
6.5830/6.5831
Introduction to Databases

6.5830 Lecture 1- 9/4/2024
Mike Cafarella, Tim Kraska

michjc@csail.mit.edu, kraska@csail.mit.edu

Please use Piazza:
https://piazza.com/class/m06qshnnxi85if http://dsg.csail.mit.edu/6.5830/

mailto:michjc@csail.mit.edu

Tim Kraska

Mark Jabbour

Sam Madden

Sylvia Ziyu Zhang

The original

cast for 2024

Tim Kraska

Mark Jabbour Sylvia Ziyu Zhang

Michael Cafarella

Ziniu
Wu

Ferdi
Kossmann

Tim Kraska

Mark Jabbour

Michael Cafarella

Sylvia Ziyu Zhang

Administrivia
http://dsg.csail.mit.edu/6.5830, Email: 6.5830-staff@mit.edu
Ask questions on Piazza! Use sign up link on website.
Lecturers:

Mike Cafarella (michjc@mit.edu)
Tim Kraska (kraska@mit.edu)

TAs:
 Mark Jabbour (mjabbour@mit.edu)
 Ferdi Kossmann (kossmann@mit.edu)
 Ziniu Wu (ziniuw@mit.edu)
 Sylvia Zhang (sylziyuz@mit.edu)

Office hours: see website
Note generative AI policy; 5 Late Days

http://dsg.csail.mit.edu/6.5830
mailto:6.5830-staff@mit.edu
mailto:michjc@mit.edu
mailto:kraska@mit.edu
mailto:mjabbour@mit.edu
mailto:kossmann@mit.edu
mailto:ziniuw@mit.edu
mailto:sylziyuz@mit.edu

Textbooks

• Readings in Database Systems
– http://www.redbook.io

• Rest of readings will be drawn from literature
(research papers and web pages)

http://www.redbook.io/

What is a Database?

• Structured Data Collection
– Records
– Relationships

• This class: Database Management Systems
(DBMSs)
Software systems for storing and querying databases

The modern cloud data mesh

AWS Aurora
(OLTP DBMS)

AWS S3
(Object Storage)

AWS EMR
(Cluster
Processing)

Spark Presto Hive

!"

#

$
%

&

!

&

%

Data Pipeline

Data Pipeline %
#

&Snowflake
(Data Warehouse)

Google BigQuery Omni
(Data Lake Query Engine)

Snowflake
(Data Mart)

'
(

)

Data Pipeline

Source: mattturck.com

Commercial Systems (even more if you include open-source

6.5830/1 Concepts
• Data modeling / layout

• Declarative querying
– Query processing
– Algorithms for accessing and manipulating data

• Consistency / Transactions (“ACID”)

• “Big Data” – scaling to massive volumes, many
machines

Quiz 2

Quiz 1

Two class flavors

6.5831 is an undergraduate class designed to satisfy the AUS requirement
in the EECS curriculum (instead of 6.1800). The class does not fulfill the CI-M
requirement.

6.5830 is a Grad-H class. It counts as an engineering concentration (EC)
subject in Systems. For Area II Ph.D. students in EECS, it satisfies the
Systems TQE requirement and the AUS requirement. 6.5830 requires the
completion of a final open-ended research project

6.5830/1 Assignments
• 4 Labs: GoDB

• 3 Problem Sets
– SQL
– Quiz Prep 1
– Quiz Prep 2

• 2 Quizzes

• 6.5830: Final Project – open ended research project of your choice

• 6.5831: Final Project: Extend GoDB OR open-ended research

6.5830/1 Grading
6.5830
• Assignment (Problem Sets and Labs): 35% total

• PSET 1: 3.33%
• PSET 2: 5.00%
• PSET 3: 5.00%
• Lab 0: 1.66%
• Lab 1: 6.66%
• Lab 2: 6.66%
• Lab 3: 6.66%

• Quizzes: 15% each
• Course Project: 30%
• Class Participation: 5% (clicker, piazza, and general participation during class)

6.5831
• Assignments (Problem Sets and Labs): 65% total

• PSET 1: 5%
• PSET 2: 7.5%
• PSET 3: 7.5%
• Lab 0: 2.5%
• Lab 1: 10%
• Lab 2: 10%
• Lab 3: 10%
• Lab 4: 12.5%

• Quizzes: 15% each
• Class Participation: 5% (clicker, piazza, and general participation during class)

The System you will be working on:

Open-ended Project

• We will release a list of potential project ideas,
but you can also BYO.

• Projects needs to be related to data-centric
systems

• Last projects included GPU-accelerated DBs,
Database benchmarks, Learned Index
Structures, Text2SQL, …

• Final deliverable: 5-min recorded
presentation, in-class Q&A, written report

MapD: GPU Accelerated SQL Database

• Key insight: GPUs have enough memory
that a cluster of them can store
substantial amounts of data

• Not an accelerator, but a full blown query
processor!

• Massive parallelism enables interactive
browsing interfaces
– 4x GPUs can provide > 1 TB/sec of

bandwidth
– 12 Tflops compute
– Order of magnitude speedups over CPUs,

when data is on GPU

• “Shared nothing” arrangement

WHAT IS MAPD?
MapD is:
� A GPU (Graphics Processing Unit)-

accelerated SQL column store database
� Scales to any number of Nvidia

GPUs
� A real-time map generator
� Uses GPUs to render point and

heatmaps of query results in
milliseconds

� A WMS web-server
� Can serve out of the box as the

backend for a web mapping client,
allowing for querying and
visualization of billions of features

� Fast and cost-effective
� 4 Nvidia commodity GPUs provide

provide over 12 Teraflops of
compute power and nearly 1 TB/sec
of memory bandwidth

147,201,658 tweets from Oct 1, 2012 to Nov 6, 2012

Relative intensity of “tornado” on Twitter (with point
overlay) from Febuary 29, 2012 to March 1, 2012

Lab 0 Out Today: Introductory lab designed to teach you Go
PS1 Out Next Monday: Designed to teach you SQL
Lab 1 Out Next Wednesday: First part of the GoDB system

Today

• Why database systems?

• User’s perspective:
– Modeling data
– Querying data

• Data Models

Zoo Website Features
• Admin interface
– Edit
– Add an animal

• Public
– Pictures & Maps

• Zookeeper
– Feed times

• 1K animals, 5K URLs, 10 admins, 200 keepers

Zoo Data Model
Entity Relationship Diagram

Animal Cage

Keeper

keeps

Name

1

name

Time
1

feedTime

Age

Name

Species

1

1

1

name

age

species

Animals have names, ages, species
Keepers have names
Cages have cleaning times, buildings
Animals are in 1 cage; cages have multiple animals
Keepers keep multiple cages, cages kept by multiple keepers

1

11

Building
1

bldg

entity entity

entity

contains 1
relationship

n

n

n

Our Zoo

Sally the StudentMike the Moose Tim the Giraffe

Zoo Data Model
Entity Relationship Diagram

Animal Cage

Keeper

keeps

Name

1

name

Time
1
feedTime

Age

Name

Species

1

1

1

name

age

species 1

11

Building
1

bldg

entity entity

entity

contains 1

relationship

n

n

n

Id Name Age Species Cageno
1 Tim 13 Giraffe 1
2 Sam 3 Salamander 2

3 Sally 1 Student 1

Cageid Feedtime Bldg
1 1:30 1
2 2:30 2

? ?

Zoo Data Model
Entity Relationship Diagram

Animal Cage

Keeper

keeps

Name

1

name

Time
1
feedTime

Age

Name

Species

1

1

1

name

age

species 1

11

Building
1

bldg

entity entity

entity

contains 1

relationship

n

n

n

Cageid Feedtime Bldg
1 1:30 1
2 2:30 2

?

keeperid name
1 jenny
2 joe

keeperid cageid
1 1
1 2

2 1

Study Break #1

• Questions
– Are there other ways to represent this zoo data

than a collection of tables?

– What are tradeoffs in different representations?

Alternatives to Relations
cage 1
 tim
 giraffe
 13 yrs
 sally
 student
 1 yr

cage 2
 mike
 moose
 3 yrs

Hierarchy Graph

animals

tim

sally

mike

cage 1

cage 2

Multiple Tabular Representations Are
Possible

name age species cageno feedtime bldg

tim 13 giraffe 1 1:30 1

mike 3 moose 2 2:30 2

sally 1 student 1 1:30 1

Is this a good representation? Why or why not?

Not “Normalized” – repeats data. More in later lectures!

SQL – Structured Query Language
SELECT field1, …, fieldM
FROM table1, …
WHERE condition1, …

INSERT INTO table VALUES (field1, …)

UPDATE table SET field1 = X, …
WHERE condition1,…

Names of Giraffes

• Imperative
for each row r in animals
 if r.species = ‘giraffe’
 output r.name

• Declarative
 SELECT r.name FROM animals
 WHERE r.species = ‘giraffe’

Cages in Building 32

• Imperative
 for each row a in animals
 for each row c in cages
 if a.cageno = c.no and c.bldg = 32
 output a

• Declarative
SELECT a.name FROM animals AS a, cages AS c
WHERE a.cageno = c.no AND c.bldg = 32JOIN

NESTED

LOOPS

Average Age of Bears

• Declarative
SELECT AVG(age) FROM animals
WHERE species = ‘bear’

Complex Queries
Find pairs of animals of the same species and different genders older than 1 year:

SELECT a1.name,a2.name
FROM animals as a1, animals as a2
WHERE a1.gender = M and a2.gender = F
AND a1.species = a2.species
AND a1.age > 1 and a2.age > 1

Find cages with salamanders fed later than the average feedtime of any cage:
SELECT cages.cageid FROM cages, animals
WHERE animals.species = ’salamander'
AND animals.cageid = cages.cageid
AND cages.feedtime >
 (SELECT AVG(feedtime) FROM cages)

“self join”

“nested queries”

Complex Queries 2
Find keepers who keep both students and salamanders:

SELECT keeper.name
FROM keeper, cages as c1, cages as c2,
 keeps as k1, keeps as k2, animals as a1, animals as a2
WHERE c1.cageid = k1.cageid AND keeper.keeperid = k1.keeperid
AND c2.cageid = k2.cageid AND keeper.keeperid = k2.keeperid
AND a1.species = ’student' AND a2.species = ’salamander'
AND c1.cageid = a1.cageid AND c2.cageid = a2.cageid

a1 c1 k1

a2 c2 k2

keeper

keeper.keeperid =
k2.keeperid

keeper.keeperid =
k1.keeperid

species = ‘shrew’

species = ‘student’

Declarative Queries: What, not How

• Many possible procedural plans for a given SQL
query

• Besides looping through all records, what else
could we do?
– Sort animals on type

+ good for “bears” query
- Inserts are slower

– Store animals table in a hash table or tree (“index”)

SQL àProcedural Plan à Optimized
Plan à Compiled Program

Animals
R1

Cages
R2

Join
R1.cageno == R2.cageid

Select
Bldg == 2 Binary search?

SQL àProcedural Plan à Optimized
Plan à Compiled Program

Animals
R1

Cages
R2

Join
R1.cageno == R2.cageid

Select
Bldg == 2

“Predicate push
down”

SQL programmer just thinks
in terms of table operations,
not the order or
implementation!

Summary: Database Systems

• Relational Model + Schema
Design

• Declarative Queries
• Query Optimization
• Efficient access and updates to

data
– Recoverability
– Consistency

Relational Model

“Those who cannot remember the
past are doomed to repeat it”

A Short History Lesson
• Different Data Models
– Hierarchical (IMS/DL1) – 1960’s
– Network (CODASYL) – 1970’s
– Relational – 1970’s and beyond

• Key ideas
– Data redundancy (and how to avoid it)
– Physical and logical data independence
– Relational algebra and axioms

Recap: Zoo Data Model
Entity Relationship Diagram

Animal Cage

Keeper

keeps

Name

1

name

Time
1

feedTime

Age

Name

Species

1

1

1

name

age

species

Animals have names, ages, species
Keepers have names
Cages have cleaning times, buildings
Animals are in 1 cage; cages have multiple animals
Keepers keep multiple cages, cages kept by multiple keepers

1

11

Building
1

bldg

entity entity

entity

contains 1
relationship

n

n

n

Zoo Tables (aka Relations)
id name age species cageno
1 Mike 3 Moose 1
2 Tim 12 Giraffe 1
3 Sally 1 Student 2

no feedtime building
1 12:30 1
2 1:30 2

id name
1 Jane
2 Joe

kid cageno
1 1
1 2
2 1

Animals

Cages

Keepers Keeps

“Schema”: Field names
& types

Rows, records, or tuples

Modified Zoo Data Model

Slightly different than last time:
• Each animal in 1 cage, multiple animals share a cage
• Each animal cared for by 1 keeper, keepers care for

multiple animals

animals(name,species,age,feed time)

cages(no, size, bldg) keepers(name, address)

livesin caredforby

IMS (Hierarchical Model)
• Data organized as segments
– Collection of records, each with same segment type
– Arranged in a tree of segment types, e.g.:

Keepers Keepers
Animals Cages

Cages Animals

• Segments have different physical representations
– Unordered
– Indexed

• Sorted
• Hashed

Example Hierarchy
Jane (keeper) (HSK 1)

Mike, moose, … (2)
 1, 100sq ft, … (3)

Tim, giraffe, … (4)
 2, 1000sq ft, … (5)
 Sally, student, … (6)
 1, 100sq ft, … (7)

Joe (keeper) (8)

 Keepers segment

 A1 Segment A2 Segment A3 Segment
 C1 Segment C2 Segment C3 Segment

IMS Physical Represenation

Repeated
information!

Segment Structure
• Each segment has a particular physical

representation
– Chosen by database administrator
– E.g., ordered, hashed, unordered…

• Choice of segment structure affects which
operations can be applied on it

IMS / DL/1 Operations
• GetUnique (seg type, pred)

– Get first record satisfying pred
– Only supported by hash / sorted segments

• GetNext (seg type, pred)
– Get first or next key in hierarchical order
– Starts from last GetNext/GetUnique call

• GetNextParent (seg type, pred)
– Same as GetNext, but will not move up hierarchy to next parent

• Delete, Insert

Example PL/1 Program #1
Find the cages that Jane keeps
 GetUnique(Keepers, name = "Jane")
 Until done:
 cageid = GetNextParent (cages).no
 print cageid

Implicitly, now
navigating from the
Jane record in
keepers

This iterates through
data underneath
Jane

Jane (keeper) (HSK 1)
Mike, moose, … (2)

 1, 100sq ft, … (3)
Tim, giraffe, … (4)

 2, 1000sq ft, … (5)
 Sally, student, … (6)
 1, 100sq ft, … (7)

Joe (keeper) (8)

Example PL/1 Program #2
Find the keepers that keep cage 6
 keep = GetUnique(keepers)

 Until done:
 cage = GetNextParent(cages, id = 6)
 if (cage is not null):
 print keep
 keep = GetNext(keepers)

What’s Bad About IMS/PL1?
• Duplication of data w/ non-hierarchical data
• Painful low level programming interface – have to program the

search algorithm
• Limited physical data independence

– Change root from indexed to hash --- programs that do GetNext
on the root segment will fail

– Change root from keepers to animals? Also fails.
– Cannot do inserts into sequential root structure

• Limited logical data independence
– Schemas change, do programs have to?

Logical Data Independence
• Suppose as a cost cutting

measure, Zoo
management decides a
keeper will be responsible
for a cage – and all the
animals in that cage.

Programs have to change, because the position in the
database after a GN/GNP call may not be the same
anymore!

Will see how SQL addresses this

Schemas Change for Many Reasons

• Management decides to
have “patrons” who buy
cages
– Need to add a patronid

column
• Feds change the rules

(OSHA)
– Keepers can keep at most 2

cages
• Tax rules change (IRS)
• Merge with another zoo

Study break #2
• Consider a course schema with students, classes,

rooms (each has a number of attributes)

Classes in exactly one room
Students in zero or more classes
Classes taken by zero or more students
Rooms host zero or more classes

Classes

Students Rooms

isintakenby

Questions
1. Describe one possible hierarchical schema for

this data
2. Is there a hierarchical representation that is free

of redundancy?

Classes

Students Rooms

isintakenby

Solution
• Many are possible; one example:
– Classes
• Students

– Rooms

• Duplicates data about students,
– Students take multiple classes, rooms host

multiple classes
• Any other arrangement also duplicates data

CODASYL
• Conference/Committee on

Data Systems Languages
– Responsible for COBOL

• CODASYL data model developed
by consortium of large
companies in the 70’s

• Designed to address limitations
of IMS/PL1

• Graph or network-based data
model

Example CODASYL Network
animals(name,species,age)

cages(no, size, bldg) keepers(name, address)

livesin caredforby

animals
sam, salamander

mike, giraffe
sally, student

keepers
joe

jane

cages
1
2

Records can either be hashes (allowing
equality lookup) or sorted ("clustered")
according to some key (allowing a range
lookup).

tim, giraffe
mike, moose

Example: Find Cages Joe Keeps
Find keepers (name = 'Joe')

Until done:
Find next animal in caredforby

Find cage in livesin

• Programming is finding an entry point and
navigating around in multidimensional space
– Each line of code is implicitly at some location in

this structure
– Have to remember where you are

animals(name,species,age)

cages(no, size, bldg) keepers(name, address)

livesin caredforby

animals
sam, salamander

mike, giraffe
sally, student

keepers
joe

jane

cages
1
2

caredforby

livesin

tim, giraffe
mike, moose

Codasyl Problems
• Incredibly complex —
 “Navigational Programming”
• Programs lack physical or logical data independence

– Can't change schema w/out changing programs;
– Can't change physical representation either b/c different

index types might or might not support different operations
• Some of this could have been fixed by adding a high-

level language to CODASYL
• Relational model was a clean-slate approach designed

to fix this

Relational Principles
• Simple representation
• Set-oriented programming model that doesn't

require "navigation"
• No physical data model description required(!)
– E.g., no specification of sort orders, hashes, etc

Relational Data Model
• All data is represented as tables of records (tuples)
• Tables are unordered sets (no duplicates)
• Database is one or more tables
• Each relation has a schema that describes the

types of the columns/fields
• Each field is a primitive type -- not a set or relation
• Physical representation/layout of data is not

specified (no index types, nestings, etc)

Zoo Tables
id name age species cageno keptby feedtime
1 Mike 3 Moose 1 1 10:00 am
2 Tim 12 Giraffe 1 2 11:00 am
3 Sally 1 Student 2 1 1:00 pm

no building
1 1
2 2

id name
1 Jane
2 Joe

Animals

Cages

Keepers

Foreign

Keys

Prim
ary

Key

Prim
ary

Key

Prim
ary

Key

Schema: Animals
(id: int,
name: string,
age: int,
species: string,
cageno: int references cages.no,
keptby: int references keepers.id.
feedtime: time)

Zoo Tables (original schema)
id name age species cageno
1 Mike 3 Moose 1
2 Tim 12 Giraffe 1
3 Sally 1 Student 2

no feedtime building
1 12:30 1
2 1:30 2

id name
1 Jane
2 Joe

kid cageno
1 1
1 2
2 1

Animals

Cages

Keepers Keeps

Foreign

KeyPrim
ary

Key

Prim
ary

Key

Prim
ary

Key Foreign

Key
Foreign

Key

Relational Algebra
• Projection (π(T,c1, …, cn))

– select a subset of columns c1 .. cn
• Selection (σ(T, pred))

– select a subset of rows that satisfy pred
• Cross Product (T1 x T2)

– combine two tables
• Join (⨝(T1, T2, pred)) = σ(T1 x T2, pred)

– combine two tables with a predicate

• Plus set operations (UNION, DIFFERENCE, etc)

• “Algebra” – Closed under its own operations
– Every expression over relations produces a relation

Join as Cross Product

name cageno
Mike 1
Tim 1
Sally 2

no bldg
1 32
2 36

cageno no name bldg

1 1 Mike 32

1 2 Mike 36

1 1 Tim 32

1 2 Tim 36

2 1 Sally 32

2 2 Sally 36

Find animals in bldg. 32

Animals Cages

Real implementations do not ever
materialize the cross productσ (

⨝(
animals,
cages,
animals.cageno = cages.no

),
bldg = 32

)

Join as Cross Product

name cageno
Sam 1
Tim 1
Sally 2

no bldg
1 32
2 36

cageno no name bldg

1 1 Mike 32

1 2 Mike 36

1 1 Tim 32

1 2 Tim 36

2 1 Sally 32

2 2 Sally 36

Find animals in bldg. 32

Animals Cages

1. animals.cageno = cages.no
σ (
⨝(

animals,
cages,
animals.cageno = cages.no

),
bldg = 32

)

Join as Cross Product

name cageno
Sam 1
Tim 1
Sally 2

no bldg
1 32
2 36

cageno no name bldg

1 1 Mike 32

1 2 Mike 36

1 1 Tim 32

1 2 Tim 36

2 1 Sally 32

2 2 Sally 36

Find animals in bldg. 32

Animals Cages

1. animals.cageno = cages.no
2. bldg = 32σ (

⨝(
animals,
cages,
animals.cageno = cages.no

),
bldg = 32

)

Do you think this is how
databases actually
execute joins?

Relational Identities
• Join reordering
– A ⨝ B = B ⨝ A
– (A ⨝ B) join C = A ⨝ (B ⨝ C)

• Selection reordering
– σ1(σ2(A)) = σ2(σ1(A))

• Selection push down
– σ(A ⨝pred B) = σ(A) ⨝pred σ(b)
– σ may only apply to one table

• Projection push down
– π(σ(A)) = σ(π(A))
– As long as π doesn’t remove fields used in σ
– Also applies to joins

Push Down Example
σ (
⨝ (

animals,
cages,
animals.cageno = cages.no

),
bldg = 32

)

⨝ (
animals,
σ (

cages,
bldg = 32

)
animals.cageno = cages.no

)

Join Ordering Example
• Find buildings Joe keeps
• SQL

SELECT building
FROM cages JOIN keeps ON no = cageno
JOIN keepers on kid = id
WHERE name = ‘Joe’
⨝ (

⨝ (
cages,
keeps,
no = cageno

),
σ (

keepers,
name = ‘Joe’

),
kid = id

)

⨝ (
cages,
⨝ (

σ (
keepers,
name = ‘Joe’

),
keeps,
kid=id

),
no = cageno

)

Best
ordering
depends on
sizes of
tables

Filtered
keepers may
be much
smaller

SQL query executor
free to choose either
ordering!
Text of SQL query is
not an ordering

Study Break # 2
Schema:
 classes: (cid, c_name, c_rid, …)
 rooms: (rid, bldg, …)
 students: (sid, s_name, …)
 takes: (t_sid, t_cid)

SELECT s_name FROM student,takes,classes
WHERE t_sid=sid AND t_cid=cid
AND c_name=‘6.830’

Questions
• Write an equivalent relational algebra

expression for this query
• Are there other possible expressions?
• Do you think one would be more “efficient” to

execute? Why?

SELECT s_name FROM student,takes,classes
WHERE t_sid=sid AND t_cid=cid
AND c_name=‘6.830’

Solution
SELECT s_name FROM student,takes,classes
WHERE t_sid=sid AND t_cid=cid
AND c_name=‘6.830’

⨝ (
student,
⨝ (

σ (
classes,
c_name = ‘6.830’

),
takes,
t_cid=cid

),
t_sid=sid

)

Filtering first is probably a good idea

Filtered table is small, so do join with
it and classes first

Will formalize this intuition in a few
classes

IMS v CODASYL v Relational
IMS CODASYL Relational

Many to many
relationships
without
redundancy

❌ ✓ ✓
Declarative, non
“navigational”
programming

❌ ❌ ✓

IMS v CODASYL v Relational
IMS CODASYL Relational

Many to many
relationships
without
redundancy

❌ ✓ ✓
Declarative, non
“navigational”
programming

❌ ❌ ✓
Physical data
independence ❌ ❌ ✓

Physical Independence
Can change representation of data without needing to change code

Example:

SELECT a.name FROM animals AS a, cages AS c
WHERE a.cageno = c.no AND c.bldg = 32

• Nothing about how animals or cages tables are represented is
evident
– Could be sorted, stored in a hash table / tree, etc
– Changing physical representation will not change SQL

• No specification of implementation
• Both CODASYL and IMS expose representation-dependent

operations in their query API

IMS v CODASYL v Relational
IMS CODASYL Relational

Many to many
relationships
without
redundancy

❌ ✓ ✓
Declarative, non
“navigational”
programming

❌ ❌ ✓
Physical data
independence ❌ ❌ ✓
Logical data
independence ❌ ❌ ✓

Logical Data Independence
• What if I want to change the schema without

changing the code?
• No problem if just adding a column or table
• Views allow us to map old schema to new

schema, so old programs work
– Even when changing existing fields

Key Idea: View
• View is a logical definition of a table in terms of other

tables

• E.g., a view computing animals per cage

CREATE VIEW cage_count as
(SELECT cageno, count(*)
FROM animals JOIN cages ON cageno=no
GROUP by cageno
)

This view can be used just like a table in other queries

Views Example
• Suppose I want to add multiple feedtimes?
• How to support old programs?

– Rename existing animals table to animals2
– Create feedtimes table
– Copy feedtime data from animals2
– Remove feedtime column from animals2
– Create a view called animals that is a query over animals2 and feedtimes

CREATE VIEW animals as (
SELECT name, age, species, cageno,
 (SELECT feedtime FROM feedtimes WHERE animalid = id LIMIT 1)
 FROM animals2
)

Summary: IMS v CODASYL v
Relational

IMS CODASYL Relational
Many to many
relationships
without
redundancy

❌ ✓ ✓
Declarative, non
“navigational”
programming

❌ ❌ ✓
Physical data
independence ❌ ❌ ✓
Logical data
independence ❌ ❌ ✓
Next time: Fancy SQL

Today

• Why database systems?

• User’s perspective:
– Modeling data
– Querying data

• Data Models

Zoo Website Features
• Admin interface
– Edit
– Add an animal

• Public
– Pictures & Maps

• Zookeeper
– Feed times

• 1K animals, 5K URLs, 10 admins, 200 keepers

Zoo Data Model
Entity Relationship Diagram

Animal Cage

Keeper

keeps

Name

1

name

Time
1

feedTime

Age

Name

Species

1

1

1

name

age

species

Animals have names, ages, species
Keepers have names
Cages have feeding times, buildings
Animals are in 1 cage; cages have multiple animals
Keepers keep multiple cages, cages kept by multiple keepers

1

11

Building
1

bldg

entity entity

entity

contains 1
relationship

n

n

n

Our Zoo

Sally the StudentMike the Moose Tim the Giraffe

Zoo Data Model
Entity Relationship Diagram

Animal Cage

Keeper

keeps

Name

1

name

Time
1
feedTime

Age

Name

Species

1

1

1

name

age

species 1

11

Building
1

bldg

entity entity

entity

contains 1

relationship

n

n

n

Id Name Age Species Cageno
1 Tim 13 Giraffe 1
2 Mike 3 Moose 2

3 Sally 1 Student 1

Cageid Feedtime Bldg
1 1:30 1
2 2:30 2

? ?

Zoo Data Model
Entity Relationship Diagram

Animal Cage

Keeper

keeps

Name

1

name

Time
1
feedTime

Age

Name

Species

1

1

1

name

age

species 1

11

Building
1

bldg

entity entity

entity

contains 1

relationship

n

n

n

Cageid Feedtime Bldg
1 1:30 1
2 2:30 2

?

keeperid name
1 jenny
2 joe

keeperid cageid
1 1
1 2

2 1

Study Break #1

• Questions
– Are there other ways to represent this zoo data

than a collection of tables?

– What are tradeoffs in different representations?

Alternatives to Relations
cage 1
 tim
 giraffe
 13 yrs
 sally
 student
 1 yr

cage 2
 mike
 moose
 3 yrs

Hierarchy Graph

animals

tim

sally

mike

cage 1

cage 2

Multiple Tabular Representations Are
Possible

name age species cageno feedtime bldg

tim 13 giraffe 1 1:30 1

mike 3 moose 2 2:30 2

sally 1 student 1 1:30 1

Is this a good representation? Why or why not?

Not “Normalized” – repeats data. More in later lectures!

SQL – Structured Query Language
SELECT field1, …, fieldM
FROM table1, …
WHERE condition1, …

INSERT INTO table VALUES (field1, …)

UPDATE table SET field1 = X, …
WHERE condition1,…

Names of Giraffes

• Imperative
for each row r in animals
 if r.species = ‘giraffe’
 output r.name

• Declarative
 SELECT r.name FROM animals
 WHERE r.species = ‘giraffe’

Cages in Building 32

• Imperative
 for each row a in animals
 for each row c in cages
 if a.cageno = c.no and c.bldg = 32
 output a

• Declarative
SELECT a.name FROM animals AS a, cages AS c
WHERE a.cageno = c.no AND c.bldg = 32JOIN

NESTED

LOOPS

Average Age of Bears

• Declarative
SELECT AVG(age) FROM animals
WHERE species = ‘bear’

Complex Queries
Find pairs of animals of the same species and different genders older than 1 year:

SELECT a1.name,a2.name
FROM animals as a1, animals as a2
WHERE a1.gender = M and a2.gender = F
AND a1.species = a2.species
AND a1.age > 1 and a2.age > 1

Find cages with salamanders fed later than the average feedtime of any cage:
SELECT cages.cageid FROM cages, animals
WHERE animals.species = ’salamander'
AND animals.cageid = cages.cageid
AND cages.feedtime >
 (SELECT AVG(feedtime) FROM cages)

“self join”

“nested queries”

Complex Queries 2
Find keepers who keep both students and salamanders:

SELECT keeper.name
FROM keeper, cages as c1, cages as c2,
 keeps as k1, keeps as k2, animals as a1, animals as a2
WHERE c1.cageid = k1.cageid AND keeper.keeperid = k1.keeperid
AND c2.cageid = k2.cageid AND keeper.keeperid = k2.keeperid
AND a1.species = ’student' AND a2.species = ’salamander'
AND c1.cageid = a1.cageid AND c2.cageid = a2.cageid

a1 c1 k1

a2 c2 k2

keeper

keeper.keeperid =
k2.keeperid

keeper.keeperid =
k1.keeperid

species = ‘shrew’

species = ‘student’

Declarative Queries: What, not How

• Many possible procedural plans for a given SQL
query

• Besides looping through all records, what else
could we do?
– Sort animals on type

+ good for “bears” query
- Inserts are slower

– Store animals table in a hash table or tree (“index”)

SQL àProcedural Plan à Optimized
Plan à Compiled Program

Animals
R1

Cages
R2

Join
R1.cageno == R2.cageid

Select
Bldg == 2 Binary search?

SQL àProcedural Plan à Optimized
Plan à Compiled Program

Animals
R1

Cages
R2

Join
R1.cageno == R2.cageid

Select
Bldg == 2

“Predicate push
down”

SQL programmer just thinks
in terms of table operations,
not the order or
implementation!

Summary: Database Systems

• Relational Model + Schema
Design

• Declarative Queries
• Query Optimization
• Efficient access and updates to

data
– Recoverability
– Consistency

