
Relational Model

“Those who cannot remember the
past are doomed to repeat it”

Annoncements
• PS1 is out. Due next week Wednesday 9/18
• Lab1 will be released this Wednesday

– First lab requires to get used to system development
– You must (pre-)submit a first version of your Lab1 solution

by next Thursday 9/19
– All pre-submissions, which pass at least 75% of the test

cases will get a cupcake the following week during class
– On 9/20 we will do a lab bootcamp (location and exact time

will be announcement this week)
– You have until 9/25 to make improvements and submit the

final solution

A Short History Lesson
• Different Data Models

– Hierarchical (IMS/DL1) – 1960’s
– Network (CODASYL) – 1970’s
– Relational – 1970’s and beyond

• Key ideas
– Data redundancy (and how to avoid it)
– Physical and logical data independence
– Relational algebra and axioms

Recap: Zoo Data Model 
Entity Relationship Diagram

Animal Cage

Keeper

keeps

Name

1

name

Time
1

feedTime

Age

Name

Species

1

1

1

name

age

species

Animals have names, ages, species
Keepers have names
Cages have cleaning times, buildings
Animals are in 1 cage; cages have multiple animals
Keepers keep multiple cages, cages kept by multiple keepers

1

11

Building
1

bldg

entity entity

entity

contains 1

relationship

n

n

n

Zoo Tables (aka Relations)
id name age species cageno

1 Mike 3 Moose 1
2 Tim 12 Giraffe 1

3 Sally 1 Student 2

no feedtime building

1 12:30 1
2 1:30 2

id name

1 Jane
2 Joe

kid cageno

1 1
1 2
2 1

Animals

Cages

Keepers Keeps

“Schema”: Field names
& types

Rows, records, or tuples

Modified Zoo Data Model

Slightly different than last time:
• Each animal in 1 cage, multiple animals share a cage
• Each animal cared for by 1 keeper, keepers care for

multiple animals

IMS (Hierarchical Model)
• Data organized as segments

– Collection of records, each with same segment type
– Arranged in a tree of segment types, e.g.:

Keepers Keepers
Animals Cages

Cages Animals

• Segments have different physical representations
– Unordered
– Indexed

• Sorted
• Hashed

Example Hierarchy
 Jane (keeper) (HSK 1)
 Mike, moose, … (2)
 1, 100sq ft, … (3)
 Tim, giraffe, … (4)
 2, 1000sq ft, … (5)
 Sally, student, … (6)
 1, 100sq ft, … (7)
 Joe (keeper) (8)

 Keepers segment

 A1 Segment A2 Segment A3 Segment
 C1 Segment C2 Segment C3 Segment

IMS Physical Represenation

Repeated
information!

Segment Structure
• Each segment has a particular physical

representation
– Chosen by database administrator
– E.g., ordered, hashed, unordered…

• Choice of segment structure affects which
operations can be applied on it

IMS / DL/1 Operations
• GetUnique (seg type, pred)

– Get first record satisfying pred
– Only supported by hash / sorted segments

• GetNext (seg type, pred)
– Get first or next key in hierarchical order
– Starts from last GetNext/GetUnique call

• GetNextParent (seg type, pred)
– Get the next segment within the same parent segment

• Delete, Insert

Example PL/1 Program #1
Find the cages that Jane keeps
 GetUnique(Keepers, name = "Jane")
 Until done:
 cageid = GetNextParent (cages).no
 print cageid

Implicitly, now
navigating from the
Jane record in
keepers

This iterates through
data underneath
Jane

 Jane (keeper) (HSK 1)
 Mike, moose, … (2)
 1, 100sq ft, … (3)
 Tim, giraffe, … (4)
 2, 1000sq ft, … (5)
 Sally, student, … (6)
 1, 100sq ft, … (7)
 Joe (keeper) (8)

https://clicker.mit.edu/6.5830/
Find all keepers that take care of cage 6

Option C
keep = GetUnique(keepers)
 Until done:
 cage = GetNextParent(cages, id = 6)
 if (cage is not null):
 print keep
 keep = GetNext(keepers)

Option A
Until done:

cage = GetNext(cages, id = 6)
keep = GetNext(keepers)
print(keep)

Option B
Until done:

keep = GetUnique (keepers)
cage = GetNext(cages, id = 6)
print(keep)

 Jane (keeper) (HSK 1)
 Mike, moose, … (2)
 1, 100sq ft, … (3)
 Tim, giraffe, … (4)
 2, 1000sq ft, … (5)
 Sally, student, … (6)
 1, 100sq ft, … (7)
 Joe (keeper) (8)

Example PL/1 Program #2
Find the keepers that keep cage 6
 keep = GetUnique(keepers)

 Until done:
 cage = GetNextParent(cages, id = 6)
 if (cage is not null):
 print keep
 keep = GetNext(keepers)

What’s Bad About IMS/PL1?
• Duplication of data w/ non-hierarchical data
• Painful low level programming interface – have to program the

search algorithm
• Limited physical data independence

– Change root from indexed to hash --- programs that do GetNext on
the root segment will fail

– Change root from keepers to animals? Also fails.
– Cannot do inserts into sequential root structure

• Limited logical data independence
– Schemas change, do programs have to?

Logical Data Independence
• Suppose as a cost cutting

measure, Zoo
management decides a
keeper will be responsible
for a cage – and all the
animals in that cage.

Programs have to change, because the position in the
database after a GetNext/GetNextParent call may not be
the same anymore!

Will see how SQL addresses this

Schemas Change for Many Reasons

• Management decides to
have “patrons” who buy
cages
– Need to add a patronid

column
• Feds change the rules

(OSHA)
– Keepers can keep at most 2

cages
• Tax rules change (IRS)
• Merge with another zoo

Study break #2
• Consider a course schema with students, classes, rooms

(each has a number of attributes)

Classes in exactly one room
Students in zero or more classes
Classes taken by zero or more students
Rooms host zero or more classes

Classes

Students Rooms

isin
takenby

Questions
1. Describe one possible hierarchical schema for

this data
2. Is there a hierarchical representation that is free

of redundancy?

Classes

Students Rooms

isin
takenby

Solution
• Many are possible; one example:

– Classes
• Students

– Rooms

• Duplicates data about students,
– Students take multiple classes, rooms host

multiple classes

• Any other arrangement also duplicates data

CODASYL
• Conference/Committee on

Data Systems Languages
– Responsible for COBOL

• CODASYL data model developed
by consortium of large companies
in the 70’s

• Designed to address limitations of
IMS/PL1 (i.e., the hierarchical
model)

• Graph or network-based data
model

CODASYL
• Networked data model
• Primitives are record types with keys
• Record types are organized into network
• A set consists of one owner record and n member records
• many-to-many links are disallowed, each set occurrence has

precisely one owner, and has zero or more member records.
• No member record of a set can participate in more than one

occurrence of the set at any point
• But A member record can participate simultaneously in

several set occurrences of different sets.

Example CODASYL Network

Records can either be hashes (allowing
equality lookup) or sorted ("clustered")
according to some key (allowing a range
lookup).

tim, giraffe
mike, moose

Example: Find Cages Joe Keeps
Find keepers (name = 'Joe')

Until done:
Find next animal in caredforby

Find cage in livesin  

caredforby

livesin

tim, giraffe
mike, moose

Programming is finding an entry point
and navigating around in
multidimensional space

Each line of code is implicitly at some
location in this structure
Have to remember where you are

Codasyl Problems
• Incredibly complex —

“Navigational Programming”
• Programs lack physical or logical data independence

– Can't change schema w/out changing programs;
– Can't change physical representation either b/c different index

types might or might not support different operations
• Some of this could have been fixed by adding a high-level

language to CODASYL
• Relational model was a clean-slate approach designed to

fix this

Relational Principles
• Simple representation
• Set-oriented programming model that doesn't

require "navigation"
• No physical data model description required(!)

– E.g., no specification of sort orders, hashes, etc

Relational Data Model
• All data is represented as tables of records (tuples)
• Tables are unordered sets (no duplicates*)
• Database is one or more tables
• Each relation has a schema that describes the types

of the columns/fields
• Each field is a primitive type -- not a set or relation
• Physical representation/layout of data is not

specified (no index types, nestings, etc)

*note, modern DBMS often allow duplicates

Zoo Tables
id name age species cageno keptby feedtime

1 Mike 3 Moose 1 1 10:00 am
2 Tim 12 Giraffe 1 2 11:00 am

3 Sally 1 Student 2 1 1:00 pm

no building

1 1
2 2

id name

1 Jane
2 Joe

Animals

Cages

Keepers

Foreign

Keys

Prim
ary

Key

Prim
ary

Key

Prim
ary

Key

Schema: Animals
(id: int,
name: string,
age: int,
species: string,
cageno: int references cages.no,
keptby: int references keepers.id.
feedtime: time)

Zoo Tables (original schema)
id name age species cageno

1 Mike 3 Moose 1
2 Tim 12 Giraffe 1

3 Sally 1 Student 2

no feedtime building

1 12:30 1
2 1:30 2

id name

1 Jane
2 Joe

kid cageno

1 1
1 2
2 1

Animals

Cages

Keepers Keeps

Foreign

KeyPrim
ary

Key

Prim
ary

Key

Prim
ary

Key Foreign

Key
Foreign

Key

Relational Algebra
• Projection (π(T,c1, …, cn))

– select a subset of columns c1 .. cn
• Selection (σ(T, pred))

– select a subset of rows that satisfy pred
• Cross Product (T1 x T2)

– combine two tables
• Join (⨝(T1, T2, pred)) = σ(T1 x T2, pred)

– combine two tables with a predicate

• Plus set operations (UNION, DIFFERENCE, etc)

• “Algebra” – Closed under its own operations
– Every expression over relations produces a relation

Join as Cross Product

name cageno

Mike 1
Tim 1
Sally 2

no bldg

1 32
2 36

cageno no name bldg

1 1 Mike 32

1 2 Mike 36

1 1 Tim 32

1 2 Tim 36

2 1 Sally 32

2 2 Sally 36

Find animals in bldg. 32

Animals Cages

σ (
⨝(

animals,
cages,
 animals.cageno = cages.no

),
bldg = 32

)

σ (
σ(

animals X cages,
animals.cageno = cages.no

),
bldg = 32

)

Join as Cross Product

name cageno

Sam 1
Tim 1
Sally 2

no bldg

1 32
2 36

cageno no name bldg

1 1 Mike 32

1 2 Mike 36

1 1 Tim 32

1 2 Tim 36

2 1 Sally 32

2 2 Sally 36

Find animals in bldg. 32

Animals Cages

1. animals.cageno = cages.no

σ (
⨝(

animals,
cages,
 animals.cageno = cages.no

),
bldg = 32

)

σ (
σ(

animals X cages,
animals.cageno = cages.no

),
bldg = 32

)

Join as Cross Product

name cageno

Sam 1
Tim 1
Sally 2

no bldg

1 32
2 36

cageno no name bldg

1 1 Mike 32

1 2 Mike 36

1 1 Tim 32

1 2 Tim 36

2 1 Sally 32

2 2 Sally 36

Find animals in bldg. 32

Animals Cages

1. animals.cageno = cages.no
2. bldg = 32σ (

⨝(
animals,
cages,
 animals.cageno = cages.no

),
bldg = 32

)

Do you think this is how
databases actually
execute joins?

σ (
σ(

animals X cages,
animals.cageno = cages.no

),
bldg = 32

)

Relational Identities
• Join reordering

– A ⨝ B = B ⨝ A
– (A ⨝ B) join C = A ⨝ (B ⨝ C)

• Selection reordering
– σ1(σ2(A)) = σ2(σ1(A))

• Selection push down
– σ(A ⨝pred B) = σ(A) ⨝pred σ(b)
– σ may only apply to one table

• Projection push down
– π(σ(A)) = σ(π(A))
– As long as π doesn’t remove fields used in σ
– Also applies to joins

Push Down Example
σ (

⨝ (
animals,
cages,
 animals.cageno = cages.no

),
bldg = 32

)

⨝ (
animals,
σ (

 cages,
bldg = 32

)
 animals.cageno = cages.no

)

Join Ordering Example
• Find buildings Joe keeps
• SQL

SELECT building
FROM cages JOIN keeps ON no = cageno
JOIN keepers on kid = id
WHERE name = ‘Joe’
⨝ (

⨝ (
cages,
keeps,
 no = cageno

),
σ (

keepers,
name = ‘Joe’

),
kid = id

)

⨝ (
cages,
⨝ (

σ (
keepers,
name = ‘Joe’

),
keeps,
 kid=id

),
no = cageno

)

Best
ordering
depends on
sizes of
tables

Filtered
keepers may
be much
smaller

SQL query executor
free to choose either
ordering!
Text of SQL query is
not an ordering

Study Break # 2
Schema:
classes: (cid, c_name, c_rid, …)
rooms: (rid, bldg, …)
students: (sid, s_name, …)
takes: (t_sid, t_cid)

SELECT s_name FROM student,takes,classes
WHERE t_sid=sid AND t_cid=cid
AND c_name=‘6.830’

• Write an equivalent relational algebra expression for this query
• Are there other possible expressions?
• Do you think one would be more “efficient” to execute? Why?

https://clicker.mit.edu/6.5830/

For the query above select all valid relational algebra expression:

Schema:
classes: (cid, c_name, c_rid, …)
rooms: (rid, bldg, …)
students: (sid, s_name, …)
takes: (t_sid, t_cid)

SELECT s_name FROM student,takes,classes
WHERE t_sid=sid AND t_cid=cid
AND c_name=‘6.830’

A: πs_name (σ c_name=’6.830’ (student ⨝t_sid=sid (takes ⨝t_cid=cid classes)))

B: σ c_name=’6.830’ (classes ⨝ t_cid=cid (takes ⨝ t_sid=sid πs_name(student))

C: πs_name (student ⨝t_sid=sid (takes ⨝t_cid=cid σ c_name=’6.830’ (classes)))

D: πs_name (σ c_name=’6.830’ (classes) ⨝t_cid=cid (takes ⨝t_sid=sid student))

E: πs_name (σ c_name=’6.830’ (room ⨝c_rid=rid (classes ⨝t_sid=sid (takes ⨝ t_cid=cid student))))

F: πs_name (σ c_name=’6.830’ and t_sid=sid and t_cid=cid (classes X (takes X student))

https://clicker.mit.edu/6.5830/

Which query plan is most efficient?

Schema:
classes: (cid, c_name, c_rid, …)
rooms: (rid, bldg, …)
students: (sid, s_name, …)
takes: (t_sid, t_cid)

SELECT s_name FROM student,takes,classes
WHERE t_sid=sid AND t_cid=cid
AND c_name=‘6.830’

A: πs_name (σ c_name=’6.830’ (student ⨝t_sid=sid (takes ⨝t_cid=cid classes)))

B: σ c_name=’6.830’ (classes ⨝ t_cid=cid (takes ⨝ t_sid=sid πs_name(student))

C: πs_name (student ⨝t_sid=sid (takes ⨝t_cid=cid σ c_name=’6.830’ (classes)))

D: πs_name (σ c_name=’6.830’ (classes) ⨝t_cid=cid (takes ⨝t_sid=sid student))

E: πs_name (σ c_name=’6.830’ (room ⨝c_rid=rid (classes ⨝t_sid=sid (takes ⨝ t_cid=cid student))))

F: πs_name (σ c_name=’6.830’ and t_sid=sid and t_cid=cid (classes X (takes X student))

