
Lecture 12

10/23/2024

ARIES!!!!

The Ram, Salvador Dalí, 1928

Recovery Recap

• What happens during crash:

– Memory is reset

– State on disk persists

• After a crash, recovery ensures:

– Atomicity: partially finished xactions are rolled back

– Durability: committed xactions are on stable storage (disk)

• Brings database into a transaction consistent state, where
committed transactions are fully reflected, and uncommitted
transactions are completely undone

Database State

P1 P2 …

Buffer Manager

Disk

Tables

Log

Memory

After crash, memory is gone!
Problem 1: Some

transactions may

have written their

uncommitted state to

tables – need to

UNDO

Problem 2: Some

transactions may

not have flushed all

of their state to

tables prior to

commit – need to

REDO

Log records start and end of

transactions, and contents of writes

done to tables so we can solve both

problems

Types of Log Records

• Start (SOT) Log Sequence Number (LSN), Transaction ID (TID)

– LSN is a monotonically increasing log record number

• End (EOT) LSN, TID, outcome (commit or abort)

• UNDO LSN, TID, before image

• REDO LSN, TID, after image

For ARIES:

• CHECKPOINT LSN, TID, state to limit how much is logged

• CLR(Compensation Log Records) LSN, TID, allows us to restart recovery

Write Ahead Logging

Write what we plan to do, before we do it

Recovery with NO FORCE / STEAL

• After crash, we must:

– REDO “winner” transactions that had committed

– UNDO “loser” transactions that had not committed

• Winners are transactions with SOT and COMMIT in log

• Losers are those with SOT and no EOT, or ABORT

• Need to REDO winners from start to end

• Need to UNDO losers in reverse, from end to start

• Also need to UNDO aborted transactions

Hard Problems with Recovery

• B-Tree:

– Problem 1: Logical Inserts create different Btrees

– Problem 2: Crash while updating a multi-page B-Tree or

inconsistency between B-Tree and data pages

• Cost of checkpoints (do we have to block the system while

checkpointing?)

• Recovery time (how long do we have to wait until the

system is again available)

• Crash during recovery

• Escrow updates

• ….

ARIES

• Gold standard in logging

– Specifies all the details

• NO FORCE/STEAL

• Recoverable recovery

• “Physiological” Logging

• Low-overhead Checkpoints (will explain)

• Support for escrow operations (will explain)

– E.g., increment / decrements

It might be hard to appreciate

how “cool” ARIES is

ARIES Approach: 3 Log Passes

• Analysis, to see what needs to be done (FW)

• Redo, to ensure DB reflects updates that are in

the log but not in tables (FW)

– Including those that belong to txns that will eventually

be rolled back!

– Why? Ensures “action consistent” state -- which will

allow logical undo.

– “Repeating History”

• Undo, to rollback losers (BW)

FW = Forward Pass; BW = Backward Pass

Log Record Format

LSN TID prevLSN

Undo Image

(logical)

Redo Image

(physical)

pageLSN

Log Record

Disk Page

Every time a page is written, the

latest LSN associated with that log

record is included as the pageLSN.

Every log record has an LSN

associated with it.

Update records have both UNDO

and REDO information.

The previous LSN written by this

transaction

Log Record Format

LSN TID prevLSN

Undo Image

(logical)

Redo Image

(physical)

pageLSN

Log Record

Disk Page

Every time a page is written, the

latest LSN associated with that log

record is included as the pageLSN.

Every log record has an LSN

associated with it.

Update records have both UNDO

and REDO information.

The previous LSN written by this

transaction

Innovation Check

“Physiological” Logging

• REDO is Physical

• UNDO is Logical

REDO must be physical

• At time of crash, database may not be in an “action

consistent” state

• Some ops can encompass multiple non-atomic physical

operations

• Much easier to replay with physical logging

INSERT VALUE X

INTO TABLE Y
Idx

X might be reflected in an index but not

the table, or vice versa, if system crashed

halfway through operation. What does

“insert into table” even mean in this case?

Page

REDO: Insert X

Logical Log

UNDO must be logical

• We only UNDO some actions

• Implies state when UNDOing may not be same

as when the log was written

• Physical logging (e.g., of the specific before

and after images in the page) would fail

UNDO Example

1: T1

SOT

2: T2

SOT

3: T2

WB

4: T1

WA

5: T1

COMMIT

~%!

CRASH!

 This will also be the state

when LSN 3 is UNDOne!

Different from state when record

was written

Demands logical undo (B is on a

different page!)

Not needed in REDO, because we "repeat history" and replay everything

• Physical modifications made to the database since last time will still be correct.

At time LSN 3 is

written

Idx

B

Page i

At time LSN 4 is

written

Idx

B

Page i

A

Page i+1

UNDO Example

1: T1

SOT

2: T2

SOT

3: T2

WB

4: T1

WA

5: T1

COMMIT

~%!

CRASH!

 This will also be the state

when LSN 3 is UNDOne!

Different from state when record

was written

Demands logical undo (B is on a

different page!)

Not needed in REDO, because we "repeat history" and replay everything

• Physical modifications made to the database since last time will still be correct.

At time LSN 3 is

written

Idx

B

Page i

At time LSN 4 is

written

Idx

B

Page i

A

Page i+1

Innovation Check

ARIES Normal Operation
• Two key data structures:

– Transaction table -- list of active transactions

– Dirty page table -- List of pages that have been

modified and not yet written to disk

• Data structures updates as system runs:

– Pages asynchronously flushed to disk

• Log forced before flush (but not before write)

• Flushes are not logged

– Log forced before COMMIT ack’d

Transaction Table

• All active transactions

in table

• lastLSN: most recent

log record written by

that transaction

xactionTable

lastLSN TID

13 3

Dirty Page Table

• One entry for

each page that

has been

modified but not

flushed to disk

• recLSN: log

record that first

dirtied the page

dirtyPgTable

pgNo recLSN

D 8

B 10

A 11

E 13

Recall, dirty pages are

periodically flushed to

disk by a background

process.

On flush, remove from

dirtyPageTable

Checkpoints

• Taken periodically

• Log record that contains:

1. the state of the dirty page table and

2. the transaction table

Checkpoints don’t require pages themselves to be

flushed to disk

• Allow us to limit amount of log we have to

keep and replay during crash

ARIES Example

LSN Type Tid PrevLSN Data (Page)

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

1 SOT 1

2 UP 1 1 A

3 UP 1 2 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

Flush

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

1 1

xactionTable

pgNo recLSN

dirtyPgTable

xactionTable

dirtyPgTable

Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

2 1

xactionTable

pgNo recLSN

A 2

dirtyPgTable

xactionTable

dirtyPgTable

Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

3 1

xactionTable

pgNo recLSN

A 2

B 3

dirtyPgTable

xactionTable

dirtyPgTable

Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

3 1

xactionTable

pgNo recLSN

A 2

B 3

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

3 1

5 3

xactionTable

pgNo recLSN

A 2

B 3

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

6 1

5 3

xactionTable

pgNo recLSN

A 2

B 3

C 6

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

6 1

5 3

7 2

xactionTable

pgNo recLSN

A 2

B 3

C 6

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

6 1

5 3

7 2

xactionTable

pgNo recLSN

A 2

B 3

C 6

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

Page pageLSN

A 2

B 3

C 6

D ?

E ?

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

6 1

5 3

8 2

xactionTable

pgNo recLSN

A 2

B 3

C 5

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

D 8

Page pageLSN

A 2

B 3

C 6

D ?

E ?

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

6 1

5 3

8 2

xactionTable

pgNo recLSN

A 2

B 3

C 5

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

D 8

Page pageLSN

A 2

B 3

C 6

D ?

E ?

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

5 3

8 2

xactionTable

pgNo recLSN

A 2

B 3

C 5

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

D 8

Page pageLSN

A 2

B 3

C 6

D ?

E ?

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

10 3

8 2

xactionTable

pgNo recLSN

A 2

B 3

C 5

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

D 8

B 10

Page pageLSN

A 2

B 3

C 6

D ?

E ?

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

10 3

11 2

xactionTable

pgNo recLSN

A 2

B 3

C 5

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

D 8

B 10

A 11

Page pageLSN

A 2

B 3

C 6

D ?

E ?

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

10 3

11 2

xactionTable

pgNo recLSN

A 2

B 3

C 5

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

D 8

B 10

A 11

Page pageLSN

A 2

B 3

C 6

D ?

E ?

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

10 3

xactionTable

pgNo recLSN

A 2

B 3

C 5

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

D 8

B 10

A 11

Page pageLSN

A 2

B 3

C 6

D ?

E ?

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

13 3

xactionTable

pgNo recLSN

A 2

B 3

C 5

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

D 8

B 10

A 11

E 13

Page pageLSN

A 2

B 3

C 6

D ?

E ?

ARIES Data Structures

1

2

3

WA,B

CP

WC

WD

WB

WA

WE

CRASH

Flush

lastLSN TID

13 3

xactionTable

pgNo recLSN

A 2

B 3

C 5

dirtyPgTable Checkpoint

Page pageLSN

A ?

B ?

C ?

D ?

E ?

Disk

xactionTable

dirtyPgTable

xactionTable 3-1

dirtyPgTable A-2, B-3

pgNo recLSN

D 8

B 10

A 11

E 13

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Innovation Check

Crash Recovery

• 3 Phases

– Analysis

• Rebuild data structures

• Determine winners & losers

– Redo

• “Repeat history”

• Why?

– Undo

• Undo Losers

Analysis Pass

• Goal: reconstruct the state of the transaction

table and the dirty page table at the time the

crash occurred.

• Play log forward

– Add and remove xactions to/from the transaction

table on SOT and COMMIT/ABORT

– Update the lastLSN on writes

– Update the dirty page table as writes happen

State After Analysis

• After analysis, what can we say about dirty page

table and transaction table?

• Txn table tells us what to UNDO

• Dirty pages is a conservative list of pages that

need to be REDOne

• Why is it “conservative”?

– Because we don’t actually know what is on disk; some

pages may already have updates applied

Where to Begin Analysis

• Beginning of log?

– Ok, but may require us to scan a lot of log

• Last checkpoint!

• How do we find it?

– Keep a pointer to the checkpoint at a well-

known place on disk

Analysis
LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

Analysis
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

lastLSN TID

3 1

pgNo recLSN

A 2

B 3

Page pageLSN

A 2

B 3

C 6

D ?

E ?

xactionTable dirtyPgTable
Disk

Analysis
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

lastLSN TID

3 1

5 3

pgNo recLSN

A 2

B 3

Page pageLSN

A 2

B 3

C 6

D ?

E ?

xactionTable dirtyPgTable
Disk

Analysis
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

lastLSN TID

6 1

5 3

pgNo recLSN

A 2

B 3

C 6

Page pageLSN

A 2

B 3

C 6

D ?

E ?

xactionTable dirtyPgTable
Disk

Analysis
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

lastLSN TID

6 1

5 3

7 2

pgNo recLSN

A 2

B 3

C 6

Page pageLSN

A 2

B 3

C 6

D ?

E ?

xactionTable dirtyPgTable
Disk

Analysis
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

lastLSN TID

6 1

5 3

8 2

pgNo recLSN

A 2

B 3

C 6

D 8

Page pageLSN

A 2

B 3

C 6

D ?

E ?

xactionTable dirtyPgTable
Disk

Analysis
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

lastLSN TID

13 3

pgNo recLSN

A 2

B 3

C 6

D 8

E 13

Page pageLSN

A 2

B 3

C 6

D ?

E ?

xactionTable
dirtyPgTable Disk

Losers

Dirty page table doesn’t

reflect true state on disk.

Conservative: at least all previous

LSNs are on disk

Maybe some pages were flushed,

then there was an immediate CRASH

before the dirtyPgTable was saved

to the log in a CP

Redo
• Where to begin?

– Checkpoint?

– Min(recLSN)! – earliest unflushed update

• What to REDO

– Everything?

• Slow

• Problematic if using logical (escrow) logging

– Redo an update UNLESS:

• Page is not in dirtyPgTable

– Page flushed prior to checkpoint, didn’t redirty

• LSN < recLSN

– Page flushed & redirtied prior to checkpoint
(that is, the LSN is already reflected on disk)

• LSN <= pageLSN

– Page flushed after checkpoint

pgNo recLSN

A 2

B 3

C 6

D 8

E 13

dirtyPgTable

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Disk

Only step that requires going to disk

REDO Conditions Example

2: WB 3: WA 4: WC 5: WB 6:WC

Flush

pgNo recLSN

B 5

C 4

dirtyPgTable

@ CP

Min(recLSN) Checkpoint

Redo an update UNLESS:
Page is not in dirtyPgTable

Page flushed prior to
checkpoint, didn’t redirty

LSN < recLSN
Page flushed & redirtied prior
to checkpoint

LSN <= pageLSN
Page flushed after checkpoint

A/LSN 3

B/LSN 2

C/LSN 6

Page pageLSN

A 3

B 5

C 6

Disk

Flush

Redo Example

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

pgNo recLSN

A 2

B 3

C 6

D 8

E 13

Redo UNLESS

•Page is not in dirtyPgTable

•LSN < recLSN

•LSN <= pageLSN

DirtyPgTable

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Disk

pgNo recLSN

B 3

C 6

D 8

E 13

Flush

Redo Example

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

pgNo recLSN

B 3

C 6

D 8

E 13

Redo UNLESS

•Page is not in dirtyPgTable

•LSN < recLSN

•LSN <= pageLSN

DirtyPgTable

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Disk

pgNo recLSN

C 6

D 8

E 13

Flush

Redo Example

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

pgNo recLSN

C 6

D 8

E 13

Redo UNLESS

•Page is not in dirtyPgTable

•LSN < recLSN

•LSN <= pageLSN

DirtyPgTable

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Disk

pgNo recLSN

D 8

E 13

Flush

Redo Example

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

pgNo recLSN

D 8

E 13

Redo UNLESS

•Page is not in dirtyPgTable

•LSN < recLSN

•LSN <= pageLSN

DirtyPgTable

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Disk

Flush

Redo Example

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

pgNo recLSN

D 8

E 13

Redo UNLESS

•Page is not in dirtyPgTable

•LSN < recLSN

•LSN <= pageLSN

DirtyPgTable

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Disk

pgNo recLSN

B 10

D 8

E 13

Flush

Redo Example

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

pgNo recLSN

B 10

D 8

E 13

Redo UNLESS

•Page is not in dirtyPgTable

•LSN < recLSN

•LSN <= pageLSN

DirtyPgTable

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Disk

pgNo recLSN

A 11

B 10

D 8

E 13

Flush

Redo Example

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

pgNo recLSN

A 11

B 10

D 8

E 13

Redo UNLESS

•Page is not in dirtyPgTable

•LSN < recLSN

•LSN <= pageLSN

DirtyPgTable

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Disk

State

identical to

pre-crash

state

Flush

Undo

• Walk backwards, following prevLSNs to UNDO

losers

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

lastLSN TID

13 3

xactionTable

Undo

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

lastLSN TID

13 3

xactionTable

• Walk backwards, following prevLSNs to

UNDO losers

Undo

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

lastLSN TID

13 3

xactionTable

•Why can we just blindly apply UNDOs? Repeated history!

• Walk backwards, following prevLSNs to UNDO

losers

Redo Example

LSN Type Tid PrevLSN Data

1 SOT 1

2 UP 1 2 A

3 UP 1 3 B

4 CP

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

pgNo recLSN

A 11

B 10

D 8

E 13

Redo UNLESS

•Page is not in dirtyPgTable

•LSN < recLSN

•LSN <= pageLSN

DirtyPgTable

Page pageLSN

A 2

B 3

C 6

D ?

E ?

Disk

State

identical to

pre-crash

state

Flush

Innovation Check

Study Break

No flushes occur during the
execution of these transactions. At
the time of the first checkpoint
(LSN 10), the dirty page table and
the transaction table are both
empty.

LSN Txn ID Type Page ID /

Object

10 Checkpoint

11 T1 SOT

12 T1 UP P1/A

13 T2 SOT

14 T3 SOT

15 T2 UP P5/B

16 T2 Commit

17 T3 UP P3/C

18 Checkpoint

19 T3 UP P3/C

20 T3 Commit

Study Break

What must the status of the

tables have been at the time

of the crash?

LSN Txn ID Type Page ID /

Object

10 Checkpoint

11 T1 SOT

12 T1 UP P1/A

13 T2 SOT

14 T3 SOT

15 T2 UP P5/B

16 T2 Commit

17 T3 UP P3/C

18 Checkpoint

19 T3 UP P3/C

20 T3 Commit

P1 12

P3 17

P5 15

T1 12

recLSN = first LSN that dirtied the page

lastLSN = most recent log record written by the transaction

Study Break # 2

No flushes occur during the
execution of these transactions. At
the time of checkpoint at LSN 10,
the dirty page table and the
transaction table are both empty.

1. At what LSN does the analysis
phase begin?

2. At what LSN does the REDO
phase begin?

3. What is the first LSN that is
undone?

LSN Txn ID Type Page ID /

Object

10 Checkpoint

11 T1 SOT

12 T1 UP P1/A

13 T2 SOT

14 T3 SOT

15 T2 UP P5/B

16 T2 Commit

17 T3 UP P3/C

18 Checkpoint

19 T3 UP P3/C

20 T3 Commit

18

Min(recLSN) = 12

12

Truncating Log

• Do we have to keep log forever?

• What is the earliest point in the log we will

ever look at?

 min(last checkpoint,min(recLSN))

➔we can safely truncate anything earlier

Are we done?

Compensation Log Records

(CLRs)

• CLR record written after each UNDO

• Avoid repeating UNDO work

• Why?

– Because UNDO Is logical, and we don't check if

records have already been UNDONE. Could

get into trouble if re-undid some logical

operation.

UNDO with CLR

LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

Losers: 3

UNDO with CLR
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

UNDO with CLR
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

14 CLR 3 13 E, 10

UNDO with CLR
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

14 CLR 3 13 E, 10

UNDO with CLR
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

14 CLR 3 13 E, 10

15 CLR 3 14 B, 5

UNDO with CLR

LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

14 CLR 3 13 E, 10

15 CLR 3 14 B, 5

UNDO with CLR
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

14 CLR 3 13 E, 10

15 CLR 3 14 B, 5

UNDO with CLR
LSN Type Tid PrevLSN Data

5 SOT 3

6 UP 1 3 C

7 SOT 2

8 UP 2 7 D

9 EOT 1 6

10 UP 3 5 B

11 UP 2 8 A

12 EOT 2 11

13 UP 3 10 E

14 CLR 3 13 E, 10

15 CLR 3 14 B, 5

16 EOT 3 15

REDO with CLR

• REDO CLRs on crash recovery

– Use REDO rules to check if updates in CLRs have

already been done

• Avoids repeating operational (escrow) operations

– After processing CLR, update recLSN field in

dirtyPgTable

• Allows UNDO to start from the right place, should we

checkpoint while UNDOing

ARIES/Logging Recap

• NO FORCE, STEAL logging

• Use write ahead logging protocol

• Must FORCE log on COMMIT

• Periodically take (lightweight) checkpoints

• Asynchronously flush disk pages (without

logging)

Disaster Recovery

• What if:

– Disk on machine fails

– Computer won’t restart

– Data center loses power

– …

• Solution: replication

Replication

• Typical approach: dedicated “hot standby”

– Kept up to date via “log shipping” – it executes

operations in the log in identical order to the primary

• May have several replicas, one nearby in local

data center, one further away

– “Half-width of a hurricane”

• Replicas often used for read-only queries

– Have excess capacity because they are not processing

xactions, just replaying log

Replica Fail Over

• On failure, start directing queries to replica

• Bring up new replica

– Using, e.g., nightly backup + log

• Complex in practice:

– Have to be really sure the database failed

• Many organizations rely on manual failover

– Failover needs to be tested frequently

– Replication load can be significant

Transactions Summary

• Transactions provide a powerful way to

isolate concurrent operations on the DB

• Studied two-phase locking

• Saw how write-ahead logging can be used

to provide recoverability and roll-back

• Next time: Optimistic Concurrency Control,

distributed DBs, and distributed txns

Thank You

	Slide 1: Lecture 12
	Slide 2: Recovery Recap
	Slide 3: Database State
	Slide 4: Types of Log Records
	Slide 5: Write Ahead Logging
	Slide 6: Recovery with NO FORCE / STEAL
	Slide 7: Hard Problems with Recovery
	Slide 8: ARIES
	Slide 9: It might be hard to appreciate how “cool” ARIES is
	Slide 10: ARIES Approach: 3 Log Passes
	Slide 11: Log Record Format
	Slide 12: Log Record Format
	Slide 13: “Physiological” Logging
	Slide 14: REDO must be physical
	Slide 15: UNDO must be logical
	Slide 16: UNDO Example
	Slide 17: UNDO Example
	Slide 18: ARIES Normal Operation
	Slide 19: Transaction Table
	Slide 20: Dirty Page Table
	Slide 21: Checkpoints
	Slide 22: ARIES Example
	Slide 23: ARIES Data Structures
	Slide 24: ARIES Data Structures
	Slide 25: ARIES Data Structures
	Slide 26: ARIES Data Structures
	Slide 27: ARIES Data Structures
	Slide 28: ARIES Data Structures
	Slide 29: ARIES Data Structures
	Slide 30: ARIES Data Structures
	Slide 31: ARIES Data Structures
	Slide 32: ARIES Data Structures
	Slide 33: ARIES Data Structures
	Slide 34: ARIES Data Structures
	Slide 35: ARIES Data Structures
	Slide 36: ARIES Data Structures
	Slide 37: ARIES Data Structures
	Slide 38: ARIES Data Structures
	Slide 39: ARIES Data Structures
	Slide 41: Crash Recovery
	Slide 42: Analysis Pass
	Slide 43: State After Analysis
	Slide 44: Where to Begin Analysis
	Slide 45: Analysis
	Slide 46: Analysis
	Slide 47: Analysis
	Slide 48: Analysis
	Slide 49: Analysis
	Slide 50: Analysis
	Slide 51: Analysis
	Slide 52: Redo
	Slide 53: REDO Conditions Example
	Slide 54: Redo Example
	Slide 55: Redo Example
	Slide 56: Redo Example
	Slide 57: Redo Example
	Slide 58: Redo Example
	Slide 59: Redo Example
	Slide 60: Redo Example
	Slide 61: Undo
	Slide 62: Undo
	Slide 63: Undo
	Slide 64: Redo Example
	Slide 65: Study Break
	Slide 66: Study Break
	Slide 67: Study Break # 2
	Slide 68: Truncating Log
	Slide 69: Are we done?
	Slide 70: Compensation Log Records (CLRs)
	Slide 71: UNDO with CLR
	Slide 72: UNDO with CLR
	Slide 73: UNDO with CLR
	Slide 74: UNDO with CLR
	Slide 75: UNDO with CLR
	Slide 76: UNDO with CLR
	Slide 77: UNDO with CLR
	Slide 78: UNDO with CLR
	Slide 79: REDO with CLR
	Slide 80: ARIES/Logging Recap
	Slide 81: Disaster Recovery
	Slide 82: Replication
	Slide 83: Replica Fail Over
	Slide 84: Transactions Summary
	Slide 85: Thank You

