 C
1 D
2 B
2 C
3 A
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Compression + Sorting is a Huge Win

§ How can we get more sorted data?
§ Store duplicate copies of data

§ Use different physical orderings

§ Improves ad-hoc query performance
§ Due to ability to directly operate on sorted, 

compressed data

§ Supports fail-over / redundancy



Study Break: Compression

• For each of the following columns, what 
compression method would you recommend?

(Choose from A. RLE, B. Dictionary, C. Bitmap, D. 
Delta, E. Bit-packing)

https://clicker.mit.edu/6.5830/

An unsorted column of integers in the range 0-100

A mostly sorted column of arbitrary strings

A mostly sorted column of integers in the range 0-10

A sorted column of floats

An unsorted column of strings w/ 3 values 50

Delta/Bit-packing (LZ/dictionary also OK)

LZ

RLE

Delta

Bitmap
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Write Performance

Tuple Mover
Asynchronous Data
 Movement

Queries read 
from both WOS 
and ROS

Batched
Amortizes seeks
Amortizes 
recompression
Enables continuous 
load

Trickle load: Very 
Fast Inserts

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

Memory: mirrored
projections in
insertion order
(uncompressed)

> Write-optimized
Column Store
(WOS)



When to Rewrite ROS Objects?
• Store multiple ROS objects, instead of just one

• Each of which must be scanned to answer a query

• Tuple mover writes new objects
• Avoids rewriting whole ROS on merge

• Periodically merge ROS objects to limit number of distinct 
objects that must be scanned (“Log structured merge tree”)

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B C

> Read-optimized
Column Store (ROS)

 Disk: data is sorted and
compressed

(A B C | A)

A B CTuple Mover
Memory: mirrored
projections in
insertion order
(uncompressed)

> Write-optimized
Column Store
(WOS)

WOS ROS

Older objects



Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1 P2 P3



Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1-2
P3 P4 P5



Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1-2 P3-4
P6 P7P5



Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1-2 P3-4 P5-6
P7



Problem: Lots of Partitions

• Performance will degrade as you get many partitions
• Idea:  merge some partitions together, but how?

• Log structured merge tree:  arrange so partitions merge a logarithmic 
number of times

P1-4

P1 has merged 2 times, but won’t merge again until after 8 
more partitions arrive

P5-6
P7



P1 P2 P3 P4 P5 P6 P7 P8

1-2 3-4

1-4

5-6 7-8

Exponentially 
Larger & Less 
Frequent 
Merges

Log Structure Merge Tree



Column-Oriented Data In Modern Systems

• C-Store commercialized as Vertica
• Although it wasn’t the first column-oriented 

DB, it led to a proliferation of commercial 
column-oriented systems

• Now the de-facto way that analytic database 
systems are built, including Snowflake, 
Redshift, and others.

• One popular open-source option: Parquet



Efficient Data Loading: Parquet
• Parquet is column-oriented file format that is MUCH 

more efficient than CSV for storing tabular data
• Vs CSV, Parquet is stored in binary representation

• Uses less space
• Doesn’t require conversion from strings to internal 

types
• Doesn’t require parsing or error detection 
• Column-oriented, making access to subsets of 

columns much faster



Parquet Format

• Data is partitioned sets of rows, called “row groups”
• Within each row group, data from different columns is stored separately

…

…
Row 
Group 
1

Row 
Group 
2

Row 
Group N

Col 1 Block 1
Col 1 Block 2
Col 1 Block 3

Col 2 Block 1
Col 2 Block 2
Col 2 Block 3

Col 3 Block 1
Col 3 Block 2

Col 1 Block 4
Col 1 Block 5
Col 1 Block 6

Col 2 Block 4
Col 2 Block 5

Col 3 Block 3
Col 3 Block 4

Col 1 Block i
Col 1 Block 
i+1Col 1 Block 
i+1

Col 2 Block j
Col 2 Block 
j+1

Col 3 Block k
Col 3 Block k+1

Header:  Offset of start of each row / column group, and ranges of 
records in each row group

…

…

Using header, can 
efficiently read any 
subset of columns or 
rows without 
scanning whole file 
(unlike CSV)

Within a row group, 
data for each column 
is stored together



Predicate Pushdown w/ Parquet & Pandas

pd.read_parquet(‘file.pq’, columns=[‘Col 1’, ‘Col 2’])

• Only reads col1 and col2 from disk
• For a wide dataset saves a ton of I/O



Performance Measurement

47x speedup

• Compare reading CSV to parquet to just columns we need



When to Use Parquet?

• Will always be more efficient than CSV
• Converting from Parquet to CSV takes time, so only makes sense to 

do so if working repeatedly with a file
• Parquet requires a library to access/read it, whereas many tools can 

work with CSV
• Because CSV is text, it can have mixed types in columns, or other 

inconsistencies
• May be useful sometimes, but also very annoying!
• Parquet does not support mixed types in a column



Summary

• Column oriented databases are a different way to “linearize” data to 
disk than the row-oriented representation we have studied

• A good fit for “warehousing” workloads that mostly read many 
records of a few tables

• C-Store system implements many additional ideas:
• “Late materialization” execution
• Column-specific compression and direct execution on compressed data
• Read/write optimized stores

• Ideas have found their way into many modern systems and libraries, 
e.g., Parquet


