
6.5830 Lecture 11
Two-phase Locking
(recap) & Optimistic
Concurrency Control

10/18/2022

The Concurrent
Candy Question Bowl

The Database Tour

Rules
• Reverse Jeopardy: The answers are the answers
• Create groups of 3-5 people
• You have to answer as a group
• Correct answers give candy points.
• Groups willing to answer the question have to raise their hand
• Among all hand-raised groups the moderator randomly picks a group.
• At the discretion of the moderator the answer is deemed correct or

wrong. If correct, the group can choose the next question. If wrong,
another group can answer (but no candy)
• You have to pick questions from the top down

Terminology
Optimistic

Concurrency
Control

2 Phase Locking
Other

Concurrency
Techniques

1 Candy 2 Candy 1 Candy 1 Candy

2 Candy 4 Candy 2 Candy 2 Candy

3 Candy 8 Candy 3 Candy 3 Candy

4 Candy 8 Candy 4 Candy 4 Candy

5 Candy 8 Candy 5 Candy 5 Candy

1.1

1 Candy

What is the connection
between Atomicity,

Isolation, and Durability
with Concurrency Control,

Logging?

1.2

2 Candy
Back

Today Sam and I almost
dressed alike. Let’s assume
the process of dressing is

done as part of a
transaction, which ensures

that we always dress
differently.

What ACID properties were
violated?

1.3

Name 2 types of serializability
and give an example when one is
valid under the definition but
not the other?

3 Candy

View vs Conflict Serializable
• Testing for view serializability is NP-Hard

– Have to consider all possible orderings
• Conflict serializability used in practice

– Not because of NP-Hardness
– Because we have a way to enforce it as transactions run

• Example of schedule that is view serializable but not conflict serializable:

T1 T2 T3
RA
 WA
WA
 WA
RB
WB

Equivalent to T1, T2, T3
Conflict serializability does not permit this
Only happens with blind writes

T1
T2

T3

RAT1≺ WAT2

WAT2≺ WAT1
RA

T1 ≺ W
A
T3

W
A
T1 ≺ W

A
T3

Cycle!

Blind Writes

1.4

If a system ensures
Atomicity, Durability, and
Isolation, is it by definition
not also Consistent?
Explain by means of an
example why/why not?

4 Candy
Back

1.5

From the assigned reading from lecture 11:

WAL, LSN, Undo, Redo, physical,
logical, physiological are all
important terms for describing
logging. What do they stand for?

5 Candy
Back

2.1

What is the core idea of optimistic
concurrency control?

What are the pros and cons?

(You should know that based on the assigned reading :)

2 Candy

Optimistic Concurrency
Control (OCC)
• Alternative to locking for
 isolation

• Approach:
– Store writes in a per-transaction buffer
– Track read and write sets
– At commit, check if transaction conflicted with earlier

(concurrent) transactions
– Abort transactions that conflict
– Install writes at end of transaction

• “Optimistic” in that it does not block, hopes to “get
lucky” arrive in serial interleaving

Tradeoff
• In OCC:

– Never have to wait for locks
– no deadlocks

• But...
– Transactions that conflict often have to be restarted
– Transactions can "starve" -- e.g., be repeatedly restarted, never

making progress
• OCC will do better when the restart rate is low

– (Less contention)
• Recent work on high performance transaction processing has focused

on OCC because
– OCC checks can be done between individual transactions

• Unlike global shared lock table

– Modern OCC systems obtain insane throughput (> 10M xactions / sec)

E.g., https://people.eecs.berkeley.edu/~wzheng/silo.pdf

Back

https://people.eecs.berkeley.edu/~wzheng/silo.pdf

2.2

What are the 3 phases of optimistic
concurrency control?

4 Candy

OCC Implementation

• Divide transaction execution in 3 phases
– Read: transaction executes on DB, stores local state
– Validate: transaction checks if it can commit
– Write: transaction writes state to DB

Read Phase

• Transactions execute, with updates affecting
local copies of the data
• Build a list of data items that were read/written

– Read and write sets

•Modify functions to read and write data from DB

OCC Write
twrite(object,value):
 if object not in write_set: // never written, make copy

m = read(object)
copies[object] = m
write_set = write_set U {object}

 write(copies[object], value)

By writing to local copies, we ensure dirty results aren’t
visible to other concurrent transactions

OCC Read

tread(object):
 read_set = read_set U {object};
 if object in write_set:
 return read(copies[object]);

else:
return read(object);

Allows us to read our own writes!

Validation Phase

• How do we know whether a transaction can
commit?

– Validation Rules
– Check concurrent transactions for conflicts

• How do we implement validation efficiently?
– Validation Algorithm

• But first… How how do we order transactions?

Back

2.3

8 Candy
Goal: assign transaction ids T1, … Tn, such that this
is the serial equivalent orde.r

When do you assign the Transaction Identifier?

a) At the beginning of the trx,
b) At the start of the validation phase
c) At the start of the write phase
d) At the end of the write phase

Transaction Identifier Assignment

• Goal: assign transaction ids T1, … Tn, such that this is the
serial equivalent order
• When should we assign transaction identifiers?
• At start of read phase?

– No! Would be “pessimistic” – don’t want to pre-assign
the transaction order before transactions finish running

– Long running transactions would have to commit before
later short transactions

• Assign at end of read phase, just before validation starts

Back

2.4

8 Candy
Under OCC there are 4 conditions. When Tj completes its read phase, require that for all
Ti < Tj, one of the following conditions must be true for validation to succeed (Tj to
commit) to ensure serializablity:

1) Ti completes its write phase before Tj starts its read phase

2) W(Ti) does not intersect with R(Tj) or W(tj)

3) W(Ti) does not intersect R(Tj), and Ti completes its write phase before Tj starts its
write phase.

4) W(Ti) does not intersect R(Tj) or W(Tj), and Ti completes its read phase before Tj
completes its read phase.

5) W(Ti) does not intersect R(Tj) or W(Tj), and W(Tj) does not intersect R(Ti) [no
conflicts]

One of the conditions is not sufficient! Which one?

Validation Rules

When Tj completes its read phase, require that for all Ti < Tj, one of the following
conditions must be true for validation to succeed (Tj to commit):

1) Ti completes its write phase before Tj starts its read phase

2) W(Ti) does not intersect R(Tj), and Ti completes its write phase before Tj
starts its write phase.

3) W(Ti) does not intersect R(Tj) or W(Tj), and Ti completes its read phase
before Tj completes its read phase.

4) W(Ti) does not intersect R(Tj) or W(Tj), and W(Tj) does not intersect R(Ti)
[no conflicts]

These rules will ensure serializability, with Tj being ordered after Ti with respect
to conflicts

XXX confusion about W and R as
Read / write sets vs read / write
phases

Condition 1

Ti completes its write phase before Tj starts its
read phase

Don't overlap at all.

Read Validate Write
Ti

Read Validate Write
Tj

Time

Condition 2

W(Ti) does not intersect R(Tj), and Ti completes its write
phase before Tj starts its write phase.

Tj doesn’t read anything Ti wrote.
Anything Tj wrote that Ti also wrote will be installed afterwards.
Anything Ti read will not reflect Tjs writes

Read Validate Write
Ti

Read Validate Write
Tj

Time

W(Ti) ∩ R(Tj) = { } R(Ti) ∩ W(Tj) ≠ { } W(Ti) ∩ W(Tj) ≠ { }

W(Ti) intersects W(Tj), i.e., Tj wrote
something Ti wrote,
 or
R(Ti) intersects W(Tj), i.e., Ti read
something Tj wrote

This overlap is ok!

No overlap, so
R(Ti) ∩ W(Tj) ≠ { }
and
W(Ti) ∩ W(Tj) ≠ { }
Isn’t a problem!

Condition 3

W(Ti) does not intersect R(Tj) or W(Tj), and Ti completes its read
phase before Tj completes its read phase.

Tj doesn’t read or write anything Ti wrote (but Ti may read something Tj writes).
Ti definitely won’t see any of Tj’s writes, because it finishes reading before Tj starts
validation, so Ti ordered before Tj.
Ti will always complete its read phase before Tj b/c xaction IDs assigned after read phase

Read Validate Write
Ti

Read Validate Write
Tj

Time

W(Ti) ∩ R(Tj) = { } R(Ti) ∩ W(Tj) ≠ { } W(Ti) ∩ W(Tj) = { }

R(Ti) intersects W(Tj), i.e., Ti read
something Tj wrote

Both overlaps are ok!

If no conditions apply, abort!

Restating previous rules, aborts required if:

1) W(Ti) ∩ R(Tj) ≠ { }, and Ti does not finish writing before Tj
starts, Tj must abort, because Tj may have only seen some of
what Ti wrote

or

2) W(Ti) ∩ (W(Tj) U R(Tj)) ≠ { }, and Tj overlaps with Ti
validation or write phase, Tj must abort because it needs its
writes to all appear after Ti’s writes

Back

2.5

8 Candy Back

Validate Implementation

Validate Implementation
• Several different implementations designed to

provide different levels of concurrency during
writeback

• Transaction initialization:

tnc = 0; // current transaction id
void tbegin {
 read_set = new Set();
 write_set = new Set();
 start_tn = tnc; //the transaction that
 //finished just before this
 //one started
}

Serial Validation
validateAndWrite(pastT[], start_tn, my_read_set, my_write_set)
{

 lock();

 int finish_tn = tnc; //prior transaction

 bool valid = true;

 for(int t = start_tn + 1; t <= finish_tn; t++)

 if(pastT[t].write_set intersects with my_read_set)

 valid = false;

 if (valid) {

 write_phase();

 tnc = tnc+1;

 tn = tnc;

 }

 unlock();

}

1. W(Ti) ∩ R(Tj) ≠ { }, and Ti does not finish
writing before Tj starts, Tj must abort
2. W(Ti) ∩ (W(Tj) U R(Tj)) ≠ { }, and Tj overlaps
with Ti validation or write phase, Tj must abort

2nd condition doesn’t occur because if Ti
completes its read phase before Tj, it will
also complete its write phase before Tj.

Example

T1 T2 T3 T4 T6 T7 T8

tnc (finish_tn)

Transactions that
validated and wrote while
this transaction was in
read phase

start_tn

Last transaction that
validated before this
transaction started

Have to compare against T6, T7, and T8

T9

Which of the following transactions would serial validation allow
to commit, assuming the transactions are concurrent and Ti
completes its write phase before Tj starts its write phase ∀ i < j

Aborts required if:

1) W(Ti) ∩ R(Tj) ≠ { }, and Ti does
not finish writing before Tj starts,
Tj must abort, because Tj may
have only some of what Ti wrote

or

2) W(Ti) ∩ (W(Tj) U R(Tj)) ≠ { } ,
and Tj overlaps with Ti validation
or write phase, Tj must abort
because it needs its writes to all
appear after Ti’s writes

T1 T2
RA RC
WA WA
RB
WB

T1 T2 T3
RA RB RA
WA WB RC
 WC

T1 T2
RA RA
WA RB
 WA

A.

B.

C.

Blind write

X

X

X

Back

3.1

1 Candy
Back

Is the following schedule permitted by two-phase locking?

Is this schedule view serializable? Is it conflict serializable?

T1 T2 T3

READ A

READ A

WRITE A

WRITE B

WRITE A

WRITE B

COMMIT

COMMIT

COMMIT

3.2

2 Candy
Back

Which of the following schedules would rigorous 2PL permit?

T1 T2
RA
WA
 RA
 WA
RB
WB
COMMIT
 RB
 WB
 COMMIT

T1 T2
RA
WA
 RC
 WC
RB
WB
COMMIT
 RB
 WB
 COMMIT

T1 T2
RA
WA
 RB
 WB
 COMMIT
RB
WB
COMMIT

X

T1 does not release lock on A until COMMIT (note under
rigorous 2PL T2 would wait so this schedule would not happen)

3.3 3 Candy
Consider the following banking schema (a typical design)

id account_nb description amount

1 1 Lunch Money $ +200

3 2 Candy for Tim $ -40

4 1 Ski pass $ -50

… … …

You have decided with your girl-/boyfriend to consolidate the
accounts by closing ACCOUNT_NB=1 with the following trx:
acct_sum = SELECT SUM(amount) FROM bank_trx WHERE account_nb = 1

INSERT (100, 2, “Transfer from Acct 1”, acct_sum) INTO bank_trx

INSERT (101, 1, “Transfer to Acct 2”, -acct_sum) INTO bank_trx

UPDATE account SET status=closed WHERE account_nb = 1

Assuming transfers always check the account status, why is 2-
Phase Locking from class not sufficient to ensure that the
balance of account 1 is 0 after closing it? How would you prevent
the problem?

bank_trx
account_nb owner status

1 Tim open

2 Karin open

… … …

account

Final Wrinkle: Phantoms

• T1 scans a range; T2 later inserts into that range
• If T1 scans the range again, it will see a new value

T1
BEGIN

SELECT COUNT(*) FROM emp WHERE SAL > 100
…
SELECT COUNT(*) FROM emp WHERE SAL > 200

END

T2
BEGIN

INSERT INTO EMP VALUES(…,sal=225)
END

If we are just locking, e.g., records, this insertion would be
allowed in all 2PL algos we have studied, but is not serializable
(since this couldn’t happen in a serial execution).

Solving Phantoms
• Need a way to lock

ranges
• Common approach:

next key locking

RIDn RIDn+1 RIDn+2 ptr RIDn+3 RIDn+4 RIDn+5 ptr

B+Tree

Scan

Page i
SLock

Page
j SLock

Next
Pointer
SLock (ij)

Only works for ranges with indexes
For unindexed tables, must read the whole table, so just use a table lock
More details next lecture!

On insert(val), Xlock ij next pointer if val> max(page i) and < min(page(j))

Implicit lock on
range between
pages i and j

Back

3.4

4 Candy
How would you implement 2PL and
prevent Phantoms in GoDB without a
Btree?

Implementing 2PL

• GoDB: Lock Table
– Buffer pool maintains a table of locks per page
– Transactions acquire locks on reads/writes of pages
– Release locks at commit

• Access to lock table will need to be synchronized

Back

3.5

5 Candy
What is the conflict graph for this schedule, and is it serializable?

T1 T2 T3

READ A

READ A

WRITE B

READ B

WRITE A

READ B

WRITE B

T1

T2

T3

T1 T2
For an operation pair that
conflicts in T1 and T2, the
operation happens first in T1

Back

4.1

1 Candy

What if
Serializability isn’t
needed?

What If Serializability Isn’t Needed?

• E.g., application only needs to read committed data
• Databases provide different isolation levels

– READ UNCOMMITTED
• Ok to read other transaction’s dirty data

– READ COMMITTED
• Only read committed values

– REPEATABLE READS
• If R1 read A=x, R2 will read A=x ∀ A

• Many database systems default to READ COMMITTED

READ UNCOMMITTED w/ Locking

• If OK reading uncommitted data, no need to
check if records that are read are locked

• However, to prevent other transactions from
seeing dirty data, need to hold write locks for
the duration of the transaction

• May be OK if, e.g., just reporting some statistic,
like number of users or views

READ COMMITTED w/ Locking

• To ensure that a transaction only reads committed
values, need to acquire locks before reading

– If all other transactions hold write locks (as in READ
UNCOMMITTED), it will never read a dirty value

• Since we doesn’t care about always reading the same
value, OK to release locks after a value is read

• As in READ UNCOMMITTED, write locks still need to
be held for the duration of the transaction

Is this schedule permitted under
(a) read uncommitted, (b) read
committed, (c) repeatable read

T1 T2 T3
RA
WA
COMMIT
 RA

 RA

 WA
 COMMIT

RA
WA
COMMIT

READ COMMITTED Example
T1 T2 T3
XLOCK A
RA
WA
COMMIT
RELEASE A
 SLOCK A
 RA
 RELEASE A
 XLOCK A
 RA

 WA
 COMMIT
 RELEASE A

XLOCK A
RA
WA
COMMIT
RELEASE A

This schedule is permitted by
READ COMITTED

These reads see
different values of A

Short duration
read lock

Additional
concurrency!

REPEATABLE READ w/ Locking

• If we want to always read the same value, need to
hold read locks for transaction duration

• So how is this different from SERIALIZABLE?

• SERIALIZABLE also needs to prevent phantoms

Back

4.2 2 Candy

Multi-version concurrency
control (MVCC) /

Snapshot Isolation (SI)

REPEATABLE READ vs
SERIALIZABLE

• Some systems, e.g., Postgres implement REPEATABLE
READ through a different mechanism based on
database snapshots taken at the start of transaction

– Called “multiversion concurrency control” – yet another
way of achieving isolation!

• This has other problems besides phantoms – so
called “read skew anomalies”

– See: https://www.cockroachlabs.com/blog/what-write-
skew-looks-like/

https://www.cockroachlabs.com/blog/what-write-skew-looks-like/
https://www.cockroachlabs.com/blog/what-write-skew-looks-like/

Snapshot Isolation

• When a TA starts it receives a timestamp, T.
• All reads are carried out as of the DB version of T.

– Need to keep historic versions of all objects!!!
• All writes are carried out in a separate buffer.

– Writes only become visible after a commit.
• When TA commits, DBMS checks for conflicts

– Abort TA1 with timestamp T1 if exists TA2 such
that
• TA2 committed after T1 and before TA1
• TA1 and TA2 updated the same object

T1 T2 T3

R(Y)

W(Y)
Commit

Start
R(X)
R(Y)

W(X)
W(Z)
Commit/Abort

R(Z)
R(Y)
W(X)
Abort?/Commit?

UNDER SI
A) Does T2 abort or commit?
B) Does T3 abort or commit?

• A transaction T1 executing with Snapshot
Isolation

– takes snapshot of committed data at start

– always reads/modifies data in its own
snapshot

– updates of concurrent transactions are
not visible to T1

– writes of T1 complete when it commits

– First-committer-wins rule:

• Commits only if no other concurrent
transaction has already written data
that T1 intends to write.

T1 T2 T3

R(Y)->v0

W(Y := v1)
Commit

Start
R(X) à v0
R(Y)à v1

W(X:=v2)
W(Z:=v1)
Commit

R(Z) à v0
R(Y) à v1
W(X:=v3)
Abort

Concurrent updates not visible
Own updates are visible
Not first-committer of X

Serialization error, T2 is rolled back

Is the following schedule valid under SI
Back

4.3

3 Candy

For what type of workloads
should you use 2PL for what type

of workloads SI?

Back

4.4

4 Candy
Create a real-world-inspired
example, (e.g., from banking, hotel
booking, …) for which two
transactions executed with
Snapshot Isolation guarantees
would violate serializibility.

• Observation: Snapshot isolation does not prevent Write-Read
conflicts, since it doesn’t check whether it read something another
transaction wrote
• This leads to so-called write-skew, i.e.:

T1 T2
 RX
 RY
 WY
 WX
• Neither transaction saw the other’s write; this would not be

permitted under serializability

Real world example:
• Employee X and employee Y are signing up for shifts
• They hate each other and don’t want to work together
• EY checks that EX isn’t working (RX)
• EX checks that EY isn’t working (RY)
• Both update their schedule to work on the same day

Back

4.5

5 Candy

Back

Back

Does SI isolation have the
phantom problem?

Under 2-Phase Locking, the following locks got
requested from the Lock Manager. Is there a
deadlock? Can you think of a single change to
create/resolve the deadlock?

time Type TID

t1 Req. ReadLock A T1

t2 Req. ReadLock B T2

t3 Req. ReadLock C T3

t4 Req. ReadLock A T3

t5 Req. WriteLock B T1

t6 Req. ReadLock C T2

T1 T2 T3

RA RB RC

WB RC RA

