Please use Piazza:

https://piazza.com/class/m06qshnnxi85if hitp://dsg.csail. mit.edu/6.5830/

6.5830/6.5831
Introduction to Databases

6.5830 Lecture 1-9/4/2024
Mike Cafarella, Tim Kraska

michjc@csail.mit.edu, kraska@csail.mit.edu

mailto:michjc@csail.mit.edu

Tim Kraska

—

Sylvia Ziyu Zhang

=

Mark Jabbour

Michael Cafarella Tim Kraska

Mark Jabbour Sylvia Ziyu Zhang

Michael Cafarella Tim Kraska

Mark Jabbour Sylvia Ziyu Zhang Ferdi Ziniu
Kossmann Wu

—

Administrivia

http://dsg.csail.mit.edu/6.5830, Email: 6.5830-staff@mit.edu

Ask questions on Piazza! Use sign up link on website.
Lecturers:

Mike Cafarella (michjc@mit.edu)

Tim Kraska (kraska@mit.edu)

TAs:
Mark Jabbour (mjabbour@mit.edu)
Ferdi Kossmann (kossmann@ mit.edu)

Ziniu Wu (ziniuw@mit.edu)

Sylvia Zhang (sylziyuz@mit.edu)

Office hours: see website
Note generative Al policy; 5 Late Days

http://dsg.csail.mit.edu/6.5830
mailto:6.5830-staff@mit.edu
mailto:michjc@mit.edu
mailto:kraska@mit.edu
mailto:mjabbour@mit.edu
mailto:kossmann@mit.edu
mailto:ziniuw@mit.edu
mailto:sylziyuz@mit.edu

Textbooks

* Readings in Database Systems
— http://www.redbook.io

* Rest of readings will be drawn from literature
(research papers and web pages)

http://www.redbook.io/

What is a Database?

e Structured Data Collection
— Records

— Relationships

* This class: Database Management Systems
(DBMSs)

Software systems for storing and querying databases

The modern cloud data mesh

M
LA

al - 2.

i

AWS EMR a8

(Cluster

Processing)
= «

1’,@;

Google BigQuery Omni
(Data Lake Query Engine)

ﬂ) - | AWS Auro
ﬂ (OLTP DB
S
5

Snowflake

(Data Warehouse)
0

c** ais'ss
e AN

(Object Storage)

Snowflake
(Data Mart)

STORAGE

[= R

W= A

HADOOP

Azure
Storage

- -
CLOUD=ERA g

3\

Grogh .
e Chowd Datagroc f:’: :“m-’

DATA LAKES
gdatabricks

Azure
Data Lake Stonage

stems (even more if you include open-source

CIUK

DATA
WAREHOUSES

.amaum B3
ot

__

STORAGE ‘wasabi) - H) > 3
O purstonsce € wasabi W s PivOLal ﬁremuo O stmim 4 ccaseacefll GGanE
Jethro ElVCioud Pltform et Fomation FIREBOLT 12 hazelcast Kx B Matesializo
S COHEITY .
» Pivotal Infoworks 7 merosa
Qb= VAST ©onrERA
Ocuwwo G Ryligencs Yolowbrck e EesTuARy
() ew =5 GRAPH DBs
e DATABASES
amazon . amazen '. nNeoy|
o m;..:.w . DyramoD8 ' DecumemDB W f) OqulcS(om . 4/ Amazon Neptune
’ qu
et Chmst S i] mpily -
& e ORACLE @mongo e @ Pivatal, | @ imol y
Clustrix Q) infcr: Feemenie | [ROCKSET] B ORACLE ~ ~QrieniDE
“Macklogic @ Covcbse pmrmsre: | spice vourcn Qaose | AT e
,,,,, L
ErEE e SCYLLA. - Wi ¥ paradigms y S) nearcesh
By i Cjeactiviy
@) ArangoDB e CRATE.IO B HegcAr @ vusewteos JeRi L
ETLTELTY REVERSEETL — DATATNTEGRATION ——— DATA GOVERNANCE —
DATA TRANSFORMATION ¢ & ACCESS
ensus = = Eagment (@ Informatica
¥dbt talend alteryx = ¢ @ vomates PSailPoint
hightouch i " - RI
X Footan ERStitch L maTiLLION 9 M Muesant TEALIUM snaplogic Iz =
- L ke
Oresly Qrem i | Soowees Puee MY, | 0 E
i o & Paxata 2 ruddersisc 3 Cdremo BinnuTa
Mbara ety LT
Jarruniry ZALENI import.io QKERA Aok,
& sos Ul ke Akima | O Fmnscis e s 5
> y ¢ darawockd m
POLYTON] PR
Exasol DiMeltane @ o R Rivery - Infoworks sNowplow 2 flatfile AR

PRIVACY & —— DATA OBSERVABILITY ——— MGMT/ MONITORING SERVER- — CLUSTER SVCS
SECURITY LESS
PR ? datakin B movTECaRLe ‘ smum) New Relic E splunk - _:l ATZONELS
-’
PRIVAGERA wanta 35 Cotbes B ki | N sppoynamics Crobrik goynatrace N Amacon 1

P ce sranane G essdsaie [T vkens =
e solarwinds ¢ " WAEFRONT ocqifio —— g
ok iffmencena | DATA QUALITY =Cribl & ft ‘ h ®)

- g | g
skyflow Codiey talend SODA. © Bgeye st pagerduty “::L" M§$‘ nuclio £
L) privacy Dynamics & SUPERCONDUCTIVE 5 Collbra iscencelogic e ST packe!

3 e e N

O Ketch Acomalo precisly & | 1 Gratana | ob: OpsRATD ':.'VWW v e

STREAMING /
IN-MEMORY

Krwan

el

e ot st

LT Cleud Platform

Source: mattturck.com

BI PLATFORMS
looker &

»
»

ammemz ATSCALE

G

Infemation
Bailders

MicroStrategy

ANALYTICS

lad 52225

T, Thoughtspot.
Qlik@®

Abirst

£ Keen 10 -

DATA ANALYST PLATFORMS

28 Microsoft ‘@ pentaho alleryx

™ MoDE
ENDOR

incorta.

2 - o
()

Datameer
P
m Power B

guavus

DATA CATALOG —
AND DISCOVERY

b metaphor
atlan

y# dataworld
stennna”

[*] SELECT STAR

il Secodm ¢castor

2

METRICS —

STORE

G GoodData
Trace
¥ Supergrain

@' transform

IQL

VISUALIZATION
‘f}‘io bleau m Power Bl

@ Poriscope
Data

ISAPA
S
— 9

o zepl
'vcauu Toco

-

. Googe

-
e Dutn S3d0

oompem
FOOMDATA plotly

© Observable

7 preset
AUGMENTED ANALYTICS —]
T Thoughtspot.

Digital
Reasoning

) anod®t -outlier

ATTIVIO narrative @ science

ZASEIND I

@facet macheyes

¥ Airtable | cif.f

LOG ANALYTICS
splunk @
emmﬂw

- —
solarwinds = KIbANA
loggty

®cgdna

#LlogRhythm

SUMOIOGT

7 logz.io

@ corlogix

OBSERVE

QUERY SEARCH
ENGINE e

AR
\

VARNDA | AN

- Em
-
elasticsearch Sencs
e >
D Cvasws @ algolia coveo s
A= Lucidworks

2
PS EXRLERD

ORACLE'
ENDECA

Q=

QUA
0 swiftype ATTIV/O
alphasense omni:us

QUICKWIT CHAOSSEARCH

6.5830/1 Concepts

Data modeling / layout Quiz 1

Declarative querying
— Query processing
— Algorithms for accessing and manipulating data

Consistency / Transactions (“ACID”)

“Big Data” — scaling to massive volumes, many

machines
Quiz 2

Two class flavors

6.5831 is an undergraduate class designed to satisfy the AUS requirement
in the EECS curriculum (instead of 6.1800). The class does not fulfill the CI-M

requirement.

6.5830 is a Grad-H class. It counts as an engineering concentration (EC)
subject in Systems. For Area Il Ph.D. students in EECS, it satisfies the
Systems TQE requirement and the AUS requirement. 6.5830 requires the
completion of a final open-ended research project

6.5830/1 Assignments

4 Labs: GoDB

3 Problem Sets
— SQL

— Quiz Prep 1
— Quiz Prep 2
2 Quizzes

6.5830: Final Project — open ended research project of your choice

6.5831: Final Project: Extend GoDB OR open-ended research

6.5830

6.5830/1 Grading

* Assignment (Problem Sets and Labs): 35% total

PSET 1: 3.33%
PSET 2: 5.00%
PSET 3: 5.00%
Lab 0: 1.66%
Lab 1: 6.66%
Lab 2: 6.66%
Lab 3: 6.66%

* Quizzes: 15% each
* Course Project: 30%
. Class Participation: 5% (clicker, piazza, and general participation during class)

6.5831

« Assignments (Problem Sets and Labs): 65% total

PSET 1: 5%
PSET 2: 7.5%
PSET 3: 7.5%
Lab 0: 2.5%
Lab 1: 10%
Lab 2: 10%
Lab 3: 10%
Lab 4:12.5%

* Quizzes: 15% each
. Class Participation: 5% (clicker, piazza, and general participation during class)

The System you will be working on:

Welcome to

Type \h for help

> 1l

Open-ended Project

We will release a list of potential project ideas,
but you can also BYO.

Projects needs to be related to data-centric
systems

Last projects included GPU-accelerated DBs,
Database benchmarks, Learned Index
Structures, Text25QL, ...

Final deliverable: 5-min recorded
presentation, in-class Q&A, written report

MapD: GPU Accelerated SQL Database

Key insight: GPUs have enough memory
that a cluster of them can store
substantial amounts of data

Not an accelerator, but a full blown query
processor!

Massive parallelism enables interactive
browsing interfaces

— 4x GPUs can provide > 1 TB/sec of
bandwidth

— 12 Tflops compute

— Order of magnitude speedups over CPUs,
when data is on GPU

147,201,658 tweets from Oct 1, 2012 to Nov 6, 2012

“Shared nothing” arrangement SR

Relative intensity of “tornado” on Twitter (with point
overlay) from Febuary 29, 2012 to March 1, 2012

(4 > | |O] (2] B O velocidy.net/MaoD/ C | Heaces
&3 (0 BE salon MacRumors MacinTouch Bostoncom Weather CNN mytimes VeioNews chowhound Stashdot Facebook 9105 Mac Quora COMT -- Wikl bostomtraffic JIRA
l MapD GeoViewer

" Cloud#Time Points ¥ Heatmap

125 tweets .

Query Builder

Minimum Data Density (per sq. km)

© Map duta ©2013 Google. INEGI, Maplink - Taens of Use

n HEAVY.AI Request Demo Get HEAVY.AI Free

A Revolutionary GPU-Accelerated

- Analytics Platform

on billions of records, including geospatial and time series data, for a

Instant anal
omplete view of what, when and where.

Learn More =

s v =0 R

[m 1990 - 2020 US Census Dot Density Dashboard
dotdensitywithbettertimestamponedotd - - of 1,166,957
b % of Population by Ethnicity Data Sources

Number of People = = 1 Dot per Person, Styled by Ethnicity

B
o |:|°‘u¢-|¢|mu Y R ¥ < =y
® - 2000 + 2010 - US Census SF1API
(o] 2020 - Registricting Data Hub
©f Only the top ethnicity felds (e.g white, black, hispanic) were used so the
. S yoar totals might not add up to the ‘axact US population for that year (but
¢ should be close and proportionate).
White
4 ‘
1 3 M w Approximate Population by Year
.
% i e
" ‘

Sep 2
Labor Day

Sep 9
Lec 2: SQL Part 2
Reading Assignment

Assigned: PS 1

Sep 16

Lec 4: Intro to Database
Internals

Reading Assignment

Sep 23

Lec 6: Indexing and Access
Methods

Reading Assignment

Assigned: Lab 2

Sep 3
Registration Day

Sep 10

Sep 17

Sep 24

Sep 4

First Day of Classes

Lec 1: Introduction to
Databases / Relational
Model / SQL Part 1
Assigned: Lab 0

Sep 11
Lec 3: Schema Design
Reading Assignment

Assigned: Lab 1
Due: Lab 0

Sep 18

Lec 5: Database Operators
and Query Processing
Reading Assignment

Due: PS 1

Sep 25
Lec 7: Join Algorithms
Reading Assignment

Due: Lab 1

Due: Project teams (if
doing final project)
Assigned: PS 2

Today

 Why database systems?

THIS IS THE BEST

e User’s perspective:
— Modeling data
— Querying data

e Data Models

»
.
4
.
bt [L
Y
’
’
-
: .

/00 Website Features

e Admin interface
— Edit
— Add an animal

* Public D i e e
— Pictures & Maps =

o (&) }BUS TOUR!
RY-+ UNLOADING

e Zookeeper
— Feed times

e 1K animals, 5K URLs, 10 admins, 200 keepers

/oo Data Model
Entity Relationship Diagram

n contains 1

Animal
relationship
feedTime

1

keeps 1
s Building
bldg

n

1 name

Keeper

Animals have names, ages, species
Keepers have names

Cages have cleaning times, buildings
Animals are in 1 cage; cages have multiple animals
Keepers keep multiple cages, cages kept by multiple keepers

Our Zoo

Mike the Moose

Tim the Giraffe Sally the Student

/00 Data Model

Entity Relationship Diagram

contains
Animal

feedTime
i 1__ name Cageid | Feedtime | Bld
Q’m 1 1:30 1

2 2:30 2

/oo Data Model
Entity Relationship Diagram

n contains 1 1

Animal Cage

relationship
n feedTime
? keeps
o Building
bldg

— 1 1:30 1

2 2:30 2

m/ 1 1

1 jenny 1 p)

2 joe o 1

Study Break #1

e Questions

— Are there other ways to represent this zoo data
than a collection of tables?

— What are tradeoffs in different representations?

Alternatives to Relations

Hierarchy Graph
cage 1l
iraffe
§3 rs > cage 1
sally animals sally
student
1yr mike " €age 2
cage 2
mike
moose

3yrs

Multiple Tabular Representations Are

Possible
name age species cageno feedtime bldg
tim 13 giraffe 1 1:30 1
mike 3 moose 2 2:30 2
sally 1 student 1 1:30 1

Is this a good representation? Why or why not?

Not “Normalized” — repeats data. More in later lectures!

SQL — Structured Query Language

SELECT fieldl, .., fieldM
FROM tablel,
WHERE conditionl,

INSERT INTO table VALUES (fieldl, ..)

UPDATE table SET fieldl = X,
WHERE conditionl, ..

Names of Giraffes

* Imperative
for each row r 1n animals
if r.species = ‘giraffe’
output r.name
* Declarative
SELECT r.name FROM animals

WHERE r.species = ‘giraffe’

Cages in Building 32

* Imperative SQ’S S
for each row a 1n animals OOQ
for each row ¢ 1n cages \
1f a.cageno = c.no and c.bldg = 32

output a

e Declarative

ELECT a.name FROM animals AS a, cages AS cC
\O\ WHERE a.cageno = c.no AND c.bldg = 32

Average Age of Bears

 Declarative
SELECT AVG (age) FROM animals
WHERE species = ‘bear’

Complex Queries

Find pairs of animals of the same species and different genders older than 1 year:
SELECT al.name,a2.name
FROM animals as al, animals as a2
WHERE al.gender = M and a2.gender =F
AND al.species = a2.species
AND al.age >1and a2.age >1

“self join”

Find cages with salamanders fed later than the average feedtime of any cage:
SELECT cages.cageid FROM cages, animals
WHERE animals.species = ’salamander’
AND animals.cageid = cages.cageid
AND cages.feedtime > “nested queries”
(SELECT AVG(feedtime) FROM cages)

Complex Queries 2

Find keepers who keep both students and salamanders:
SELECT keeper.name
FROM keeper, cages as c1, cages as c2,

keeps as k1, keeps as k2, animals as al, animals as a2

WHERE c1.cageid = k1.cageid AND keeper.keeperid = k1.keeperid
AND c2.cageid = k2.cageid AND keeper.keeperid = k2.keeperid
AND al.species = 'student' AND a2.species = 'salamander’
AND cl.cageid = al.cageid AND c2.cageid = a2.cageid

keeper.keeperid =
k1.keeperid

k2.keeperid

species = ‘student’

Declarative Queries: What, not How

* Many possible prog
query

* Besides looping thrifk \
could we do?
— Sort animals on type™

+ good for “bears” query
- Inserts are slower

— Store animals table in a hash table or tree (“index”)

SQL = Procedural Plan = Optimized
Plan = Compiled Program

Select
Bldg == 2

|

Join
R1.cageno == R2.cageid

TN

Animals Cages
R1 R2

Binary search?

SQL > Procedural Plan = Optimized
Plan = Compiled Program

Select
Bldg == 2

Join
R1.cageno == R2.cageid

SQL programmer just thinks
in terms of table operations,
not the order or

“ : implementation!
Predicate push Cages P

R2

Animals down”
R1 own

Summary: Database Systems

Relational Model + Schema
Design

Declarative Queries

Query Optimization

Efficient access and updates to
data

— Recoverability

— Consistency

Relational Model

“Those who cannot remember the
past are doomed to repeat it”

A Short History Lesson

* Different Data Models
— Hierarchical (IMS/DL1)—-1960’s
— Network (CODASYL) — 1970’s
— Relational — 1970’s and beyond

* Key ideas
— Data redundancy (and how to avoid it)
— Physical and logical data independence
— Relational algebra and axioms

Recap: Zoo Data Model
Entity Relationship Diagram

1 n contains 1 1
' relationship N
n feedTime

— n

species
_1’“

Animals have names, ages, species

Keepers have names

Cages have cleaning times, buildings

Animals are in 1 cage; cages have multiple animals

Keepers keep multiple cages, cages kept by multiple keepers

1

W

keeps 1
age W
bldg

1 name

|

Zoo Tables (aka Relations)

Animals “Schema”: Field names
= 1d | name age | species | cageno > &types

1 Mike 3 Moose 1

Tim 12 Giraffe 1 Rows, records, or tuples

3 Sally 1 Student 2
Cages
o |feedtime __|building

1 12:30 1

2 1:30 2

Keepers Keeps

Jane 1

1

2 Joe 1 2
2 1

1

Modified Zoo Data Model

animals(name,species,age,feed time)

livesin caredforby
\/ \/
cages(no, size, bldg) keepers(name, address)

Slightly different than last time:
 Each animalin 1 cage, multiple animals share a cage

* Each animal cared for by 1 keeper, keepers care for
multiple animals

IMS (Hierarchical Model)

* Data organized as segments
— Collection of records, each with same segment type
— Arranged in a tree of segment types, e.g.:

Keepers Keepers
Animals Cages
Cages Animals

* Segments have different physical representations
— Unordered

— Indexed
* Sorted
e Hashed

Example Hierarchy

Jane (keeper) (HSK 1)
Mike, moose,

1, 100sq ft : 3)
Tim, giraffe, .. (4) \ Repeated

2, 1000sq ft, . information!
Sally, student, . (6) /
1, 100sq ft, .. (7)

Joe (keeper) (8)
IMS Physical Represenation
Keepers segment

Al Segment A2 Segment A3 Segment
C1 Segment C2 Segment C3 Segment

Segment Structure

» Each segment has a particular physical
representation
— Chosen by database administrator
— E.g., ordered, hashed, unordered...

» Choice of segment structure affects which
operations can be applied on it

IMS / DL/1 Operations

GetUnique (seg type, pred)
— Get first record satisfying pred
— Only supported by hash / sorted segments

GetNext (seg type, pred)
— Get first or next key in hierarchical order
— Starts from last GetNext/GetUnique call

GetNextParent (seg type, pred)

— Same as GetNext, but will not move up hierarchy to next parent

Delete, Insert

Example PL/1 Program #1

Find the cages that Jane keeps
GetUnique(Keepers, name = "Jane")
Until done:

cageid = GetNextParent (cages).no
print cageid

Jane (keeper) (HSK 1)

VITKE, MOOSE, . 5 This iterates through
1, 100sq ft, ... 3
Tim, giraffe, .. (4) data underneath
2, 1000sq ft, ... (5) Jane implicitly, now
Sally, student, ... (6)] o
1 100sq ft. .. navigating from the
Joe (keeper) (8) Jane record in

keepers

Example PL/1 Program #2

Find the keepers that keep cage 6
keep = GetUnique(keepers)

Until done:
cage = GetNextParent(cages, id = 6)
if (cage is not null):
print keep
keep = GetNext(keepers)

What’s Bad About IMS/PL1?

Duplication of data w/ non-hierarchical data

Painful low level programming interface — have to program the
search algorithm
Limited physical data independence

— Change root from indexed to hash --- programs that do GetNext
on the root segment will fail

— Change root from keepers to animals? Also fails.
— Cannot do inserts into sequential root structure

Limited logical data independence
— Schemas change, do programs have to?

Logical Data Independence

+ Suppose as a cost cutting (IITATRLTHIT] nmvsnm.

measure, Z00
management decides a
keeper will be responsible
for a cage — and all the

W, Lxe us on

Programs have to change, because the position in the
database after a GN/GNP call may not be the same
anymore!

Will see how SQL addresses this

Schemas Change for Many Reasons

Management decides to
have “patrons” who buy
cages

— Need to add a patronid
column

* Feds change the rules
(OSHA)

— Keepers can keep at most 2
cages

« Tax rules change (IRS)
* Merge with another zoo

Study break #2

 Consider a course schema with students, classes,
rooms (each has a number of attributes)

takenby

A 4

e

L

Classes in exactly one room

Students in zero or more classes
Classes taken by zero or more students
Rooms host zero or more classes

isin

v

e

Questions

1. Describe one possible hierarchical schema for
this data

2. Is there a hierarchical representation that is free
of redundancy?

L

v v

— —

isin
takenby

Solution

* Many are possible; one example:

— Classes
e Students

— Rooms

* Duplicates data about students,

— Students take multiple classes, rooms host
multiple classes

* Any other arrangement also duplicates data

CODASYL

Conference/Committee on
Data Systems Languages

— Responsible for COBOL

CODASYL data model developed
by consortium of large
companies in the 70’s

Designed to address limitations
of IMS/PL1

Graph or network-based data
model

The Computer Museum in Boston celebrated cosoL's 25th
anniversary on May 16, 1985. The cosoL tombstone sent to
Charles Phillips (see his adjoining article) was presented to
the museum. Here surrounding the tombstone (left to right):
Ron Hamm, Jack Jones, Jan Prokop, Oliver Smoot, Tom

Rice, Donald Nelson, Grace Hopper, Michael O'Connell, and
Howard Bromberg (photo by Lilian Kemp). At the museum’s
celebration, Bromberg told the following tale of the tomb-
stone

Example CODASYL Network

animals(name,species,age)

livesin ‘ caredforby

cages(no, size, bldg) keepers(name, address)
animals keepers

mike, moose - » joe

tim, giraffe /r> jane

sally, student

Records can either be hashes (allowing
equality lookup) or sorted ("clustered")
according to some key (allowing a range
lookup).

Example: Find Cages Joe Keeps

_animals Caredforby ke_epers
mike, moose —» joe

tim, giraffel—/r> jane
sally, studen

Find keepers (name = 'Joe')
Until done:
Find next animal in caredforby
Find cage in livesin

livesin

* Programming is finding an entry point and
navigating around in multidimensional space

— Each line of code is implicitly at some location in
this structure

— Have to remember where you are

IFYOUICOULD THROW
WEHYTHING AWAY

Codasyl Problems

* Incredibly complex —
“Navigational Programming”

« Programs lack physical or logical data independence

— Can't change schema w/out changing programs;
— Can't change physical representation either b/c different
index types might or might not support different operations
« Some of this could have been fixed by adding a high-
level language to CODASYL

* Relational model was a clean-slate approach designed
to fix this

Relational Principles

e Simple representation

* Set-oriented programming model that doesn't
require "navigation”

* No physical data model description required(!)

— E.g., no specification of sort orders, hashes, etc

Relational Data Model

All data is represented as tables of records (tuples)
Tables are unordered sets (no duplicates)
Database is one or more tables

Each relation has a schema that describes the
types of the columns/fields

Each field is a primitive type -- not a set or relation

Physical representation/layout of data is not
specified (no index types, nestings, etc)

Zoo Tables

e\g“
?0‘
Animals
n-m-m
QN Mike 3 Moose 10:00 am
?(’\“‘ 2 Tim 12 Giraffe 1 2 11:00 am
wey 3 Sally 1 Student 2 1 1:00 pm
Cages
o [nuiding [Nl
o building (id: int,
(’\((‘0 1 1 name: string,
4 \’ 2 2 age: int,
\Le species: string,
Keepers cageno: int references cages.no,
__ keptby: int references keepers.id.
feedtime: time)
° (\((\ON 1 Jane

\U’N 2 Joe

Zoo Tables (original schema)

Animals
id lname lage |speces |cageno
ON 1 Mike 3 Moose 1 e-\g“
ot 2 Tim 12 Giraffe 1 ¢o° \
wey 3 Sally 1 Student 2 we
Cages
W eesime louiang
?(-\((\0(1 12:30 1
\Le\’ 2 1:30 2
Keepers Keeps
id _ Jname _
. ON Jane
?‘\“‘ 2 Joe 1 e'\Q'“ 2 ‘é\(}“
wy O 0

Relational Algebra

Projection (rt(T,c1, ..., cn))

— select a subset of columns cl .. cn
Selection (o(T, pred))

— select a subset of rows that satisfy pred

Cross Product (T1 x T2)
— combine two tables

Join (PX}(T1, T2, pred)) = o(T1 x T2, pred)
— combine two tables with a predicate

Plus set operations (UNION, DIFFERENCE, etc)

“Algebra” — Closed under its own operations
— Every expression over relations produces a relation

Join as Cross Product
T O O R

Mike
1 2 Mike 36
Animals Cages .
1 1 Tim 32
“) — »
Mike
Sally 2 2 2 Sally 36
Find animals in bldg. 32 Real implementations do not ever
o materialize the cross product
>(
animals,
cages,

animals.cageno = cages.no

),
bldg = 32

)

Join as Cross Product
ageno [no Jname |bidg

Mike

Animals Cages

“name | cageno e | bidg S i —
Sam 1 1 32

Tim 1 2 36 2 T Satty 32
Sally 2 2 2 Sally 36

Find animals in bldg. 32 1. animals.cageno = cages.no
o
>(
animals,
cages,
animals.cageno = cages.no
),
bldg = 32
)

Join as Cross Product
ageno [no Jname |bidg

Mike
Animals Cages .
1 1 Tim 32
Sam 1 1 32 - - m e
Find animals in bldg. 32 1. animals.cageno = cages.no
o 2. bldg=32
>(
animals,
cages,
animals.cageno = cages.no Do you think this is how
),
bldg = 32 databases actually

) execute joins?

Relational ldentities

Join reordering
— ADKIB=BIXA
— (AP B)joinC=AD (B C)

Selection reordering
— 04(0,(A)) = 0,(0,(A))

Selection push down
_ G(A [><]pred B) = G(A) [><]pred G(b)
— o0 may only apply to one table

Projection push down

— 1(o(A)) = o(rt(A))

— As long as i doesn’t remove fields used in o
— Also applies to joins

Push Down Example

o
D>
animals,
cages,

animals.cageno = cages.no

),

bldg = 32
) N
>
animals,
o
cages,
bldg = 32
)
animals.cageno = cages.no
)

Join Ordering Example

* Find buildings Joe keeps
* SQL

SELECT building

SQL query executor
free to choose either
ordering!

Text of SQL query is
not an ordering

FROM cages JOIN keeps ON no = cageno
JOIN keepers on kid = id
WHERE name = ‘Joe’
> (> (Best
> cages, ordering
Cases, > depends on
keeps, o eepers sizes of
no = cageno ,
), <:> name = ‘Joe’ tables
o), _
keepers, keeps, Filtered
name = ‘Joe’ kid=id keepers may
),), be much
kid = id no = cageno smaller
))

Study Break # 2

Schema:
classes: (cid, c_name, c rid, ...)
rooms: (rid, bldg, ...)
students: (sid, s _name, ...)
takes: (t_sid, t_cid)

SELECT s_name FROM student,takes,classes
WHERE t_sid=sid AND t_cid=cid
AND c_name='6.830’

Questions

* Write an equivalent relational algebra
expression for this query

* Are there other possible expressions?

* Do you think one would be more “efficient” to
execute? Why?

SELECT s_name FROM student,takes,classes
WHERE t_sid=sid AND t_cid=cid
AND c_name='6.830’

Solution

SELECT s_name FROM student,takes,classes
WHERE t_sid=sid AND t_cid=cid
AND ¢/name='6.830’

D> (v Filtering first is probably a good idea
student,
D> (

Filtered table is small, so do join with

of it and classes first

classes,
c_name = ‘6.830’ _ _ S
), Will formalize this intuition in a few
takes, classes
t_cid=cid

),
t_sid=sid

IMS v CODASYL v Relational

s copasw

Many to many
relationships
without

redundancy
Declarative, non x x \/
“navigational”

programming

v v

IMS v CODASYL v Relational
. |mms_ |CODASYL _|Relational |

Many to many
relationships
without

redundancy
Declarative, non x x \/
“navigational”

programming

Physical data x x
independence \/

v v

Physical Independence

Can change representation of data without needing to change code
Example:

SELECT a.name FROM animals AS a, cages AS cC
WHERE a.cageno = c.no AND c.bldg = 32

* Nothing about how animals or cages tables are represented is
evident

— Could be sorted, stored in a hash table / tree, etc
— Changing physical representation will not change SQL

* No specification of implementation

 Both CODASYL and IMS expose representation-dependent
operations in their query API

IMS v CODASYL v Relational

__|ms______|cobasv.
Many to many x \/ \/

relationships
without
redundancy

Declarative, non
“navigational”
programming

Physical data
independence

Logical data
independence

XX X
RN

Logical Data Independence

 What if | want to change the schema without
changing the code?

* No problem if just adding a column or table

* Views allow us to map old schema to new
schema, so old programs work

— Even when changing existing fields

Key ldea: View

* View is a logical definition of a table in terms of other
tables

e E.g., aview computing animals per cage

CREATE VIEW cage_count as
(SELECT cageno, count(*)

FROM animals JOIN cages ON cageno=no
GROUP by cageno

)

This view can be used just like a table in other queries

Views Example

e Suppose | want to add multiple feedtimes?
e How to support old programs?
— Rename existing animals table to animals2
— Create feedtimes table
— Copy feedtime data from animals2
— Remove feedtime column from animals2
— Create a view called animals that is a query over animals2 and feedtimes

CREATE VIEW animals as (

SELECT name, age, species, cageno,
(SELECT feedtime FROM feedtimes WHERE animalid =id LIMIT 1)
FROM animals2

Summary: IMS v CODASYL v
Relational

__|ms______|cobasv.
Many to many x
relationships \/ \/
without

redundancy

Declarative, non
“navigational”
programming

Physical data
independence

Logical data
independence

XX X
RN

Next time: Fancy SQL

Today

 Why database systems?

THIS IS THE BEST

e User’s perspective:
— Modeling data
— Querying data

e Data Models

»
.
4
.
bt [L
Y
’
’
-
: .

/00 Website Features

e Admin interface
— Edit
— Add an animal

* Public D i e e
— Pictures & Maps =

o (&) }BUS TOUR!
RY-+ UNLOADING

e Zookeeper
— Feed times

e 1K animals, 5K URLs, 10 admins, 200 keepers

/oo Data Model
Entity Relationship Diagram

n contains 1

Animal
relationship
feedTime

1

keeps 1
s Building
bldg

n

1 name

Keeper

Animals have names, ages, species
Keepers have names

Cages have feeding times, buildings
Animals are in 1 cage; cages have multiple animals
Keepers keep multiple cages, cages kept by multiple keepers

Our Zoo

Mike the Moose

Tim the Giraffe Sally the Student

/00 Data Model

Entity Relationship Diagram

contains
Animal

feedTime
i 1__ name Cageid | Feedtime | Bld
Q’m 1 1:30 1

2 2:30 2

/oo Data Model
Entity Relationship Diagram

n contains 1 1

Animal Cage

relationship
n feedTime
? keeps
o Building
bldg

— 1 1:30 1

2 2:30 2

m/ 1 1

1 jenny 1 p)

2 joe o 1

Study Break #1

e Questions

— Are there other ways to represent this zoo data
than a collection of tables?

— What are tradeoffs in different representations?

Alternatives to Relations

Hierarchy Graph
cage 1l
iraffe
§3 rs > cage 1
sally animals sally
student
1yr mike " €age 2
cage 2
mike
moose

3yrs

Multiple Tabular Representations Are

Possible
name age species cageno feedtime bldg
tim 13 giraffe 1 1:30 1
mike 3 moose 2 2:30 2
sally 1 student 1 1:30 1

Is this a good representation? Why or why not?

Not “Normalized” — repeats data. More in later lectures!

SQL — Structured Query Language

SELECT fieldl, .., fieldM
FROM tablel,
WHERE conditionl,

INSERT INTO table VALUES (fieldl, ..)

UPDATE table SET fieldl = X,
WHERE conditionl, ..

Names of Giraffes

* Imperative
for each row r 1n animals
if r.species = ‘giraffe’
output r.name
* Declarative
SELECT r.name FROM animals

WHERE r.species = ‘giraffe’

Cages in Building 32

* Imperative SQ’S S
for each row a 1n animals OOQ
for each row ¢ 1n cages \
1f a.cageno = c.no and c.bldg = 32

output a

e Declarative

ELECT a.name FROM animals AS a, cages AS cC
\O\ WHERE a.cageno = c.no AND c.bldg = 32

Average Age of Bears

 Declarative
SELECT AVG (age) FROM animals
WHERE species = ‘bear’

Complex Queries

Find pairs of animals of the same species and different genders older than 1 year:
SELECT al.name,a2.name
FROM animals as al, animals as a2
WHERE al.gender = M and a2.gender =F
AND al.species = a2.species
AND al.age >1and a2.age >1

“self join”

Find cages with salamanders fed later than the average feedtime of any cage:
SELECT cages.cageid FROM cages, animals
WHERE animals.species = ’salamander’
AND animals.cageid = cages.cageid
AND cages.feedtime > “nested queries”
(SELECT AVG(feedtime) FROM cages)

Complex Queries 2

Find keepers who keep both students and salamanders:
SELECT keeper.name
FROM keeper, cages as c1, cages as c2,

keeps as k1, keeps as k2, animals as al, animals as a2

WHERE c1.cageid = k1.cageid AND keeper.keeperid = k1.keeperid
AND c2.cageid = k2.cageid AND keeper.keeperid = k2.keeperid
AND al.species = 'student' AND a2.species = 'salamander’
AND cl.cageid = al.cageid AND c2.cageid = a2.cageid

keeper.keeperid =
k1.keeperid

k2.keeperid

species = ‘student’

Declarative Queries: What, not How

* Many possible prog
query

* Besides looping thrifk \
could we do?
— Sort animals on type™

+ good for “bears” query
- Inserts are slower

— Store animals table in a hash table or tree (“index”)

SQL = Procedural Plan = Optimized
Plan = Compiled Program

Select
Bldg == 2

|

Join
R1.cageno == R2.cageid

TN

Animals Cages
R1 R2

Binary search?

SQL > Procedural Plan = Optimized
Plan = Compiled Program

Select
Bldg == 2

Join
R1.cageno == R2.cageid

SQL programmer just thinks
in terms of table operations,
not the order or

“ : implementation!
Predicate push Cages P

R2

Animals down”
R1 own

Summary: Database Systems

Relational Model + Schema
Design

Declarative Queries

Query Optimization

Efficient access and updates to
data

— Recoverability

— Consistency

