6.5830 Lecture 7

Join Algorithms
September 27, 2023

Plan for Next Few Lectures

Admission Control

Connection Management

Query System

Parser

Rewriter

Planner

Executor

Lec 9 — Column Stores

Q Lec 8 - Optimizer

Storage System

Join Algorithms: Today!t
Access Buffer Lock Log
Methods Manager Manager \ERERG]

Last Time: Access Methods

Access method: way to access the records of
the database INDERES

3 main types:

— Heap file / heap scan
— Hash index / index lookup

— B+Tree index / index lookup / scan € next time

Many alternatives: e.g., R-trees €< next time

Each has different performance tradeoffs

B+Trees

Root node Values of AttrA

Index on Attr A ptr wvalll ptr wvall2 ptr vall3
<valll

ptr val2l ptr val22 ptr val23 .. Inner nodes

>val2l, <val22

ptr valnl ptr valn2 ptr valn3

<valnil

RIDn RIDn+1 RIDn+2 ptr — RIDn+3 RIDn+4 RIDn+5 ptr

RID: Record ID = a
reference (pointer) to
a record in heap file

Leaf nodes; records in Attr A order, w/ link pointers

B+Trees

Root node

p ptr vall3

<valll

ptr

RIDn RIDn+1 RIDn+2 ptr —— RIDn+3 RIDn+4 RIDn+5 ptr

Leaf nodes; records in Attr A order, w/ link pointers

B+Trees

RIDn RIDn+1 RIDn+2 ptr —— RIDn+3 RIDn+4 RIDn+5 ptr

Leaf nodes; records in Attr A order, w/ link pointers

Properties of B+Trees

Branching factor = B

Logg(tuples) levels

Logarithmic insert/delete/lookup performance
Support for range scans

Link pointers
No data in internal pages

Balanced (see text “rotation”) algorithms to rebalance on
insert/delete

Fill factor: All nodes except root kept at least 50% full
(merge when falls below)

Clustered / unclustered

Unclustered Index

Index File

Heap File

vl B, L X0

Attrl

Attrn

I n d eX S Ca n Traverse the records

in Attrl order, or
l l lookup a range

<3 >3, 5 38,
<5 <79l l
01 2 2 2 3 4 5 6 8 9 9 Attrl >=6 &
Attrl <9

Hdr R R R R H R R R R PR ey gy g
1 2 34 d 4 5 6 7 d 8 9 1 1 .
Heap File

r r 0 1

3 2 94
Attrl |6102 9 812 5

Pages scattered throughout heapfile

Note random access! — this is an “unclustered” index

Entire Table

Costs of Random Access | |

i

T bytes
e Consider an SSD with 100 usec “seek” latency, 1 GB/sec BW
 Query accesses B bytes
* R bytes per record, whole table is T bytes
* SeqscantimeS=T/1GB/sec Time to scan B bytes
* Rand access via index time = 100 usec * B/R + B/ 1GB/sec
e Suppose Ris 100 bytes, T is 10 GB Number

of records

* When is it cheaper to scan than do random lookups via index?

100x10° * B /100 + B/1x10° > 10x10° / 1x10°
1x10°B + 1x10°B > 10
B >9.99x10°

For scans of larger than 10 MB, cheaper to scan

entire 10 GB table than to use index

Clustered Index

* Order pages on disk in index order

<3 23,
<5

Index File

A\
N o

N
O v

Heap File

vl B, L X0

Attrl

Clustered Index

* Order pages on disk in index order

<3 23, 25, 2§,

/ <5 <7 9 Index File
O 1 2 2 2 3 4 5 6 8 9 9
Per record random [/O = per page random |/O
for index scans on Attr1 (but only Attr1!)
Hdr R R R R H R R R R H R R R R

6 8 27 d 1 1 4 1 d 4 9 3 8 HeapFile
r O 1 r

0 122 2 3 4 5 6 8 9 9

Attrl

Benefit of Clustering

* Consider an SSD with 100 usec latency, 1 GB/sec BW

* (Query accesses B bytes, R bytes per record, whole table is T bytes
* Pages are P bytes

 SeqscantimeS=T/1GB/sec

e Clustered index access time = 100 usec * B/PR + B / 1GB/sec

* Suppose Ris 100 bytes, Tis 10 GB, Pis 1 MB

* When s it cheaper to scan than do random lookups via clustered index?

100x10° * B/ 1x10° + B/1x10° > 10x10° / 1x10°
1x1012B + 1x10°B > 10
B > 9.99x10°

For scans of larger than 9.9 GB, cheaper to scan

entire 10 GB table than to use clustered index

Hash Index

n buckets, on n

disk pages
On Disk Hash Table
— Disk page 1
(‘sam’, 10Kk, ...) H(fl)]
(‘mike’, 20K, ... —
e.g., H(x) = x mod n
—
Issues
How big to make table? Disk Page n

If we get it wrong, either

waste space, or

end up with long overflow chains, or
have to rehash

Extensible Hashing

Create a family of hash tables parameterized by k
H, (x) = H(x) mod 2k
Start with k=1 (2 hash buckets)

Use a directory structure to keep track of which
bucket (page) each hash value maps to

When a bucket overflows, increment k (if
needed), create a new bucket, rehash keys in
overflowing bucket, and update directory

https://clicker.mit.edu/6.5830/
Study Break

* What indexes would you create on emp for the

following queries (assuming each query is the only
query the database runs and emp is really really large)

SELECT MAX(sal) FROM emp

SELECT sal FROM emp WHERE id = 1

SELECT name FROM emp WHERE sal > 100k

SELECT name FROM emp WHERE sal > 100k AND dept = 2

(A) BTree, Btree, None, Hash
(B) BTree, Hash, BTree, none
(C) None, Hash, BTree, BTree
(D) BTree, Hash, BTree, BTree

Study Break

 What indexes would you create for the following
qgueries (assuming each query is the only query the
database runs)

SELECT MAX(sal) FROM emp
B+Tree on emp.sal
SELECT sal FROM emp WHERE id = 1
Hash index on emp.id
SELECT name FROM emp WHERE sal > 100k
B+Tree on emp.sal (maybe)
SELECT name FROM emp WHERE sal > 100k AND dept = 2
B+tree on emp.sal (maybe), Hash on dept.dno (maybe)

Indexes Recap

Insert O(1) O(logg n) O(1)
Delete O(P) O(loggz n) O(1)
Scan O(P) O(loggn+R) --/O(P)
Lookup O(P) O(loggz n) O(1)

n : number of tuples

P : number of pages in file

B : branching factor of B-Tree
R : number of pages in range

Plan questions
I_Iename,count

o-count >7
|

aagg:count(*), group by ename

Order?
Lecture 8 A ><

Y. eno=eno
N\

| T)

dno=dno

= >

0-name=‘eecs’ o-sal>50k

Implementation?
— This Lecture

Storage model &
access methods —
Last time

dept

Join Algorithms
Nested loops (NL)
Blocked nested loops
Index nested loops (INL)

When tables fit in memory
— Hash (only 1 needs to fit)
— Sort merge (both must fit)

When tables don’t fit into memory
— Blocked hash join

— External sort merge

— Simple hash

— Grace hash

Notation

Evaluating Join(S,R,predicate)
Assume R is always the smaller table

{S} — number of records in S
|S| — number of pages of S

Memory of size M pages

Nested Loops

forsinS:
forrinR
if pred(s,r):
outputsjoinr

Inner vs outer matters, if only one relation fits in
memory

{S} * {R} comparisons in either case

Basic Join Summary
 |cPucomplexity [//OComplexity [Notes

Nested loops {R} x {S} |S| + {S}|R]| Choice of inner /
R doesn’t fit in memory outer matters when R
|S| + |R] fits in memory and S

R fits in memory doesn’t

Block Nested Loops

R

B = block size (< M) —
while (not at end of R):

R' = read B records from R

= Pass 1

= Pass 2

forsinS:

forrin R’ bce 3
if pred(s,r):
output sjoinr

Inner vs outer matters; {S} * {R}
comparisons, but {R}/B passes over S

Basic Join Summary
 |cPucomplexity [//OComplexity [Notes

Nested loops {R} x {S} |S| + {S}|R]| Choice of inner /
R doesn’t fit in memory outer matters when R
|S| + |R] fits in memory and S
R fits in memory doesn’t

Blocked nested {R} x {S} [|R|/M]X|S] Better to partition R

loops Here we use M not B (fewer passes)

Index Nested Loops

e Assume Index | on Join Attribute of R

forsinS:

for r in lookup s.joinAttr in I:

output s joinr

RN -

Inner vs outer matters; {S} lookups

Inner is always indexed attribute

Note that index lookups are random, unless S is ordered
on join attribute and index is clustered on join attribute

Basic Join Summary

Nested loops

Blocked nested
loops

Index nested
loops

{R} x {S}

{R} x {S}

{R}xD
D is tree depth, <~5

|S| +{S}R]

R doesn’t fit in memory
S| + [R]

R fits in memory

[IRI/M]X|S]| + |R]

{R}xD

I/0 random unless D
sorted & index clustered
on join attr

Choice of inner /
outer matters when R
fits in memory and S
doesn’t

Better to partition R
(fewer passes)

Assuming index on S.

(In Memory) Hash Join

* Essentially the same as index nested loops,
with in-memory hash “index” built on the fly

* Build hash table T on join attribute of R

T = build hash table on joinAttr of R
forsinS:)
for rin lookup s.joinAttr in T: —
output s joinr
Inner vs outer matters; {S}

S

“Rec1’

lookups, requires memory to hold
hash table on R

Basic Join Summary

Nested loops

Blocked nested
loops

Index nested
loops

Hash join

{R} x {S}

{R} x {S}

{S}xD
D is tree depth, <~5

{R} +{S}

|S| +{S}R]

R doesn’t fit in memory
S| + [R]

R fits in memory

[IRI/M]X|S]| + |R]

{S}xD

/O random unless D
sorted & index clustered
on join attr

IR| + 5]

Choice of inner /
outer matters when R
fits in memory and S
doesn’t

Better to partition R
(fewer passes)

Assuming index on R.

Both tables must fit in
memory

Blocked Hash

* Similar to block nested loops

* |teratively:

— Build hash table on chunk of R so that hash table
fits in memory

— Probe (lookup in) with all of S
— Repeat with next chunk of R

Basic Join Summary

Nested loops

Blocked nested
loops

Index nested
loops

Hash join

Blocked hash join

{R} x {S}

{R} x {S}

{R}xD
D is tree depth, <~5

{R} +{S}

{R} + ([IRI/M]x{S})

|S| +{S}R]

R doesn’t fit in memory
S| + [R]

R fits in memory

[IRI/M]X|S]| + |R]

{R}xD

/O random unless D
sorted & index clustered
on join attr

IR| + 5]

[IRI/M]x|S]| + |R]

Choice of inner /
outer matters when R
fits in memory and S
doesn’t

Better to partition R
(fewer passes)

Assuming index on S.

Both tables must fit in
memory

Sort Merge Join

e Sort both S and R (or use index on each to
traverse in order)

* Merge (no shared duplicates) _ -
- 1

while (i < {R}and j < {S}): =
if (R[i].joinAttr == S[j].joinAttr): 3
output RJi] join S[j] >
if (R[i].joinAttr < S[j].joinAttr): °
i=i+1
else:
j=j+1

N o AW N

Output:

Sort Merge Join

e Sort both S and R (or use index on each to
traverse in order)

* Merge (no shared duplicates) _ -
1

while (i < {R}and j < {S}): =
if (R[i].joinAttr == S[j].joinAttr): =3
output RJi] join S[j] >
if (R[i].joinAttr < S[j].joinAttr): °
i=i+1
else:
j=j+1

N o AW N

Output:

Sort Merge Join

e Sort both S and R (or use index on each to
traverse in order)

* Merge (no shared duplicates) _ -
1 2

while (i < {R} and j < {S}):
if (R[i].joinAttr == S[j].joinAttr): =3 = 3

output RJi] join S[j] > :
if (R[i].joinAttr < S[j].joinAttr): ° j
i=i+1
else:
j=j+1

Output: 3

Sort Merge Join

e Sort both S and R (or use index on each to
traverse in order)

* Merge (no shared duplicates) _ -
1 2

while (i < {R} and j < {S}):
if (R[i].joinAttr == S[j].joinAttr): =3 3

output RJi] join S[j] > =1
if (R[i].joinAttr < S[j].joinAttr): ° j
i=i+1
else:
j=j+1

Output: 3

Sort Merge Join

e Sort both S and R (or use index on each to
traverse in order)

* Merge (no shared duplicates) _ -
1 2

while (i < {R} and j < {S}):
if (R[i].joinAttr == S[j].joinAttr): 3 3

output RJi] join S[j] —E =1
if (R[i].joinAttr < S[j].joinAttr): ° j
i=i+1
else:
j=j+1

Output: 3

Sort Merge Join

e Sort both S and R (or use index on each to
traverse in order)

* Merge (no shared duplicates) _ -
1 2

while (i < {R} and j < {S}):
if (R[i].joinAttr == S[j].joinAttr): 3 3

output RJi] join S[j] —E :
if (R[i].joinAttr < S[j].joinAttr): ° -

i=i+1 !
else:

j=j+1

Output: 3,5

Sort Merge Join

e Sort both S and R (or use index on each to
traverse in order)

* Merge (no shared duplicates) _ -
1

while (i < {R} and j < {S}):
if (R[i].joinAttr == S[j].joinAttr): 3
output RJi] join S[j] —E
if (R[i].joinAttr < S[j].joinAttr): °
i=i+1

else:
j=j+1

N o AW N

Output: 3,5

Sort Merge Join

e Sort both S and R (or use index on each to
traverse in order)

* Merge (no shared duplicates) _ -
1

while (i < {R} and j < {S}):
if (R[i].joinAttr == S[j].joinAttr): 3
output RJi] join S[j] >
if (R[i].joinAttr < S[j].joinAttr): i
i=i+1

else:
j=j+1

N o AW N

Output: 3,5

Sort Merge Join

e Sort both S and R (or use index on each to
traverse in order)

* Merge (no shared duplicates) _ -

while (i < {R} and j < {S}): 1 2
if (R[i].joinAttr == S[j].joinAttr): 3 3
output RJi] join S[j] > :
if (R[i].joinAttr < S[j].joinAttr): °
i=i+1 = —i
else:
j =j +1 Output: 3,5

Note that output is sorted!

Handling Duplicates

e What is desired

1

5
. 5
4 copies! ;
(5,5),(5,5),(5,5),(5,5)

N o o W N

* Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

e What is desired
=) 1) 2
5 3
. 5 5
4 copies! ; .
7

(5,5),(5,5),(5,5),(5,5)

* Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

e What is desired
1) 2
=) 5 3
. 5 5
4 copies! ; .
7

(5,5),(5,5),(5,5),(5,5)

* Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

e What is desired

=) 5 =3

. 5 5

4 copies! ; .
(5,5),(5,5),(5,5),(5,5) 7

* Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

e What is desired

=) 5 3

: 5 =5

4 copies! ; .

(5,5),(5,5),(5,5),(5,5) 7
Output: 5

* Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

e What is desired

5 3

—_ = 5 =5

4 copies!) :

(5,5),(5,5),(5,5),(5,5) 7
Output: 5,5

* Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

e What is desired

=) 5 3

. 5 5

4 copies! ; —E

(5,5),(5,5),(5,5),(5,5) 7
Output: 5,5

* Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

e What is desired

5 3

: =5 5

4 copies! ; —E

(5,5),(5,5),(5,5),(5,5) 7
Output: 5, 5,5

* Solution: count run lengths in S and R, emit
cross product of repeated runs

Handling Duplicates

e What is desired

5 3

, =5 5

4 copies! ; —E
(5,5),(5,5),(5,5),(5,5) 7

Output: 5,5,5,5

* Solution: count run lengths in S and R,
emit cross product of repeated runs

Psuedocode for Duplicates

while (i < {R} and j < {S}):
if R[1].JoinAttr == S[]J].JjoinAttr:
rLen = getRunLen(R,1)
sLen = getRunLen(S, Jj)
emitRun(R,S,1i,j,rLen,sLen)
i =1+ rLen
j = J + sLen
elif R[i].joinAttr < S[j].joinAttr:
i=1i4+1
else:
j=3 + 1 def getRunlen(v,i):
runLen = 1
while (i < len(v)-1):

def emitRun(R,S,r,s,rLen,slLen): P-4+ 1

for i in range(r,r+rLen):

L0 if v[i] == v[i-1]:
for j in range(s,s+sLen): runLen = runLen + 1
output R[1] join S[]] else:
break

return runLen

Basic Join Summary

Nested loops

Blocked nested
loops

Index nested
loops

Hash join

Blocked hash join

Sort merge join

{R} x {S}

{R} x {S}

{R}xD

D is tree depth, <~5
{R} +{S}

{R} + ([IRI/M]Xx{S})

{RHog{R} + {SHog{S} +
{S}+{R}

|S| +{S}R]

R doesn’t fit in memory
S| + [R]

R fits in memory

[IRI/M]X|S]| + |R]

{R}xD

/O random unless D
sorted & index clustered
on join attr

IR| + 5]

[IRI/M]x|S]| + |R]
IR| + 5]

Choice of inner /
outer matters when R
fits in memory and S
doesn’t

Better to partition R
(fewer passes)

Assuming index on S.

Both tables must fit in
memory

Assumes both tables
fit in memory;

If already sorted, can
avoid logn step

Study Break

* When would you prefer sort-merge over hash
join?

* When would you prefer index-nested-loops
join over hash join?

Join Processing in Database Systems
with Large Main Memories

LEONARD D. SHAPIRO
North Dakota State University

GPT 4: What is some of the top computer science research out of North Dakota State?

As of my last training data up to January 2022, specific research details about North Dakota
State University (NDSU) might not be as prominent on a global scale as some of the larger
research-focused universities like MIT or Stanford. However, NDSU is a reputable institution
and has research contributions across various fields, including computer science.

IH

“External” Sort Merge Join

Equi-join of two tables S & R

|S| = PagesinS; {S}=TuplesinS
S| 2 [R]

M pages of memory; M > sqrt(|S])

Algorithm:
— Partition S and R into memory sized sorted runs, write out to disk
— Merge all runs simultaneously

Total I/O cost: Read |R| and |S| twice, write once

3(IR| +1S[) 1/Os

Example

R=1,4,3,6,9,14,1,7,11
5=2,3,7,12,9,8,4,15,6

If each run is M pages and M > sqrt(|S|), then there are at most
R1
o1 IS1/sart(|S[]) = sart(|S])

runs of S

! Soif |R| = |S]|, we actually need M to be 2 x sqrt(|S|)
1

[handwavy argument in paper for why it’s only sqrt(|S|)]

4 14 11 7 12 15

Need enough memory to keep 1 page of each run in
memory at a time

Example

R=1,4,3,6,9,14,1,7,11
$=2,3,7,12,9,8,4,15,6

R1=1,3,4 R2=6,9,14 R3=1,7,11
S1=2,3,7 $2=8,9,12 S3=4,6,15

OUTPUT

Example

R=1,4,3,6,9,14,1,7,11
$=2,3,7,12,9,8,4,15,6

R1=1,3,4 R2=6,9,14 R3=1,7,11
S1=2,3,7 $2=8,9,12 S3=4,6,15

OUTPUT

Example

R=1,4,3,6,9,14,1,7,11
$=2,3,7,12,9,8,4,15,6

R1=1,3,4 R2=6,9,14 R3=1,7,11
S1=2,3,7 $2=8,9,12 S3=4,6,15

OUTPUT

(3,3)

Example

R=1,4,3,6,9,14,1,7,11
$=2,3,7,12,9,8,4,15,6

R1=1,3,4 R2=6,9,14 R3=1,7,11
S1=2,3,7 $2=8,9,12 S3=4,6,15

OUTPUT

(3,3)
(4,4)

Example

R=1,4,3,6,9,14,1,7,11
$=2,3,7,12,9,8,4,15,6

R1=1,3,4 R2=6,9,14 R3=1,7,11
S1=2,3,7 $2=8,9,12 S3=4,6,15

OUTPUT

(3,3)
(4,4)

Example

R=1,4,3,6,9,14,1,7,11
$=2,3,7,12,9,8,4,15,6

R1=1,3,4 R2=6,9,14 R3=1,7,11
S1=2,3,7 $2=8,9,12 S3=4,6,15

OUTPUT

(3,3)
(4,4)
(6,6)

Example

R=1,4,3,6,9,14,1,7,11
$=2,3,7,12,9,8,4,15,6

R1=1,3,4 R2=6,9,14 R3=1,7,11
S1=2,3,7 $2=8,9,12 S3=4,6,15

OUTPUT

(3,3)
(4,4)
(6,6)
(7,7)

Outputin
eee sorted
order!

Simple “External” Hash

Idea: Avoid repeated passes over S in blocked hash
Algorithm:
Given hash function H(x) = [O0,...,P-1] (e.g., x mod P)
where P is number of partitions
foriin[O,...,P-1]:
for eachrinR:
if H(r)=i, add r to in memory hash
otherwise, write r back to disk in R’
for eachsinS:
if H(s)=i, lookup s in hash, output matches
otherwise, write s back to disk in S’
replace R with R, S with &’

Hash function in

Pass 0 lllustration %

Scan of R In memory hash table Scan of S

Records in R
with H(r) =0

Remainder of R Remainder of S
(Records with H(r) >0 (Records with H(s) >0

Hash function in

Pass 0 lllustration %

I S

Hash function in

Pass 1 lllustration %

Scan of R In memory hash table Scan of S

Records in R
with H(r) =1

i

Remainder of R Remainder of S
(Records with H(r) > 1 (Records with H(s) > 1

Repeat for P passes

Simple Hash I/O Analysis

Suppose P=2, and hash uniformly maps tuples to partitions
Read IR| + |S]
Write 1/2 (|R| + |S])
Read /2 (IR| + [S[) =2 (|R] +[S])
P=3
Read IR| + |S]
Write 2/3 (IR] +|S|)
Read 2/3 (|R] + [S])
Write 1/3 (|R] + |S])
Read 1/3(|R|+[S[)=3(IR]+[S])
P=4
IR| + S| +2*(3/4 (IR] + [S]))+2* (2/4 (|R]| +|S[)) +2* (/4 (IR] + |S]))
=4 (IR +[S])
=2 P=n;n*(|R|+]|S]|)I/Os

Grace Hash

Can we avoid rewriting some records many times?

Algorithm:
Partition:
Suppose we have P partitions, and H(x) = [0...P-1]
Choose P=|S| /M => P <sqrt(|S|) //may need to leave a little slop for imperfect hashing
Allocate P 1-page output buffers, and P output files for R
For eachrinR:

Write r into buffer H(r) Need one page of RAM for
If buffer full, append to file H(r) each of P partitions
Allocate P output files for S
ForeachsinS: Since
Write s into buffer H(s) M > sqrt([S]) and

if buffer full, append to file H(s) P <sqrt(|S]), all is well
Join:
Foriin [O,...,P-1]
Read file i of R, build hash table (memory should hold this)
Scan file i of S, probing into hash table and outputting matches

3(|R] +|S])1/Os

Example

P=3; H(x)=xmodP

l
R=5,4,3,6,9,14,1,7,11
5=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

P output buffers

P output files

Example

P=3; H(x)=xmodP

|
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

5

Example

P=3; H(x)=xmodP

|
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

4 5

Example

P=3; H(x)=xmodP

|
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

3 4 5

Example

P=3; H(x)=xmodP

I
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

Example

P=3; H(x)=xmodP

|
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

Need to flush RO to FO!

Example

P=3; H(x)=xmodP

|
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

4 5

Example

P=3; H(x)=xmodP

|
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

9 4 5

Example

P=3; H(x)=xmodP
J

R=5,4,3,6,9,14,1,7,11

S=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

9 4 5
14

Example

P=3; H(x)=xmodP
J

R=5,4,3,6,9,14,1,7,11

S=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

9 4 5
14

Example

P=3; H(x)=xmodP
J

R=5,4,3,6,9,14,1,7,11

S=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

9 4 5
14

Example

P=3; H(x)=xmodP
J

R=5,4,3,6,9,14,1,7,11

S=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

9 5
14

Example

P=3; H(x)=xmodP
J

R=5,4,3,6,9,14,1,7,11

S=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

9 7 5
14

Example

P=3; H(x)=xmodP

i
R=5,4,3,6,9,14,1,7,11
S=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

9 7 5
14

Example

P=3; H(x)=xmodP

I
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

9 7

Fo R [P
3 4 5
6 1 14

Example

P=3; H(x)=xmodP

I
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

9 7 11

Fo R [P
3 4 5
6 1 14

Example

P=3; H(x)=xmodP

I
R=5,4,3,6,9,14,1,7,11

5=2,3,7,12,9,8,4,15,6

RO___R1__[R2___

Fo R [P
3 4 5
6 1 14

Example

P=3; H(x)=xmodP

R=g‘u,4,3,6,9, 14,1,7,11
S=2,

3,7,12,9,8,4,15,6
R Files S Files
CENCENCEEE [T
3 4 5 3 7 2
6 1 14 12 4 8
9 7 11 9
15

6

Example

P=3; H(x)=xmodP

R=5,4,3,6,9,14,1,7,11
5=2,3,7,12,9,8,4,15,6

R Files

N

4 5
14
7 11

Load FO from R into memory

Matches:

S Files

Example

P=3; H(x)=xmodP

R=5,4,3,6,9,14,1,7,11
5=2,3,7,12,9,8,4,15,6

R Files

1 14
7 11

Load FO from R into memory

Matches:
S Files
-_
2
8

Scan FO from S

Example

P=3; H(x)=xmodP

R=5,4,3,6,9,14,1,7,11
5=2,3,7,12,9,8,4,15,6

R Files

1 14
7 11

Load FO from R into memory

Matches:
3,3
S Files
-_
2
8

Scan FO from S

Example

P=3; H(x)=xmodP

Matches:
3,3
R=5,4,3,6,9,14,1,7,11
$=2,3,7,12,9,8,4,15,6
R Files S Files

Load FO from R into memory

Scan FO from S

Example

P=3; H(x)=xmodP

Matches:
3,3
R=5,4,3,6,9,14,1,7,11 >
$=2,3,7,12,9,8,4,15,6
R Files S Files

CNEEECEE [
6 1 14 4 8
]

Load FO from R into memory

Scan FO from S

Example

P=3; H(x)=xmodP

Matches:
3,3
R=5,4,3,6,9,14,1,7,11 >
$=2,3,7,12,9,8,4,15,6
R Files S Files

CNEEECEE [
6 1 14 4 8
]

Load FO from R into memory

Scan FO from S

Example

P=3; H(x)=xmodP

Matches:
3,3
R=5,4,3,6,9,14,1,7,11 2
$=2,3,7,12,9,8,4,15,6
R Files S Files
0o R
4 5
14
7 11
Load FO from R into memory —

Scan FO from S

Example

P=3; H(x)=xmodP
Matches:
3,3
9,9

R=5,4,3,6,9,14,1,7,11 o0
$=2,3,7,12,9,8,4,15,6

R Files S Files

Example

P=3; H(x)=xmodP

R=5,4,3,6,9,14,1,7,11
5=2,3,7,12,9,8,4,15,6

R Files

Matches:

3,3
9,9
6,6
7,7
4,4

S Files

Example

P=3; H(X)zmedP

Matches:
3,3
R=5;4;316191 14’ 1’7’11 2:2
5=2,3,7,12,9,8,4,15,6 o
R Files S Files
CENCENCES CESCEC
c 12 4
9 7 2
15

6

Hybrid

Acts like simple for small tables, grace for large
tables

Suppose we have M = /|R| + E

— E is additional memory beyond the minimum
Make the first partition size E, and join as in simple
For remaining partitions write out as in grace

Repeat with S, joining first partition on the fly, and
writing out remaining partitions as in grace

Join remaining partitions as in grace

External Join Summary

Notation: P partitions / passes over data; assuming hash is O(1)

N L S T

I/0: 3 ([R] +[S]) 1/0: P (|R| +[S]) 1/0: 3 (IR]| +[S])
CPU: O(P x {S}/P log {S}/P) CPU: O({R}+{S}) CPU: O({R} +{S})

Grace hash is generally a safe bet, unless memory is close to size of tables, in which
case simple can be preferable

Extra cost of sorting makes sort merge unattractive unless there is a way to access
tables in sorted order (e.g., a clustered index), or a need to output data in sorted order
(e.g., for a subsequent ORDER BY)

Many fancier versions exist, e.g., using modern sorting techniques (radix or counting
sort), parallel cores, etc

