
Lecture 11

10/23/2023

Locking Recap

Granularity of Locking

Intro to Recovery

Administrivia

• Project meetings & feedback this week

- Either you’ve received an email or will do so shortly

• Lab 2

- Due to problems with the parser, everyone is getting 2 extra late days

• Quiz 1

- Grading is almost done

- Median is at least 80.5% (subject to final grading)

- Passed back shortly

Recap: Transactions

• Group related sequence of actions so they are “all or nothing”

- If the system crashes, partial effects are not seen

- Other transactions do not see partial effects

• A set of implementation techniques that provides this abstraction with

good performance

ACID Properties of Transactions

• A tomicity – many actions look like one; “all or nothing”

• C onsistency – database preserves invariants

• I solation – concurrent actions don’t see each other’s results

• D urability – completed actions in effect after crash (“recoverable”)

Last Time: View Serializability, Conflict
Serializability, and 2PL

• Given a schedule, check to see if it’s view or conflict serializable

• That’s NP-Hard for view serializability, but there are 3 practical

methods for conflict serializability

- Check pairs of conflicting operations

- Swap ops to get a serial schedule

- Build a precedence graph

• 2PL enforces conflict-serializable transactions via locks

- There’s a “growing” and “shrinking” phase

- Strict 2PL gets around deadlock and cascading aborts

- For interactive queries (we don’t know when tx is done), can use rigorous 2PL

Today

• Locking Granularity

• Introduction to Recovery

Locking Granularity

• So far, we've used an abstract model of "objects" being read, written, and

locked, e.g.:

RX

WX

• In practice, “X” could be a tuple, page, table, or whole database.

- Tradeoff between overhead and concurrency

Tradeoff

• A txn that touches many records will have to acquire many locks!

- This adds overhead to each operation

• A txn that locks a whole table when it only needs to access part of it

will limit concurrency

• Would like to allow:

- Txns that lock a few records to use record or page locks

- Txns that lock many records to use table locks

Multiple Granularities Complicate Locking

• Need to ensure different granularities co-exist

• Non-trivial, e.g.:

- T1 shouldn’t be able to lock a record in Table A if T2 has write lock on all of A

• Solutions:

- Hierarchy of locks, e.g.

Table

Page

Record

Table

Range

Record

Problem: What if a transaction
wants to modify a single record?
Does it need an Xlock on the
table?

Seems to defeat the purpose of
record-level locking!

Idea: Acquire locks at higher levels before locking lower-level locks

Solution: Intention Locks

• Suppose T1 wants to write record R1

• Needs to acquire intention lock on the Table and Page

that T1 is in

• Intention lock marks higher levels with the fact that a

transaction has a lock on a lower level

• Intention locks

- Can be read intention (IS) or write intention (IX) locks

- Prevent transactions from modifying the whole object when

another transaction is working on a lower level

- New compatibility table

Table

Page

Record

Lock compatibility table

S X IX IS

S

X

IX

IS

Y

N

N

N

N Y

NN

N N

Y

YY

Y YN

T1
holds

T2 trying
to acquire

T2 can’t read all of level if
T1 updating lower level

T2 can read all of level if
T1 reading lower level

T2 can’t update all of level
if T1 updating lower level

T2 can’t update all of level
if T1 reading lower level

Reading / updating
whole level

Reading / updating
lower level

T2 can read / update
lower level if T1 is reading
/ updating lower level
(If they try to access same
lower-level object, locking
at lower level will block)

Table

Record

T1 holdsT2 wants
to acquire

https://clicker.mit.edu/6.5830/

• Given this hierarchy

• And three records on two pages of table T

• Given the use of intention locks and locking at different
granularities, which of the following pairs of transactions
would execute concurrently without blocking?

A) T1: Read P1 T2: Write A

B) T1: Write P2 T2: Read T

C) T1: Write P1 T2: Write P2

D) T1: Read P1 T2: Write C

Table

Page

Record

P1
A
B

P2
C

Table T

Hierarchy

Database

X

X

Select all correct schedules

Introduction to Recovery

• What happens during crash:

- Memory is reset

- State on disk persists

• After a crash, recovery ensures:

- Atomicity: partially finished txns are rolled back (aborted)

- Durability: committed txns are on stable storage (disk)

• Brings database into a transaction consistent state, where committed

transactions are fully reflected, and uncommitted transactions are
completely undone

Why Rollback Uncommitted
Transactions?

• After system crashes, all client connections gone

• Not generally possible to figure out what work was left to be done

• Best option: restore DB to a state as if transactions did not occur

- Preserves atomicity

- Implies that clients must not depend on uncommitted results

Database State During Query
Execution

P1 P2 …

Buffer Manager

Disk

Tables

Memory

After crash, memory is gone!
What problems could violate

atomicity/ durability?

Database State During Query
Execution

P1 P2 …

Buffer Manager

Disk

Tables

Log

Memory

After crash, memory is gone!
Problem 1: Some

transactions may have

written their

uncommitted state to

tables – need to

UNDO

Problem 2: Some

transactions may not

have flushed all of their

state to tables prior to

commit – need to REDO

The Log records start and end of transactions,

and contents of writes done to tables, so we can

solve both problems

Why is a Log Needed?

• Log captures both before and after state of all writes

- E.g., page X was X0 is now X1

• Also tells us which transactions committed and which did not

• Why do we need to record write contents?

- Without this, can’t tell whether a write has been applied or not

- Allows us to redo committed writes, if state not in tables on disk

- Allows us to undo uncommitted writes, if state in tables on disk

Logical vs Physical Logging

0x0012 0002 F00E
0xB007 4789 F8F8
0xEEE0 2020 4447

0x0012 0004 F50E
0xB007 4789 F8F8
0xEEE0 2020 4447

UNDO REDO

Physical Logging

Remove record X
from position Y

Insert record X into
position Y

UNDO REDO

Logical Logging

Logical logging is more compact, but it depends on pages fully reflecting (or not

reflecting) operations being undone and redone

Write Ahead Logging

• We log records written before any action is taken, including:

- Starting or committing a transaction

- Writing a page to tables on disk (reads are not logged)

• What could go wrong if we don’t write ahead?

Why Write Ahead?
• Otherwise, we might:

1. update a page as a part of an uncommitted txn,

2. crash (which should cause us to rollback that update), and

3. not have any way to tell that the page was updated

• Key idea: Write what we plan to do before we do it, and leave enough

info in the log so we can figure out if we did it or not

- Note that we do have to write everything twice, but logging is sequential,

unlike writes to the DB, which are in random order

Types of Log Records

• Start (SOT) Log Sequence Number (LSN), Transaction ID (TID)

- LSN is a monotonically increasing log record number

• End (EOT) LSN, TID, outcome (commit or abort)

• UNDO LSN, TID, before image

• REDO LSN, TID, after image

For next time:

• CHECKPOINT LSN, TID, state to limit how much is logged

• CLR LSN, TID, allows us to restart recovery

Two Complexities in Logging

• Sometimes we may want to write dirty (uncommitted) pages

back to the DB

- Why?

• After a crash, some committed changes may not have been

written back to the DB

- Why?

Dirty Pages in DB

• If we don’t write back dirty pages, they must be held in memory for

the duration of the txn

- Consider a transaction that updates all records in table

• A DB that writes back dirty pages is said to STEAL

• STEAL requires UNDO to remove uncommitted txns in event of crash

Some Committed Changes Not Written
Back
• If we wrote back all pages at commit time, it would be slow!

- Many random writes at commit time

• A DB that doesn’t force all writes at commit is NO FORCE

• (Sequential) logging is sufficient to ensure recoverability, so FORCE is
unnecessary for recoverability

• However, NO FORCE requires REDO to install logged writes to DB in event of
crash

STEAL/NO FORCE → UNDO/REDO

• If we STEAL pages, we will need to UNDO

• If we don’t FORCE pages, we will need to REDO

• If we FORCE pages, we will need to be able to UNDO if we crash between the

FORCE and the COMMIT

FORCE
NO

FORCE

STEAL UNDO
UNDO &

REDO

NO
STEAL

?
REDO

In GoDB, we do
FORCE / NO STEAL,
and assume DB
won’t crash
between FORCE
and COMMIT

All commercial DBs
do NO FORCE /
STEAL for
performance
reasons

STEAL/NO FORCE → UNDO/REDO

• If we STEAL pages, we will need to UNDO

• If we don’t FORCE pages, we will need to REDO

• If we FORCE pages, we will need to be able to UNDO if we crash between the

FORCE and the COMMIT

FORCE
NO

FORCE

STEAL UNDO
UNDO &

REDO

NO
STEAL

?
REDOUNDO

In GoDB, we do
FORCE / NO STEAL,
and assume DB
won’t crash
between FORCE
and COMMIT

https://clicker.mit.edu/6.5830/

What do you think commercial OLTP database systems

implement?

FORCE
NO

FORCE

STEAL UNDO
UNDO &

REDO

NO
STEAL

UNDO REDO

A B

C D

https://clicker.mit.edu/6.5830/

What do you think commercial OLTP database systems

implement?

FORCE
NO

FORCE

STEAL UNDO
UNDO &

REDO

NO
STEAL

UNDO REDO

All commercial DBs
do NO FORCE /
STEAL for
performance
reasons

Recovery with NO FORCE / STEAL

• After crash, we must:

- REDO “winner” transactions that had committed

- UNDO “loser” transactions that had not committed

• Winner are transactions with SOT and COMMIT in log

• Losers are those with SOT and either (no EOT) or ABORT*

• Need to REDO winners from start to end

• Need to UNDO losers in reverse, from end to start

• Also need to UNDO aborted transactions

* Some disagreement in
literature about whether
ABORTed transactions are
losers

3 Phases of Recovery

• Analysis: Scan log to find winners and losers

• REDO: Scan log from beginning to end for winners

• UNDO: Scan log from end to beginning for losers

• Many possible ways to do this, e.g., UNDO then REDO or REDO then

UNDO

- Next time will see a specific proposal and analyze why

Example

• Suppose we have 3 transactions, using NO FORCE, STEAL

• T1 writes A, commits

• T2 writes B, aborts

• T3 writes C, system crashes

T1 --------------W(A)--------------- Commit

 T2-------------------------W(B)----------- Abort

 T3--------W(C)------------------------ crash!

https://clicker.mit.edu/6.5830/

• Suppose we have 3 transactions, using NO FORCE, STEAL

• T1 writes A, commits

• T2 writes B, aborts

• T3 writes C, system crashes

T1 --------------W(A)--------------------- Commit

 T2-------------------------W(B)----------- Abort

 T3--------W(C)------------------------ crash!

https://clicker.mit.edu/6.5830/

• Suppose we have 3 transactions, using NO FORCE, STEAL

• T1 writes A, commits

• T2 writes B, aborts

• T3 writes C, system crashes

T1 --------------W(A)--------------------- Commit

 T2-------------------------W(B)----------- Abort

 T3--------W(C)------------------------ crash!

SOT (T1) SOT (T2) W(A) W(C) W(B) A(T1) C(T2)A)

B)

C)

SOT (T1) SOT (T2) W(A) SOT(T3) W(C) W(B) C(T1) A(T2)

W(A) S(T3) W(C) W(B) C(T1) A(T2)

https://clicker.mit.edu/6.5830/

• Suppose we have 3 transactions, using NO FORCE, STEAL

• T1 writes A, commits

• T2 writes B, aborts

• T3 writes C, system crashes

T1 --------------W(A)--------------------- Commit

 T2-------------------------W(B)----------- Abort

 T3--------W(C)------------------------ crash!

B) SOT (T1) SOT (T2) W(A) SOT(T3) W(C) W(B) C(T1) A(T2)

Recovery Sketch

• Analysis: T1 winner, T2 / T3 losers

• REDO:

- Scan forward, replay WA

• UNDO:

- Scan backward, undo WB, WC

T1 --------------W(A)--------------- Commit

 T2-------------------------W(B)----------- Abort

 T3--------W(C)------------------------ crash!

Log:

Analysis
REDO
UNDO

X X

After recovery, T1’s
effects are present, T2 /
T3’s aren’t

SOT (T1) SOT (T2) W(A) SOT(T3) W(C) W(B) C(T1) A(T2)

Recovery and Isolation

• Note that in a properly isolated DB, concurrent txns won’t read and write the same

pages, if using page locking

- Don’t need to worry about UNDOing a winner operation on the same page; example:

 T1 -------- WX -------- Commit

 T2 ---------------- WX ------- Crash

T2 WX cannot happen until T1 COMMIT, so when we UNDO T2 WX, we will rollback

to T1 committed state. If T1 WX happened after T2 WX, T2 must have committed /

aborted already.

Next time we will talk about how to handle different locking granularities

https://clicker.mit.edu/6.5830/

• Q1: Given the following log, if the system crashes which transactions are
winners?

• Q2: Which write LSNs will be UNDOne, in which order:

A. 10, 7, 5

B. 10, 5

C. 5, 10

D. 5, 7, 10

1 SOT
T1

2 SOT
T2

3 WA
T1

4 COMMIT
T1

5 WB
T2

6 SOT
T3

7 WA
T3

8 SOT
T4

9 COMMIT
T3

10 WC
T4

Need to undo
T2 and T4

Next Time: ARIES

• Considered the gold standard in logging

• Specifies all the details

• NO FORCE/STEAL

• Shows how its possible to make recovery recoverable

• Shows how to use logical UNDO logging

• Shows how to handle nested transactions

- (which we won't talk about)

• Shows how to make checkpoints work

	Slide 1: Lecture 11
	Slide 2: Administrivia
	Slide 3: Recap: Transactions
	Slide 4: ACID Properties of Transactions
	Slide 5: Last Time: View Serializability, Conflict Serializability, and 2PL
	Slide 6: Today
	Slide 7: Locking Granularity
	Slide 8: Tradeoff
	Slide 9: Multiple Granularities Complicate Locking
	Slide 10: Solution: Intention Locks
	Slide 11: Lock compatibility table
	Slide 12: https://clicker.mit.edu/6.5830/
	Slide 13: Introduction to Recovery
	Slide 14: Why Rollback Uncommitted Transactions?
	Slide 15: Database State During Query Execution
	Slide 16: Database State During Query Execution
	Slide 17: Why is a Log Needed?
	Slide 18: Logical vs Physical Logging
	Slide 19: Write Ahead Logging
	Slide 20: Why Write Ahead?
	Slide 21: Types of Log Records
	Slide 22: Two Complexities in Logging
	Slide 23: Dirty Pages in DB
	Slide 24: Some Committed Changes Not Written Back
	Slide 25: STEAL/NO FORCE  UNDO/REDO
	Slide 26: STEAL/NO FORCE  UNDO/REDO
	Slide 27: https://clicker.mit.edu/6.5830/
	Slide 28: https://clicker.mit.edu/6.5830/
	Slide 29: Recovery with NO FORCE / STEAL
	Slide 30: 3 Phases of Recovery
	Slide 31: Example
	Slide 32: https://clicker.mit.edu/6.5830/
	Slide 33: https://clicker.mit.edu/6.5830/
	Slide 34: https://clicker.mit.edu/6.5830/
	Slide 35: Recovery Sketch
	Slide 36: Recovery and Isolation
	Slide 37: https://clicker.mit.edu/6.5830/
	Slide 38: Next Time: ARIES

